Элементы технологического процесса механической обработки. Технологический процесс механической обработки детали

Элементы технологического процесса механической обработки. Технологический процесс механической обработки детали
Элементы технологического процесса механической обработки. Технологический процесс механической обработки детали

ПРОИЗВОДСТВЕННЫЙ И ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕССЫ

Под производственным процессом понимают совокупность отдельных процессов, осуществляемых для получения из материалов и полуфабрикатов готовых машин (изделий).

В производственный процесс входят не только основные, т. е. непосредственно связанные с изготовлением деталей и сборкой из них машин, процессы, но и все вспомогательные процессы, обеспечивающие возможность изготовления продукции (например, транспортирование материалов и деталей, контроль деталей, изготовление приспособлений и инструмента, и т. д.).

Технологическим процессом называют последовательное изменение формы, размеров, свойств материала и полуфабриката в целях получения детали или изделия в соответствии с заданными техническими требованиями.

Технологический процесс механической обработки деталей является частью общего производственного процесса изготовления всей машины.

Производственный процесс разделяется на следующие этапы:

1) изготовление заготовок деталей - литье, ковка, штамповка;

2) обработка заготовок на металлорежущих станках для получения деталей с окончательными размерами и формами;

3) сборка узлов и агрегатов (или механизмов), т. е. соединение отдельных деталей в сборочные единицы и агрегаты; в единичном производстве применяются слесарная обработка и пригонка деталей к месту постановки при сборке; в серийном производстве эти работы выполняются в незначительном объеме, а в массовом и крупносерийном не применяются, так как благодаря применению предельных калибров при обработке на металлорежущих станках достигается взаимозаменяемость деталей;

4) окончательная сборка всей машины;

5) регулирование и испытание машины;

6) окраска и отделка машины (изделия). Окраска состоит из нескольких операций, выполняемых на разных этапах технологического процесса, например, шпаклевка, грунтовка и первая окраска отливок, окраска обработанных деталей, окончательная окраска всей машины.)

На каждом этапе производственного процесса, по отдельным операциям технологического процесса, осуществляется контроль за изготовлением деталей в соответствии с техническими условиями, предъявляемыми к детали для обеспечения должного качества готовой машины (изделия). Технологический процесс механической обработки деталей должен проектироваться и выполняться таким образом, чтобы посредством наиболее рациональных и экономичных способов обработки удовлетворялись требования к деталям (точность обработки и шероховатость поверхностей, взаимное расположение осей и поверхностей, правильность контуров и т. д.), обеспечивающие правильную работу собранной машины.

Согласно ГОСТ 3.1109-73 технологический процесс может быть проектным, рабочим, единичным, типовым, стандартным, временным, перспективным, маршрутным, операционным, маршрутно-операционным.

ПРОИЗВОДСТВЕННЫЙ СОСТАВ МАШИНОСТРОИТЕЛЬНОГО ЗАВОДА

Машиностроительные заводы состоят из отдельных производственных единиц, называемых цехами, и различных устройств.

Состав цехов, устройств и сооружений завода определяется объемом выпуска продукции, характером технологических процессов, требованиями к качеству изделий и другими производственными факторами, а также в значительной мере степенью специализации производства и кооперирования завода с другими предприятиями и смежными производствами.

Специализация предполагает сосредоточение большого объема выпуска строго определенных видов продукции на каждом предприятии.

Кооперирование предусматривает обеспечение заготовками (отливками, поковками, штамповками), комплектующими агрегатами, различными приборами и устройствами, изготовляемыми на других специализированных предприятиях.

Если проектируемый завод будет получать отливки в порядке кооперирования, то в его составе не будет литейных цехов. Например, некоторые станкостроительные заводы получают отливки со специализированного литейного завода, снабжающего потребителей литьем в централизованном порядке.

Состав энергетических и санитарно-технических устройств завода также может быть различным в зависимости от возможности кооперирования с другими промышленными и коммунальными предприятиями по снабжению электроэнергией, газом, паром, сжатым воздухом, в части устройства транспорта, водопровода, канализации и т. д.

Дальнейшее развитие специализации и в связи с этим широкое кооперирование предприятий значительно отразятся на производственной структуре заводов. Во многих случаях в составе машиностроительных заводов не предусматриваются литейные и кузнечно-штамповочные цехи, цехи по изготовлению крепежных деталей и т. п., так как заготовки, метизы и другие детали поставляются специализированными заводами. Многие заводы массового производства в порядке кооперирования со специализированными заводами также могут снабжаться готовыми узлами и агрегатами (механизмами) для выпускаемых машин; например, автомобильные и тракторные заводы - готовыми двигателями и др.

Состав машиностроительного завода можно разделить на следующие группы:

1. Заготовительные цехи (чугунолитейные, сталелитейные, литейные цветных металлов, кузнечные, кузнечно-прессовые, прессовые, кузнечно-штамповочные и др.);

2. Обрабатывающие цехи (механические, термические, холодной штамповки, деревообрабатывающие, металлопокрытий, сборочные, окрасочные и др.);

3. Вспомогательные цехи (инструментальные, ремонтно-механические, электроремонтные, модельные, экспериментальные, испытательные и др.);

4. Складские устройства (для металла, инструмента, формовочных и шихтовых материалов и др.);

5. Энергетические устройства (электростанция, теплоэлектроцентраль, компрессорные и газогенераторные установки);

6. Транспортные устройства;

7. Санитарно-технические устройства (отопление вентиляция, водоснабжение, канализация);

8. Общезаводские учреждения и устройства (центральная лаборатория, технологическая лаборатория, центральная измерительная лаборатория, главная контора, проходная контора, медицинский пункт, амбулатория, устройства связи, столовая и др.).

СТРУКТУРА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

В целях обеспечения наиболее рационального процесса механической обработки заготовки составляется план обработки с указанием, какие поверхности надо обработать, в каком порядке и какими способами.

В связи с этим весь процесс механической обработки расчленяется на отдельные составные части: технологические операции, установы, позиции, переходы, ходы, приемы.

Технологической операцией называется часть технологического процесса, выполняемая на одном рабочем месте и охватывающая все последовательные действия рабочего (или группы рабочих) и станка по обработке заготовки (одной или нескольких одновременно).

Например, обтачивание вала, выполняемое последовательно сначала на одном конце, а потом после поворота, т. е. перестановка вала в центрах, без снятия его со станка, - а на другом конце, является одной операций.

Если же все заготовки (валы) данной партии обтачиваются сначала на одном конце, а потом на другом, то это составит две операции.

Установом называют часть операции, выполняемую при одном закреплении заготовки (или нескольких одновременно обрабатываемых) на станке или в приспособлении, или собираемой сборочной единицы.

Так, например, обтачивание вала при закреплении в центрах - первый установ, обтачивание вала после его поворота и закрепления в центрах для обработки другого конца - второй установ. При каждом повороте детали на какой- либо угол создается новый установ (при повороте детали необходимо указывать угол поворота).

Установленная и закрепленная установка может изменять свое положение на станке относительно его рабочих органов под воздействием перемещающих или поворотных устройств, занимая новую позицию.

Позицией называется каждое отдельное положение заготовки, занимаемое ею относительно станка при неизменном ее закреплении.

Например, при обработке на многошпиндельных полуавтоматах и автоматах деталь при одном ее закреплении занимает различные положения относительно станка путем вращения стола (или барабана), последовательно подводящего деталь к разным инструментам.

Операция разделяется на переходы - технологические и вспомогательные.

Технологический переход - законченная часть технологической операции, характеризуемая постоянством применяемого инструмента, поверхностей, образуемых обработкой, или режима работы станка.

Вспомогательный переход - законченная часть технологической операции, состоящая из действия человека и (или) оборудования, которые не сопровождаются изменением формы, размеров и шероховатости поверхности, но необходимы для выполнения технологического перехода. Примерами вспомогательных переходов являются установка заготовки, смена инструмента и т. д.

Изменение только одного из перечисленных элементов (обрабатываемой поверхности, инструмента или режима резания) определяет новый переход.

Переход состоит из рабочих и вспомогательных ходов.

Под рабочим ходом понимают часть технологического перехода, охватывающую все действия, связанные со снятием одного слоя материала при неизменности инструмента, поверхности обработки и режима работы станка.

На станках, обрабатывающих тела вращения, под рабочим ходом понимают непрерывную работу инструмента, например на токарном станке снятие резцом одного слоя стружки непрерывно, на строгальном станке - снятие одного слоя металла по всей поверхности.

Если слой материала не снимается, а подвергается пластической деформации (например, при образовании рифлений и при обкатывании поверхности гладким роликом с целью ее уплотнения), а также применяют понятие рабочего хода, как и при снятии стружки.

Вспомогательный ход - законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемого изменением формы, размеров, шероховатости поверхности или свойств заготовки, но необходимого для выполнения рабочего хода.

Все действия рабочего, совершаемые им при выполнении технологической операции, расчленяются на отдельные приемы. Под приемом понимают законченное действие рабочего. Обычно приемами являются вспомогательные действия, например, постановка или снятие детали, пуск станка, переключение скорости или подачи и т. п. Понятие «прием» используют при техническом нормировании операции.

В план механической обработки включают также промежуточные работы - контрольные, слесарные и др., необходимые для дальнейшей обработки, например, спайка, сборка двух деталей, термическая обработка и т. д.; окончательные операции для других видов работ, выполняемых после механической обработки, вносятся в план соответствующих видов обработки.

ПРОИЗВОДСТВЕННАЯ ПРОГРАММА

Производственная программа машиностроительного завода содержит номенклатуру изготовляемых изделий (с указанием их типов и размеров), количеств изделий каждого наименования, подлежащих выпуску в течении года, перечень и количество запасных деталей к выпускаемым изделиям.

На основании общей производственной программы завода составляется подетальная производственная программа по цехам, указывающая наименование, количество, черный и чистый вес (массу) деталей, подлежащих изготовлению и обработке в каждом данном цехе (литейном, кузнечном, механическом и др.) и проходящих обработку в нескольких цехах; составляется программа по каждому цеху и одна сводная, указывающая какие детали и каком количестве проходят через каждый цех. При составлении подетальных программ по цехам к общему количеству деталей, определяемому производственной программой, прибавляются детали запасные, прилагаемые к выпускаемым машинам, а также поставляемые в качестве запасных частей доя обеспечения бесперебойной работы машин, находящихся в эксплуатации. Количество запасных деталей принимают в процентном отношении к количеству основных деталей.

К производственной программе прилагаются чертежи общих видов машин, чертежи сборочные и отдельных деталей, спецификации деталей, а также описание конструкций машин и технические условия на их изготовление и сдачу.

машиностроительный завод технологический производственный

ВИДЫ (ТИПЫ) ПРОИЗВОДСТВА И ХАРАКТЕРИСТКА ИХ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ. ОРГАНИЗАЦИОННЫЕ ФОРМЫ РАБОТЫ

В зависимости от размера производственной программы, характера продукции, а также технических и экономических условий осуществления производственного процесса все разнообразные производства условно делятся на три основных вида (или типа): единичное (или индивидуальное), серийное и массовое. У каждого из этих видов производственный и технологический процессы имеют свои характерные особенности, и каждому из них свойственна определенная форма организации работы.

Необходимо отметить, что на одном и том же предприятии и даже в одном и том же цехе могут существовать различные виды производства, т. е. отдельные изделия или детали могут изготовляться на заводе или в цехе по разным технологическим принципам: технология изготовления одних деталей соответствует единичному производству, а других - массовому, или одних - массовому, других - серийному. Так, например, в тяжелом машиностроении, имеющем характер единичного производства, мелкие детали, требующиеся в большом количестве, могут изготовляться по принципу серийного и даже массового производства.

Таком образом, характеризовать производство всего завода или цеха в целом можно только по признаку преимущественного характера производственных и технологических процессов.

Единичным называется такое производство, при котором изделия изготовляются единичными экземплярами, разнообразными по конструкции или размерам, причем повторяемость этих изделий редка или совсем отсутствует.

Единичное производство универсально, т. е. охватывает разнохарактерные типы изделий, поэтому оно должно быть очень гибким, приспособленным к выполнению разнообразных заданий. Для этого завод должен располагать комплектом универсального оборудования, обеспечивающим изготовление изделий сравнительно широкой номенклатуры. Этот комплект оборудования должен быть подобран таким образом, чтобы, с одной стороны, можно было применять различные виды обработки, а с другой - чтобы количественное соотношение отдельных видов оборудования гарантировало определенную пропускную способность завода.

Технологический процесс изготовления деталей при этом виде производства имеет уплотненный характер: на одном станке выполняется несколько операций и часто производится полная обработка деталей разнообразных конструкций и из различных материалов. Ввиду разнохарактерности работ, выполняемых на одном станке, и неизбежности вследствие этого в каждом случае подготовки и наладки станка для новой работы основное (технологическое) время в общей структуре нормы времени невелико.

Приспособления для обработки деталей на станках имеют здесь универсальный характер, т. е. могут быть использованы в разнообразных случаях (например, тиски для крепления деталей, угольники, прихваты и т. п.). Специальные приспособления не применяют или применяют редко, так как значительные затраты на их изготовление экономически не оправдываются.

Необходимый при этом виде производства режущий инструмент также должен быть универсальным (стандартные сверла, развертки, фрезы и т. п.), так как ввиду разнообразия обрабатываемых деталей применение специального инструмента экономически не представляется возможным.

Равным образом и измерительный инструмент, употребляемый при обработке деталей, должен быть универсальным, т. е. измерять детали разнообразных размеров. В этом случае широко применяют штангенциркули, микрометры, нутромеры, штихмасы, индикаторы и другие универсальные измерительные средства.

Разнохарактерность изготовляемых изделий, неравномерность по времени поступления в производство более или менее сходных конструкций, различие требований, предъявляемых к изделию в отношении точности обработки деталей и качества применяемых материалов, необходимость благодаря разнообразию деталей выполнения различных операций на универсальном оборудовании - все это создает особые условия успешной работы цехов и всего завода, характерные для единичного производства.

Указанные особенности этого вида производства обуславливают относительно высокую себестоимость выпускаемых изделий. Увеличение потребности в данной продукции с одновременным уменьшением ее номенклатуры и стабилизацией конструкций изделий создает возможность перехода от единичного производства к серийному.

Серийное производство занимает промежуточное положение между единичным и массовым производством.

При серийном производстве изделия изготовляют партиями или сериями, состоящими из одноименных, однотипных по конструкции и одинаковых по размерам изделий, запускаемых в производство одновременно. Основным принципом этого вида производства является изготовление всей партии целиком как в обработке деталей, так и в сборке.

Понятие «партия» относится к количеству деталей, а понятие «серия» - к количеству машин, запускаемых в производство одновременно.

В серийном производстве в зависимости от количества изделий в серии, их характера и трудоемкости, частоты повторяемости серий в течении года различают производство мелкосерийное, среднесерийное и крупносерийное. Такое подразделение является условным для разных отраслей машиностроения.

В серийном производстве технологический процесс преимущественно дифференцирован, т. е. расчленен на отдельные операции, которые закреплены за отдельными станками.

Станки здесь применяются разных видов: универсальные, специализированные, специальные, автоматизированные, агрегатные. Станочный парк должен быть специализирован в такой мере, чтобы был возможен переход от производства одной серии машин к производству другой, несколько отличающейся от первой в конструктивном отношении.

Серийное производство значительно экономичнее, чем единичное, так как лучшее использование оборудования, специализация рабочих, увеличение производительности труда обеспечивает уменьшение себестоимости продукции.

Серийное производство является наиболее распространенным видом производства в общем и среднем машиностроении.

Массовым называется производство, в котором при достаточно большом количестве одинаковых выпусков изделий, изготовление их ведется путем непрерывного выполнения при рабочих местах одних и тех же постоянно повторяющихся операций.

Массовое производство бывает следующих видов:

· поточно-массовое производство, при котором осуществляется непрерывность движения деталей по рабочим местам, расположенным в порядке последовательности технологических операций, закрепленных за определенными рабочими местами и выполняемый примерно в одинаковый промежуток времени;

· массовое прямоточное производство. Здесь технологические операции также выполняются на определенных рабочих местах, расположенных в порядке операций, но время на выполнение отдельных операций не всегда одинаково.

Массовое производство возможно и экономически выгодно при выпуске достаточно большого количества изделий, когда все затраты на организацию массового производства окупаются и себестоимость единицы выпускаемой продукции получается меньше, чем при серийном производстве.

Экономичность выпуска достаточно большого количества изделий можно выразить следующей формулой

где n - число единиц изделий; C - величина затрат при переходе с серийного на массовое производство; - себестоимость единицы изделий при серийном производстве; - себестоимость единицы изделий при массовом производстве.

К условиям, определяющим эффективность массового производства, относятся прежде всего объем производственной программы и специализация завода на определенных типах изделий, причем наиболее благоприятным условием массового производства находится один тип, одна конструкция изделия.

При массовом и крупносерийном производстве технологический процесс строится по принципу дифференциации или по принципу концентрации операций.

По первому принципу технологический процесс дифференцируется на элементарные операции с примерно одинаковым временем выполнения; каждый станок выполняет одну определенную операцию. В связи с этим станки здесь применяются специальные и узкоспециализированные; приспособления для обработки должны быть также специальными, предназначенными для выполнения только одной операции. Часто такое приспособление является неотъемлемой частью станка.

По второму принципу технологический процесс предусматривает концентрацию операций, выполняемых на многошпиндельных автоматах, полуавтоматах, многорезцовых станках, отдельно на каждом станке или на автоматизированных станках, связанных в одну линию, производящих одновременно несколько операций при малой затрате основного времени. Подобные станки все шире внедряются в производство.

Техническая организация массового производства должна быть весьма совершенной. Как уже указывалось, технологический процесс должен быть разработан детально и точно в отношении как методов обработки, так и расчетов основного и вспомогательного времени.

Оборудование должно быть точно определено и расставлено таким образом, чтобы его количество, типы, комплектность и производительность соответствовали заданному выпуску продукции.

Особо важное значение в массовом производстве имеет организация технологического контроля, так как недостаточно тщательная проверка деталей и несвоевременная отбраковка негодных деталей могут привести к задержке и разладке всего производственного процесса. Лучшие результаты достигаются при использовании автоматического контроля в процессе обработки.

Несмотря на небольшие первоначальные капитальные затраты, необходимые для организации массового производств, технико-экономический эффект его на правильно организованном предприятии бывает обычно высок и значительно больше, чем при серийном производстве.

Себестоимость одного и того же вида продукции при массовом производстве значительно ниже, оборачиваемость средств выше, расходы на транспорт меньше, выпуск продукции больше, чем при серийном производстве.

Каждому из описанных выше производства (единичному, серийному, массовому) свойственны соответствующие формы организации работы и способы расположения оборудования, которые определяются характером изделия и производственного процесса, объемом выпуска и рядом других факторов.

Существуют следующие основные формы организации работы.

o По видам оборудования, свойственная главным образом единичному производству; для отдельных деталей применяется в серийном производстве.

Станки располагают по признаку однородности обработки, т. е. создают участки станков, предназначенных для одного вида обработки - токарных, строгальных, фрезерных и др.

o Предметная, свойственная главным образом серийному производству, для отдельных деталей применяется в массовом производстве.

Станки располагают в последовательности технологических операций для одной или нескольких деталей, требующих одинакового порядка обработки. В той же последовательности образуется и движение деталей. Детали обрабатывают на станках партиями; при этом выполнение операций на отдельных станках может быть не согласовано с другими станками. Изготовленные детали хранят у станков и затем транспортируют целой партией.

o Поточно-серийная, или переменно-поточная, свойственна серийному производству, станки располагают в последовательности технологических операций, установленной для деталей, обрабатываемых на данной станочной линии. Производство идет партиями, причем детали каждой партии могут несколько отличаться одна от другой размерами или конструкцией. Производственный процесс ведется таким образом, что время выполнения операции на одном станке согласовано с временем работы на следующем станке.

o Прямоточная, свойственна массовому и в меньшей мере крупносерийному производству; станки располагают в последовательности технологических операций, закрепленных за определенными станками; детали со станка на станок передают поштучно. Транспортирование деталей от одного рабочего места к другому осуществляется рольгангами, наклонными лотками, иногда применяют и конвейеры, служащие здесь только в качестве транспортеров.

o Непрерывным потоком, свойственная только массовому производству. При этой форме организации работы станки располагают в последовательности операций технологического процесса, закрепленных за определенными станками, время выполнения отдельных операций на всех рабочих местах примерно одинаково или кратно такту.

Различают несколько разновидностей работы непрерывным потоком: а) с передачей деталей (изделий) простыми транспортными устройствами - без тягового элемента; б) с периодической подачей деталей транспортным устройством с тяговым элементом. Передвижение деталей от одного рабочего места к другому производится при помощи механических конвейеров, которые двигаются периодически - толчками. Конвейер перемещает деталь через промежуток времени, соответствующий величине такта работы, в течении которого конвейер стоит и выполняется рабочая операция; продолжительность выполнения операции примерно равна величине такта работы; в) с непрерывной подачей деталей (изделий) транспортными устройствами с тяговым элементом; в этом случае механический конвейер движется непрерывно, перемещая расположенные на нем детали от одного рабочего места к другому. Операция выполняется во время движения конвейера; при этом деталь или снимается с конвейера для выполнения операции, или остается в конвейере и в этом случае операция выполняется во время движения детали вместе с конвейером. Скорость движения конвейера должна соответствовать времени, необходимому на выполнение операции. Такт работы механически поддерживается конвейером.

Для всех рассмотренных случаев работы непрерывным потоком можно установить, что решающим фактором, обусловливающим соблюдение принципа непрерывного потока, является не механическое транспортирование деталей, а такт работы.

ОБЩАЯ ХАРАКТЕРИСТИКА МАШИНОСТРОИТЕЛЬНОГО КОМПЛЕКСА

В Украине удельный вес продукции комплекса в общем объеме продукции промышленности составляет 20%, функционируют такие большие предприятия, Новокраматорский машиностроительный завод, Краматорский завод тяжелого машиностроения, Харьковский тракторный завод, Харьковский завод «Электротяжмаш», харьковский и киевский авиационный заводы, трансформаторный завод в Запорожье, завод электронных микроскопов в Сумах и целый ряд других. Новыми центрами развитого машиностроения стали средние и большие города западных областей Украины.

Машиностроительный комплекс Украины - это сложные, взаимосвязанные многопрофильные производства, которые специализируются по выпуску машин и оборудования, устройств и средств вычислительной техники, запасных частей к ним, технологического оснащения и т. д. Особое место принадлежит производству оборудования для отраслей промышленности. Ведущими являются химическое и нефтехимическое, горношахтное и горнорудное, металлургическое машиностроение, авиационное, станкостроительное машиностроение для легкой и пищевой промышленности и бытовых приборов, сельскохозяйственной техники.

Производство металлообрабатывающего оборудования, особенно станков, занимает важное место в машиностроении, обеспечивает его необходимыми основными производственными фондами. От наличного парка станков, их должного технологического уровня, оптимальной структуры по видовому составу и значимости в значительной степени зависят производственные возможности самого машиностроения, его соответствие современным требованиям и способности для технологического перевооружения всего производства и прежде всего машиностроения. Состояние и техникотехнологический уровень станкостроения, структура металлообрабатывающего устройства страны - один из основных показателей развития машиностроения, ее производственных возможностей.

Центрами производства металлообрабатывающего оборудования, в частности станков, а также инструмента являются преимущественно большие и самые надежные города - Одесса, Харьков, Киев, Житомир, Краматорск, Львов, Бердичев; производство кузнечно-прессовых машин расположено в Одессе, Хмельницке, Днепропетровске, Стрие; промышленность по производству искусственных бриллиантов и абразивных материалов - в Полтаве, Львове, Запорожье, Киеве; производство металлообрабатывающего и деревообрабатывающего инструмента - в Запорожье, Хмельницке, Виннице, Харькове, Камянец-Подольском, Луганске. Центрами авиастроения являются Киев и Харьков.

Машиной называют механическое устройство с согласованноработающими частями, которые осуществляют определенные и целесообразные перемещения для превращения энергии, материалов или информации.

Основное назначение машины - замещение производственных функций человека для облегчения труда и повышения производительности.

Машины делят на энергетические (т. е. такие, которые превращают энергию из одного вида в другой) - электродвигатели, электрогенераторы, двигатели внутреннего сгорания, турбины (паровые, газовые, водные и т. д.).

Рабочие машины - станки, строительные, текстильные, вычислительные машины, машины-автоматы.

Машиностроение - отрасль для производства машин. Машиноведение наука о машинах (ТММ, металловедение, сопротивление, материалов, детали машин и т. д.).

Любая машина состоит из отдельных узлов и деталей. При этом значительная часть деталей является стандартизированной и общей для многих видов машин - болты, винты, оси, весы и т. д. Они могут быть произведены на отдельных специализированных предприятиях массового производства, что дает возможность полностью автоматизировать и механизировать всю техническую линию их изготовления.

Из отдельных деталей производят узлы тоже иногда массового общего назначения - редукторы, помпы, тормоза и т. д. Узлами или агрегатами могут считаться более крупные соединения деталей и узлов.

Например, двигатели являются составляющими агрегатами автомобилей, комбайнов, самолетов и тоже изготовляются на отдельных заводах.

Т. е. все машиностроительные предприятия очень тесно связаны между собой техническими и экономическими показателями. Работа каждого машиностроительного предприятия в значительной степени зависит от поставщиков металлоизделий, деталей, узлов агрегатов.

Кроме внутренних отраслевых связей, машиностроение связано с другими отраслями, которые снабжают машиностроение полимерами, резиной, тканями, древесиной и т. д., которые используются в машиностроении как конструкционные и дополнительные материалы.

Подобные документы

    Структура и характеристика промышленности. Производственный и технологический процессы. Типы производства, их технико-экономическая характеристика. Элементы технологического процесса и основы его построения. Формы организации промышленного производства.

    учебное пособие , добавлен 11.04.2010

    Этапы технологических процессов изготовления деталей машин и операций. Характеристика зубчатого колеса, служащего для передачи вращательного движения. Процесс производства детали "Вал" для крупносерийного типа производства. Выбор оборудования, материалов.

    курсовая работа , добавлен 14.07.2012

    Определение основных технико-экономических показателей производственного процесса участка механической обработки деталей в условиях выбранного типа производства. Расчет количества оборудования участка и его загрузки, численности персонала участка.

    курсовая работа , добавлен 12.12.2010

    Типы производства, формы организации и виды технологических процессов. Точность механической обработки. Основы базирования и базы заготовки. Качество поверхности деталей машин и заготовок. Этапы проектирования технологических процессов обработки.

    курс лекций , добавлен 29.11.2010

    Понятие о производственном и технологическом процессах, их классификация. Размер программного задания. Характеристики технологического процесса. Технологическая характеристика различных типов производства. Изготовление продукции, контроль ее качества.

    презентация , добавлен 26.10.2013

    Разработка технологического предложения на создание роботизированного технологического комплекса для изготовления заданных деталей методом механической обработки, штамповки или литья. Конструкторские задачи автоматизации машиностроительного производства.

    курсовая работа , добавлен 25.10.2014

    Сущность производственного процесса. Структура и технологический порядок осуществления операций. Соблюдение принципов организации производства как основополагающее условие его эффективности. Целесообразность единичного и серийного его типов в экономике.

    презентация , добавлен 24.03.2014

    Схема технологического процесса на льнозаводе. Техническая характеристика оборудования. Баланс рабочего времени и режим работы завода. Расчет производственной мощности завода по готовой продукции. Расчет загруженности куделеприготовительного агрегата.

    курсовая работа , добавлен 09.12.2014

    Тип производства, количество деталей в партии. Вид заготовки и припуски на обработку. Структура технологического процесса, выбор оборудования и приспособлений. Нормирование времени, определение расценки и себестоимости механической обработки деталей.

    курсовая работа , добавлен 08.03.2016

    Структура технологического процесса по эскизам обработки вала: количество операций, установы, позиции, переходы и рабочие ходы. Расчёты для единичного и крупносерийного производства. Достижение точности обработки. Число установов заготовки в операции.

Сущность производственного процесса, его виды и структура, основные операции и их назначение, отличительные черты от технологического процесса. Порядок определения трудоемкости технологической операции и нормы времени, необходимой для ее реализации.

ВВЕДЕНИЕ

Совокупность методов и приемов изготовления машин, выработанных в течение длительного времени и используемых в определенной области производства, составляет технологию этой области. В связи с этим возникли понятия: технология литья, технология сварки, технология механической обработки и т.д. Все эти области производства относятся к технологии машиностроения, охватывающей все этапы процесса изготовления машиностроительной продукции.

В дисциплине «Технология машиностроения» комплексно изучаются вопросы взаимодействия станка, приспособления, режущего инструмента и обрабатываемой детали, пути построения наиболее рациональных технологических процессов обработки деталей машин, включая выбор оборудования и технологической оснастки, методы рационального построения технологических процессов сборки машин.

Учение о технологии машиностроения в своем развитии прошло в течение немногих лет путь от простой систематизации производственного опыта механической обработки деталей и сборки машин до создания научно обоснованных положений, разработанных на базе теоретических исследований, научно проведенных экспериментов и обобщения передового опыта машиностроительных заводов. Развитие технологии механической обработки и сборки и ее направленность определяются стоящими перед машиностроительной промышленностью задачами совершенствования технологических процессов, изыскания и изучения новых методов производства, дальнейшего развития и внедрения комплексной механизации и автоматизации производственных процессов на базе достижений науки и техники, обеспечивающих наиболее высокую производительность труда при надлежащем качестве и наименьшей себестоимости выпускаемой продукции.

1. Производственный и технологический процессы

Под производственным процессом понимают совокупность всех действий людей и орудий труда, осуществляемых на предприятии для получения из материалов и полуфабрикатов готовых изделий.

В производственный процесс входят не только основные, непосредственно связанные с изготовлением деталей и сборкой из них машины, процессы, но и все вспомогательные процессы, обеспечивающие возможность изготовления продукции (например, транспортирование материалов и деталей, контроль деталей, изготовление приспособлений и инструмента и т.д.).

Технологическим процессом называют последовательное изменение формы, размеров, свойств материала или полуфабриката в целях получения детали или изделия в соответствии с заданными техническими требованиями.

Технологический процесс механической обработки деталей должен проектироваться и выполняться таким образом, чтобы посредством наиболее рациональных и экономичных способов обработки удовлетворялись требования к деталям (точность обработки, шероховатость поверхности, взаимное расположение осей и поверхностей, правильность контуров и т.д.), обеспечивающие правильную работу собранной машины.

2. Структура технологического процесса

В целях обеспечения наиболее рационального процесса механической обработки заготовки составляется план обработки с указанием, какие поверхности надо обработать, в каком порядке и какими способами.

В связи с этим весь процесс механической обработки расчленяется на отдельные составные части: технологические операции, позиции, переходы, ходы, приемы.

Технологической операцией называется часть технологического процесса, выполняемая на одном рабочем месте и охватывающая все последовательные действия рабочего (или группы рабочих) и станка по обработке заготовки (одной или нескольких одновременно).

Например, обтачивание вала, выполняемое последовательно сначала на одном конце, а потом после поворота, т.е. перестановки вала в центрах, без снятия его со станка, - на другом конце, является одной операцией.

Если же все заготовки данной партии обтачиваются сначала на одном конце, а потом на другом, то это составит две операции.

Установом называют часть операции, выполняемую при одном закреплении заготовки (или нескольких одновременно обрабатываемых) на станке или в приспособлении, или собираемой сборочной единицы.

Например, обтачивание вала при закреплении в центрах - первый установ; обтачивание вала после его поворота и закрепления в центрах для обработки другого конца - второй установ. При каждом повороте детали на какой-либо угол создается новый установ.

Установленная и закрепленная заготовка может изменять свое положение на станке относительно его рабочих органов под воздействием перемещающих или поворотных устройств, занимая новую позицию.

Позицией называется каждое отдельное положение заготовки, занимаемое ею относительно станка при неизменном ее закреплении.

Например, при обработке на многошпиндельных полуавтоматах и автоматах деталь при одном ее закреплении занимает различные положения относительно станка путем вращения стола (или барабана), последовательно подводящего деталь к разным инструментам.

Операция разделяется на переходы - технологические и вспомогательные.

Технологический переход - законченная часть технологической операции, характеризуемая постоянством применяемого инструмента, поверхностей, образуемых обработкой, или режима работы станка.

Вспомогательный переход - законченная часть технологической операции, состоящая из действия человека и или оборудования, которые не сопровождаются изменением формы, размеров и шероховатости поверхности, но необходимы для выполнения технологического перехода. Примерами вспомогательных переходов являются установка заготовки, смена инструмента и т.д.

Изменение только одного из перечисленных элементов (обрабатываемой поверхности, инструмента или режима резания) определяет новый переход.

Переход состоит из рабочих и вспомогательных ходов.

Под рабочим ходом понимают часть технологического перехода, охватывающую все действия, связанные со снятием одного слоя материала при неизменности инструмента, поверхности обработки и режима работы станка.

На станках, обрабатывающих тела вращения, под рабочим ходом понимают непрерывную работу инструмента, например на токарном станке снятие резцом одного слоя стружки непрерывно, на строгальном станке - снятие одного слоя металла по всей поверхности. Если слой материала не снимается, а подвергается пластической деформации (например, при образовании рифлений или при обкатывании поверхности гладким роликом с целью ее уплотнения), также применяют понятие рабочего хода, как и при снятии стружки.

Вспомогательный ход - законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемого изменением формы, размеров, шероховатости поверхности или свойств заготовки, но необходимого для выполнения рабочего хода.

Все действия рабочего, совершаемые им при выполнении технологической операции, расчленяются на отдельные приемы.

Под приемом понимают законченное действие рабочего, обычно приемами являются вспомогательные действия, например постановка или снятие детали, пуск станка, переключение скорости или подачи и т.п. Понятие прием используется при техническом нормировании операции.

В план механической обработки включают также промежуточные работы - контрольные, слесарные и др., необходимые для дальнейшей обработки, например спайка, сборка двух деталей, запрессовка сопрягаемых деталей, термическая обработка и т.д. Окончательные операции для других видов работ, выполняемых после механической обработки, вносятся в план соответствующих видов обработки.

Производственная структура предприятия с технологической специализацией

3. Трудоемкость технологической операции

Время и затраты на выполнение операций являются важнейшими критериями характеризующими ее эффективность в условиях заданной программы выпуска изделий. Программа выпуска изделий - это установленный для данного предприятия перечень изготовляемых изделий с указанием объема выпуска по каждому наименованию за планируемый период времени.

Объем выпуска это количество изделий, определенных наименований, типа размеров и исполнений, изготавливаемых в течение планируемого периода времени. Объем выпуска в значительной степени определяют принципы построения технологического процесса. Расчетный, максимально возможный в определенных условиях объем выпуска изделий за единицу времени называют производственной мощностью.

При заданном объеме выпуска, изделия изготавливают партиями. Это количество штук деталей или комплекта изделий одновременно запущенных в производство. Производственную партию или ее часть, поступившую на рабочее место для выполнения технологической операции, называют операционной партией.

Серия - это общее количество изделий, подлежащее изготовлению по неизменным чертежам.

Для выполнения каждой операции рабочий затрачивает определенное количество труда. Трудоемкость операции - это количество времени затраченное рабочим требуемой квалификации при нормальной интенсивности труда и условиях на выполнение данной работы. Единицы измерения - человеко/час.

4. Норма времени

Правильное нормирование затраты рабочего времени на обработку деталей, сборку и изготовление всей машины имеет большое значение для производства.

Норма времени - время, отведенное на производство единицы продукции или выполнение определенной работы (в часах, минутах, секундах).

Норму времени определяют на основе технического расчета и анализа, исходя из условий возможно более полного использования технических возможностей оборудования и инструмента в соответствии с требованиями к обработке данной детали или сборке изделия.

В машиностроительном производстве при обработке деталей на металлорежущих станках определяется норма времени на отдельные операции (комплекс операций) или норма выработки деталей (изделий) в штуках в единицу времени (час, смену).

Техническая норма времени, определяющая затрату времени на обработку (сборку или другие работы), служит основой для оплаты работы, калькуляции себестоимости детали и изделия. На основе технических норм рассчитываются длительность производственного цикла, необходимое количество станков, инструментов и рабочих, определяется производственная мощность цехов (или отдельных участков), производится все планирование производства.

Классификация норм труда

Заключение

Развитие технологии механической обработки и сборки и ее направленность определяются стоящими перед машиностроительной промышленностью задачами совершенствования технологических процессов, изыскания и изучения новых методов производства, дальнейшего развития и внедрения комплексной механизации и автоматизации производственных процессов на базе достижений науки и техники, обеспечивающих наиболее высокую производительность труда при надлежащем качестве и наименьшей себестоимости выпускаемой продукции. Для совершенствования технологического процесса в любом производстве необходимо использовать управленческий, научно-исследовательский, опытно-конструкторский, а также человеческий потенциал.

Использованная литература

1. Егоров М.Е. и др. Технология машиностроения. Учебник для втузов. Издание 2-е, доп. М., «Высш. школа», 1976.

2. Гусев А.А., Ковальчук Е.Р., Комсов И.М. и др. учебник для машиностроит. спец. вузов. 1986.

3. Схиртладзе А.Г. Технологические процессы в машиностроении. Для студентов машиностроительных специальностей ВУЗов, «Высшая школа», 2007.



Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте . Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.


Через несколько секунд после проверки подписки появится ссылка на продолжение загрузки работы.
Бесплатная оценка
Повысить оригинальность данной работы. Обход Антиплагиата.

РЕФ-Мастер - уникальная программа для самостоятельного написания рефератов, курсовых, контрольных и дипломных работ. При помощи РЕФ-Мастера можно легко и быстро сделать оригинальный реферат, контрольную или курсовую на базе готовой работы - Структура технологического процесса.
Основные инструменты, используемые профессиональными рефератными агентствами, теперь в распоряжении пользователей реф.рф абсолютно бесплатно!

Как правильно написать введение?

Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.


Технологический процесс – это часть производственного процесса, содержащая в себе последовательное изменение размеров, формы, внешнего вида предмета производства, и их контроль.

Элементы технологического процесса : операция, установка, позиция, обработка, перход, проход, рабочий прием, движение.

Технологический процесс обычно делится на части, называемые операциями.

Операция представляет собой законченную часть технологического процесса. О. предназначена для изменения геометрических и физических параметров изделия на 1 раб месте с 1 рабочим.

Операция , выполняемую непрерывно на одном рабочем месте.

Операция – это основная единица производственного планирования и учета. На онове операций определяют трудоемкость изготовления деталей, устанавливают нормы времени и расценки, задается требуемое кол-во оборудования, приспособлений и инструментов, опредеяют с/с обработки.

Состав О.: СПИД: станок, приспособление, инструмент, деталь.

Установка – это определение положения заготовки на станке с использованием станочных приспособлений.

С тем, чтобы иметь возможность представить структуру операции и учесть затраты времени на ее выполнение, потребовалось расчленение операции на отдельные части, названные переходами.

Позиция – это фиксированое положение, занимаемое закрепленной заготовкой совместно с приспособлением относительно инструмента. (токарно- револьв станки с гориз и вертик осью вращения головки.)

Обработка . Цели мех обраб- изменение св-в, геометрич характеристик, размеров заготовки.

Технологический переход – это механическая обработка одной или нескольких пов-те заготовки, одним или несколькими инстументами, при постоянных технологических режимах и установке.

В соответствии с этим переход, непосредственно связанный с осуществлением технологического воздействия, называют основным (сверление). Переход, состоящий из действий рабочего или механизмов, необходимых для выполнения основного перехода, называют вспомогательным (установка и закрепление детали).

Проход – обработка отдельных пов-тей при неизменной установке заотовки.

Рабочим ходом называют однократное относительное движение инструмента и заготовки, в результате которого с ее поверхности удаляется один слой материала. Чтобы иметь возможность обработать заготовку, ее надо установить и закрепить в приспособлении, на столе станка. Каждое новое фиксированное положение объекта производства совместно с приспособлением, в котором объект установлен и закреплен, называют рабочей позицией.

Движение – это отдельные действия станка (включение, выключение).

Рабочий прием - законченная совокупность действий человека при выполнении определенной части операции, применяемых при выполнении перехода или его части. Например - включить станок, переключить подачи и т.п.


Прием является частью вспомогательного перехода.

Типы производства

Различают три типа производства: I/ массовый, 2/ серийный, З/единичный.

Единичное: Единичным называют производство, характеризуемое малым объемом выпуска одинаковых изделий, повторное изготовление изделий, которых, как правило, не предусматривается. Здесь отсутствует цикличность производства, свойственная серийному производству.

Отсутствие повторяемости изготовления ведет к поиску наиболее упрощенных путей изготовления продукции. Чаще всего так работают экспериментальные, ремонтные цехи и т.п. Рабочие здесь, как

правило, высокой квалификации. Оборудование и оснастка - универсальные. Стоимость продукции - высокая.

1.широта номенклатуры изготовляемых изделий 2. малый объем их выпуска десятки шт в год. 3. универсальный охват разнообразных типов изделий. 4. гибкость с точки зрения применения универсального оборудования (напр., токарно-винторезный станок, станд-ый режущий или измерительный инструмент)5. Технологический процесс изготовления детали имеет уплотненный хар-р, т.е. на одном станке вып-ся несколько операций или полная обработка 6.С/c выпускаемого изделия относительно высока 7. квалификация раб – 5 – 6 разряд, высокая. 8 станок – универсальный, точное оборуд. 9. кооэфицент закрепл операции более 40. 10. применяется упрощенная система документации. 11. тех нормы отсутствуют, применяют опытно-статистическое нормирование труда. 12. заготовки: горячий прокат, литье в землю, поковки

Серийное: (мелко-, средне-, крупно-серийн – зависит от V партии)

мелко- :1.квалификация раб 5-6 разряд, 2. сатнки – полуавтоматы 3. коэффициент зкрепления операции 20 - 40

средне-:1.квалификация раб 4 разряд, 2. сатнки – полуавтоматы 3. коэффициент зкрепления операции 10-20

крупно-серийн: 1.квалификация раб 3 разряд, 2. автоматич. Сатнки, производств модули 3. коэффициент зкрепления операции от 1-10

1.ограниченная номенклатура изделий изготовляется периодически повторяющимися партиями 2. объем выпуска больше, чем в единичном произ-ве, периодически, повторяющимися партиями 3. заготовки- горячий и холодный прокат, литье в землю под давлением, литье, штамповки 4. Технологический процесс преимущественно дифференцирован, т.е. расчленен на отд. операции, выполняемые на опред. станках 5. при выборе технол-го оборудования (исп-ся вспомогательные, спец-е приспособления) необходимо производить расчет затрат и сроков окупаемости, а также ожижаемый эк. Эффект. 6. с/c ниже, чем в единичном произ-ве

Массовое:

Массовым - производство, характеризуемое большим объемом выпуска изделий непрерывно

изготовляемых или ремонтируемых продолжительное время, в течение которого на большинстве рабочих мест выполняется одна рабочая операция. При массовом производстве для каждой операции

выбирается наиболее производительное, дорогое оборудование /автоматы, полуавтоматы/, рабочее место оснащается сложными, высокопроизводительными устройствами и приспособлениями, в

результате чего при большом объеме выпуска изделий достигается самая низкая себестоимость продукции.

1. коэфф закрепл =1. 2. квалификация 3-4 (на кахд рабочем месте выполняется 1 повторяющаяся операция) 3. автоматич. сатнки, производств модули. 4 производство поточное 5. требуемая точность достигается методами автомаоического получения размеров на настроеных станках.

1.узкая номенклатура изделий. 2. большой объем выпуска изделий, непрерывно изготовляемый в теч. продолжительного периода времени 3. Технологический процесс разрабатывается подробно, которому свойственна малая трудоемкость и низкая в сравнении с серийным пр-вом с/c изделия. 4. применение механизации и автоматизации произ-ых процессов. 5. использование техн. процесса с элементарными операциями. 6. применение быстродейст-их спец. приспособлений, а также режущего и измерительного инстр-та. 7. Исп-ся шаблон

Качество поверхности

Качество поверхности - это совокупность всех её служебных свойств и, в первую очередь, износоустойчивости, коррозионной стойкости, усталостной прочности, а также некоторых других свойств. Качество поверхности оценивается двумя параметрами:

Физическими характеристиками;

Геометрическими характеристиками

Геометрические характеристики - это параметры отклонения поверхности от идеальной, заданной. Поверхность может быть неплоской, овальной, с огранкой и т.п. Поверхность можно в увеличенном виде изобразить в виде волнистой линии.

Геом. хар-ки качества обработанной поверхности определяются отклонением реальной поверхности от номинальной. Эти отклонения можно подразделить на 3 разновидности: шероховатость, волнистость и отклонение от прав. геом. формы..

Шероховатость – это совокуп неровностей, обработанной овехности с относитедльно малыми шагами. Шероховатость поверхности опреджеляют по ее профилю, котор образуется в сечении этой поверхности

Шероховатость и волнистость являются характеристиками качества поверхности, оказывающими большое влияние на многие эксплуатационные свойства деталей машин.

Рассматриваемые микронеровности образуются в процессе механической обработки путем копирования формы режущих инструментов, пластической деформации поверхностного слоя деталей под воздействием обрабатывающего инструмента, трения его о деталь, вибраций и т.д.

Шероховатость поверхностей деталей оказывает существенное влияние на износостойкость, усталостную прочность, герметичность и другие эксплуатационные свойства

Волнистость занимает промежуточное положение между отклонениями формы и шероховатостью поверхности. Возникновение волнистости связано с динамическими процессами, вызываемыми потерей устойчивости системы станок-приспособление-инструмент-деталь и выражающимися в возникновении вибраций.

Волнистость поверхности - это совокупность периодически повторяющихся неровностей, у которых расстояния между смежными возвышенностями или впадинами превышают базовую длину для имеющейся шероховатости поверхности.

Отклонением формы называется отклонение формы реальной поверхности или реального профиля от формы номинальной поверхности или номинального профиля.

Точность - это степень соответствия действительных значений геометрических параметров их заданным (расчетным) значениям.

К физико-механическим св-вам относят твердость и напряжение .

Остаточное напряжение возникает после механической обработки, заготовительных операций, при шлифовании (Материал поверхностного слоя испытывает наклеп, разупрочнение, изменяется его структура и микротвердость, образуются остаточные напряжения). После заготовительных операций заготовки, полученные на прессе, подвергаются термич. обработке.

Виды термической обработки и остаточное напряжение:

Нормализация – нагрев детали и охлаждение ее в последующем на воздухе. При этом снимается остаточное напряжение и формируется твердость выше, чем при обжиге. Обжиг – характеризуется тем, что у заготовки снимается остаточное напряжение в результате нагрева печи с последующим остыванием внутри нее со скоростью остывания печи. Закалка может произ-ся в соляные р-ры, в воду, в масло. Остаточное напряжение определяют расчетными и экспериментальными методами.

При эксперимент. методах остат. напряжения опред-ют расчетами по деформации образца после снятия с него напряженного слоя. Этот метод явл. разрушающим.


11. Точность механической обработки. Суммарная погрешность. Система СПИД. Виды погрешностей.

Под точностью обработки следует понимать степень соответствия действительного значения показателя к номинальному.

Точность геометрических параметров является комплексным понятием, включающим в себя:

Точность размеров элементов деталей;

Точность геометрических форм поверхностей элементов деталей;

Точность взаимного расположения элементов деталей;

Шероховатость поверхностей деталей (микрогеометрия);

Волнистость поверхностей (макрогеометрия).

Повышение точноти исходных заготовок снижает трудоемкость и с/c обработки мех обработки, снижает значения припусков, приводит к экономии металла.

Точность детали зависит от ряда факторов:

Отклонение от геом. формы детали или ее отд. элементов.

Отклонение действительных размеров детали от номинальных

Отклонение поверхностей и осей деталей от точного взаимного расположения (от параллельности, перпендикулярности, концентричности)

Т.к. точность обработки в произ-ых условиях зависит от многих ф-ров, обработку на станках ведут не с достижимой, а с экономической точностью.

Эк.точность мех. обработки – такая точность, при кот. min с/c обработки достигается в нормальных произ-ых условиях (работа произ-ся на исправных станках с применением необх-ых приспособлений и инструментов при нормальных затратах времени и нормальной эксплуатации рабочих) Достижимая точность – точность, кот. можно достичь при обработке в особых наиб. благоприятных усл., необходимых для данного произ-ва высококвалифицированными рабочими при значительном увеличении затрат времени, на считаясь с с/c обработки.

СПИД: станок, приспособление, инструмент, деталь.

Суммарная погрешность измерения – это совокупность погрешностей, возникающих под влиянием большого числа факторов.

Погрешности: теоретичские, погрешн., вызваные действием упругой силы СПИД, погрешности, вызванные деформацией заготовки под действием неуравновешенных сил, из-за действия тепла, из-за износа режущего инструмента, погрешность базирования

Структура технологического процесса

ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС И ЕГО СТРУКТУРА (ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ)

Производственный и технологический процессы

Производственным процессом завода (участка, цеха) называют весь комплекс процессов организации, планирования, снабжения, изготовления, контроля, учета и т.д., необходимых для превращения поступающих на завод материалов и полуфабрикатов в готовую продукцию завода (цеха). Таким образом, производственный процесс – это совокупность всех действий людей и орудий производства, осуществляемых для изготовления выпускаемых изделий на данном предприятии.

Производственный процесс сложен и многообразен. Он включает: обработку заготовок для получения из них деталей; сборку узлов и двигателей и их испытание; перемещение на всех стадиях изготовления; организацию обслуживания рабочих мест и участков; управление всеми звеньями производства, а также все работы по технической подготовке производства.

Конечно, в любом производственном процессе наиболее важное место занимают процессы, непосредственно связанные с достижением заданных параметров продукции. Такие процессы называются технологическими. Технологический процесс – это часть производственного процесса, содержащая действия по последовательному изменению размеров, формы или состояния предмета труда и их контроль (ГОСТ 3.1109-82).

В производстве авиационных двигателей используют разнообразные процессы: литье, обработку давлением и резанием, термическую и физико-химическую обработку, сварку, пайку, сборку, испытания. Таким образом, по виду процесса и виду продукции различают технологический процесс отливки, например, лопатки турбины; технологический процесс термической обработки, например, вала турбины; технологический процесс механической обработки и т.п. Применительно к процессам формообразования можно сформулировать, что технологический процесс – это система взаимосогласованных операций, предусматривающих последовательное превращение полуфабриката в изделие (деталь, заготовку …) путем формообразования механическими, физико-механическими, электрофизикохимическими и др. методами.

Структура технологического процесса

Основным элементом технологического процесса является операция.

Операция – это часть технологического процесса, выполняемая на одном рабочем месте одним или несколькими рабочими, одной или несколькими единицами оборудования до перехода к обработке заготовки следующей детали.

Для существования операции достаточно хотя бы одного из двух указанных условий. Если, например, процесс состоит из шлифования заготовки детали на шлифовальном станке и электроискровом легировании этой поверхности на другом, то независимо от количества деталей (хотя бы одна деталь) в технологическом процессе будут две операции, так как меняется рабочее место (рис. 2.1).

S

Рис. 2.1. Операции технологического процесса(фрагмент)

Вместе с тем обработка на одном рабочем месте также может состоять из нескольких операций. Если, например, сверление и развертывание деталей выполняется на одном сверлильном станке, таким образом, что сначала всю партию деталей просверлить, а затем, по обстоятельствам осуществив переналадку оборудования (замена инструмента, приспособления, режимов обработки, смазывающее-охлаждаемой среды, мерительных интсрументов и др.), осуществить развертывание, то получится две операции – «сверлильная», вторая «развертывание», хотя рабочее место одно.

Рабочее место – это часть площади (объема) цеха, предназначенная для выполнения операции одним или группой рабочих, в которой размещено технологическое оборудование, инструмент, приспособления и др.

Понятие «операция» относится не только к технологическому процессу (ТП), предусматривающему формообразование. Имеют место контрольные, испытательные, моечные, упрочняющие, термические и т.д. операции.

Операция характеризуется:

Неизменностью объекта обработки;

Неизменностью оборудования (рабочего места);

Постоянством рабочих исполнителей;

Непрерывностью выполнения.

Проектирование технологического процесса состоит в установлении:

Состава (номенклатуры) операций;

Последовательности операций в ТП;

Операция – неделимая в планово-организационном отношении часть ТП. Она является основной единицей производственного планирования. Весь производственный процесс строится на основании совокупности операций:

Трудоемкость;

Материально-техническое обеспечение (станки, инструменты и др.);

Квалификация и количество рабочих;

Необходимые производственные площади;

Количество электроэнергии и др. определяют по операциям.

Операция тщательно документируется.

Операция может состоять из нескольких переходов . Переход –это часть операции, в течение которой обрабатывается одна и та же поверхность детали, одним и тем же инструментом, при неизменном режиме работы станка.

а
б
S

Рис. 2.2. Технологические переходы

а – два простых перехода (Ι и ΙΙ); б – один сложный (пояснения в тексте)

На рис. 2.2 показана операция по прошиванию отверстий электрохимическим методом. Как видно из рис. 2.2, а осуществляется последовательное получение отверстий при реализации переходов Ι и ΙΙ. Для повышения производительности часто объединяют несколько простых переходов в один сложный переход (рис. 2.2, б ); это позволяет одновременно обрабатывать несколько поверхностей.

Технологический переход может содержать несколько проходов. Проход – это часть перехода, во время которого снимается (наносится) один слой металла. Деление на проходы необходимо в тех случаях, когда за один прием (по условиям прочности инструмента, жесткости станка, требованиям по точности и др.) удалить (нанести) весь слой металла не представляется возможным.

Операция может выполняться за один или несколько установок обрабатываемой детали. Установ представляет собой часть технологической операции, выполняемой при одном закреплении заготовки.

Во многих случаях операции делят на позиции. Позиция – фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой совместно с приспособлением, относительно инструмента или неподвижной части оборудования для выполнения определенной части операции. Таким образом, позиция – это каждое из различных положений заготовки относительно инструмента или инструмента относительно заготовки при одном ее закреплении, например фрезерование каждой из четырех граней головки винта при одном его закреплении в делительном приспособлении.



Различие между позицией и установом состоит в том, что в каждом новом установе новое взаимное положение заготовки и инструмента достигается путем перезакрепления заготовки, а в каждой новой позиции – без открепления заготовки, перемещением или поворотом заготовки или инструмента в новое положение. Замена установов позициями всегда дает сокращение времени на обработку, поскольку поворот приспособления с заготовкой или головки с инструментом занимает меньше времени, чем открепление, переустановка и закрепление заготовки.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Введение

1. Исходные данные по заданию

2. Тип производства, количество деталей в партии

3. Вид заготовки и припуски на обработку

4. Структура технологического процесса

5. Выбор оборудования и приспособлений

6. Выбор инструмента

7. Расчет режимов резания

8. Нормирование времени, определение расценки и себестоимости механической обработки детали

9. Основные сведения о технике безопасности при работе на металлорежущих станках

10. Конструирование приспособления

11. Оформление технической документации

Литература

Введение

Современное машиностроение представляет очень высокие требования к точности и состоянию поверхностей деталей машин, которые можно обеспечить в основном только механической обработкой.

Обработка металлов резанием представляет собой совокупность действий, направленных на изменение формы заготовки путем снятия припуска режущими инструментами на металлорежущих станках, обеспечивая заданную точность и шероховатость обработанной поверхности.

В зависимости от формы деталей, характера обрабатываемых поверхностей и требований, предъявляемых к ним, их обработку можно проводить различными способами: механическими - точением, строганием, фрезерованием, протягиванием, шлифованием и др.; электрическими - электроискровым, электроимпульсным или анодно-механическим, а также ультразвуковым, электрохимическим, лучевыми и другими способами обработки.

Процесс обработки металлов резанием играет ведущую роль в машиностроении, так как точность форм и размеров и высокая частота поверхностей металлических деталей машин в большинстве случаев обеспечивается только такой обработкой.

Этот процесс успешно применяется во всех без исключения отраслей промышленности.

Обработка металлов резанием является весьма трудоемким и дорогостоящим процессом. Так, например, в среднем в машиностроении стоимость обработки заготовок резанием составляет от 50 до 60 стоимости готовых изделий.

Обработка металлов резанием, как правило, осуществляется на металлорежущих станках. Лишь отдельные виды обработки резанием, относящиеся к слесарным работам, выполняются вручную или с помощью механизированных инструментов.

В современных методах механической обработки металлов заметны следующие тенденции:

обработка заготовок с малыми припусками, что приводит к экономии металлов и увеличении доли отделочных операций;

широкое применение методов упрочняющей обработки без снятия стружки путем накатывания роликами и шариками обдувки дробью, дорнирования, чеканки и т. п.;

применение многоинструментальной обработки взамен одноинструментальной и многолезвийного режущего инструмента вместо однолезвийного;

возрастания скоростей резания и подач;

увеличение части работ, выполняемых на автоматических и полуавтоматических станках, роботизированных комплексов с применением систем программного управления;

широкое проведение модернизации металлорежущего оборудования;

использование быстродействующих и многоместных приспособлений для закрепления заготовок и механизмов при автоматизации универсальных металлорежущих станков;

изготовление деталей из специальных и жаростойких сплавов, обрабатываемость которых значительно хуже, чем обычных металлов;

участие технологов в разработке конструкции машин для обеспечения их высокой технологичности.

Более рационально получать сразу готовую деталь, минуя стадию заготовки. Это достигается применением точных методов литья и обработки давлением, порошковой металлургией. Эти процессы более прогрессивны, и они будут все шире внедряться в технику.

1. Исходные данные по заданию

механический металлорежущий обработка деталь

Наименование работы:

Технологический процесс механической обработки детали.

Исходные данные по заданию приведены в таблице 1:

Таблица 1

Химический состав стали (ГОСТ 1050-88) в таблице 2:
Таблица 2
Механические свойства стали 30 ГОСТ 1050-88 в таблице 3:

Таблица 3

Технологические свойства стали 30 ГОСТ 1050-88 в таблице 4:

Таблица 4

2 . Тип производства, количество деталей в партии

Количество деталей в партии можно определить по формуле:

где N - годовая программа выпуска деталей, шт.

t - число дней, на которые необходимо иметь запас годовых деталей.

Ф - число рабочих дней в году.

241(шт.) Из таблицы 1 выбираем тип производства:

Таблица 1

Тип производства - серийный.

Серийное производство - изделия изготавливаются или обрабатываются партиями (сериями), состоящими из однотипных деталей одинакового размера, запускаемых в производство одновременно.

Теперь из таблицы 2 выбираем вид производства:

Таблица 2

Производство - среднесерийное и выпускает мелкие (лёгкие) детали, количеством в партии от 51 до 300 изделий.

3. Вид заготовки и припуски на обработку

Заготовкой называется предмет производства, из которого изменением формы, размеров, качества поверхностей и свойств материала изготовляют требуемую деталь. Выбор вида заготовки зависит от материала, формы и размера, её назначения, условий работы и испытываемой нагрузки, от типа производства.

Для изготовления деталей могут применяться следующие виды заготовок:

а) отливка из чугуна, стали, цветных металлов, сплавов и пластмасс для фасонных деталей и корпусных в виде рам, коробок, букс, челюстей и др.;

б) поковки - для деталей, работающих на изгиб, кручение, растяжение. В серийном и массовом производстве применяются преимущественно штамповки, в мелкосерийном и единичном производстве, а также для деталей крупных размеров - поковки;

в) прокат горячекатаный и холоднокатаный - для деталей вида валов, стержней, дисков и других форм, имеющих незначительно изменённые размеры поперечного сечения.

В нашем случае целесообразно изготовлять крышку из проката, так как круг хорошо вписывается размеры детали.

Припуски на обработку указаны в таблице1:

Таблица 1- припуски и допуски на обработку

В данном случае лучше всего выбрать отливку из стали.

Литейное производство - отрасль машиностроения, занимающаяся изготовлением фасонных заготовок или деталей путем заливки расплавленного металла в специальную форму, которая имеет конфигурацию заготовки. При охлаждении залитый металл затвердевает и в твердом состоянии сохраняет конфигурацию той полости, в которую он был залит. Конечную продукцию называют отливкой. В процессе кристаллизации расплавленного металла формируются механические и эксплуатационные свойства отливок.

Литьем получают разнообразные конструкции отливок массой от нескольких граммов до 300 т. длинной от нескольких сантиметров до 20 м., со стенками толщиной 0,5- 500 мм. Для изготовления отливок применяют множество способов литья: в песчаные формы, в оболочковые формы, по выплавляемым моделям, в кокиль, под давлением, центробежное литье и др. Область применения того или иного способа литья определяется объемом производства, требованиями к геометрической точности и шероховатости поверхности отливок, экономической целесообразностью и другими факторами.

4. Структура технологического процесса

Маршрут изготовления детали
1.Сверление (станок марки 2Н135):
а) Сверлить отверстие 35
б) зенкер 38,85
в) (станок Т15К6)-развертка 40
(Нормализованный 3-х кулачковый патрон)
2.Слесарная
3.(станок марки 16К20Ф3) токарный с ЧПУ
а) подрезать торец в размер 163 (-0,3)
б) точить сферу R150
(Оправка разжимная (цанговая))
4.(станок марки 16К20Ф3) токарный с ЧПУ
а) подрезать торец выдержав размер 161 (-0,3)
б) точить сферу R292
(Оправка разжимная)
5. Горизонтально-фрезерный станок марки 6М82Г концевой фрезой 8 мм., глубиной 10,5мм. (Спец приспособление)
6.Слесарная.
7.Цементация.
8.Закалка
9.Отпуск
10.Зачистка и контроль твердости
11.Очистка (термообработка и калибровка)
12. (станок марки 2Н135) развертка 40.
13. (станок марки 3Е710А) плоскошлифовальный. Переустановить шлифовку в размер 160.
14. Промывка.
15. Контрольная.

5. Выбор оборудования и приспособления

При выборе типа станка и степени его автоматизации необходимо учитывать следующие факторы:

1. Габаритные размеры и форму детали;

2. Форму обработанных поверхностей, их расположение;

3. Технические требования точности размеров, формы и к шероховатости обработанных поверхностей;

4. Размер производственной программы, характеризующий тип производства данной детали.

В единичном мелкосерийном производстве используются универсальные станки, в серийном наряду с универсальными станками широко применяются полуавтоматы и автоматы, в крупносерийном и массовом производстве - специальные станки, автоматы, агрегатные станки и автоматические линии.

Всё более широкое применение в настоящее время находят в серийном производстве автоматические станки с числовым программным управлением, позволяющие производить быструю переналадку с обработки одних деталей на другие путём замены программы, зафиксированной, например, на бумажной перфоленте или на магнитной ленте.

Выбор станков производим согласно таблицам приведённым ниже:

Таблица 1. Токарно-винторезные станки

Показатель

Модели станков

Наибольший диаметр обрабатываемой детали, мм

Расстояние между центрами, мм

Частота вращения шпинделя, об/мин

Число ступеней подач суппорта

Подача суппорта.

Мм. Продольная поперечная

0,08-1,9 0,04-0,95

0,065-0.091 0,065-0,091

0,074,16 0,035-2,08

0,05- 4,16 0,035-2,08

Мощность главного электродвигателя, кВт

Кпд станка

Наибольшая допустимая сила подачи механизмом, н

Таблица 2. Горизонтальные и вертикальные фрезерные станки

Показатель

Модели станков

Горизонтальных

Вертикальных

Рабочая поверхность стола,мм

Число ступеней частоты вращения шпинделя

Частота вращения шпинделя,об/мин

Число ступеней подач

Подача стола,мм/мин: Продольная Поперечная

25-1250 15,6-785

Наибольшая допустима сила подачи,кН

Мощность главного электродвигател

КПД станка

Таблица 3. Вертикально - сверлильные станки

Показатель

Модели станков
2Н118
2Н125
2Н135
Наибольший условный диаметр сверления.мм
18
25
35
Вертикальное перемещение сверлильной головки,мм
150
200
250
Число ступеней частоты вращения шпинделя
9
12
12
Число вращения шпинделя об/мни
180-2800
45-2000
31,5-1400
Число ступней подач
6
9
9
Подача шпинделя.об/мин
0,1-0,56
0,1-1,6
0,1-1,6
Крутящий момент на шпинделе,Н
88
250
400
Наибольшая допустимая сила подачи,Н
5,6
9
15
Мощность электродвигателя,кВт
1,5
2.2
4
КПД станка
0,85
0,8
0,8
Из таблиц выбираем следующие станки:2Н135 16К20Ф3 6M82Г 3Е10А
6 . Выбор инструмента

1 При выборе режущего инструмента необходимо исходить из способа обработки и типа станка, формы и расположения обрабатываемых поверхностей, материала заготовки и его механических свойств.

Инструмент должен обеспечить получение заданной точности формы и размеров, требуемую шероховатость обработанных поверхностей, высокую производительность и стойкость, должен быть достаточно прочным, виброустойчивым, экономичным.

Размещено на http :// www . allbest . ru /

Рисунок 2 - Торцовая фреза

Материал режущей части инструмента имеет важнейшее значение в достижении высокой производительности обработки.

Для фрезерования поверхности выбираю торцовую насадную с механическим креплением пятигранных твердосплавных пластин (ГОСТ 22085-76).

Диаметр фрезы, мм D = 100

Число зубьев фрезы z = 12

Геометрические параметры режущей части фрезы

Главный угол в плане ц = 67є

Вспомогательный угол в плане ц1 = 5є

Главный передний угол г = 5є

Главный задний угол б = 10є

Угол наклона главной режущей кромки л = 10є

Угол наклона наклонных или винтовых зубьев щ = 10є

Материал режущей части фрезы - быстрорежущая сталь марки Т15К6 в виде пятигранной пластины.

Для фрезерования паза выбираю пазовую затылованную фрезу (ГОСТ 8543-71).

Пазовая фреза

Диаметр фрезы D = 100

Число зубьев фрезы z = 16

Диаметр отверстия d = 32

Ширина фрезы B = 10

Материал режущей части фрезы - твердый сплав ВК6М по ГОСТ (3882-88)

Для сверления отверстия выбираю стандартное спиральное сверло, оснащенное пластинками из твердого сплава, коническим хвостовиком (ГОСТ 2092-88)

Спиральное сверло

Диаметр сверла в мм d = 35

Общая длина сверла в мм L = 395

Длина рабочей части сверла Lo = 275

Геометрические параметры заточки

угол при вершине 2ц = 120є

главный передний угол г = 7є

главный задний угол б = 19є

угол наклона поперечной кромки ш = 55є

угол наклона винтовой канавки щ = 18є

угол при вершине 2ц0 = 73є

Материал режущей части сверла - быстрорежущая сталь марки Т15К6 в виде пластинок.

Для шлифования паза выбираю круглошлифовальный круг прямого профиля ГОСТ 8692-82

Размещено на http :// www . allbest . ru /

Рисунок 7 - Шлифовальный круг

Максимальный наружный диаметр, мм D = 100

Высота круга H = 10

Диаметр посадочного отверстия d = 16

Твердость (ГОСТ 18118-78) - среднетвердый круг.

Зернистость - 50.

Связка керамическая пятая.

2 Выбор измерительного инструмента зависит от формы измеряемых поверхностей, требуемой точности обработки и типа производства.

Для контроля за требуемой точностью обрабатываемых поверхностей выбираю следующий измерительный инструмент.

Штангенциркуль (ГОСТ 166-63).

Микрометрический нутрометр (ГОСТ 10-58).

Для контроля за шероховатостью обработанной поверхности выбираю профилометр типа 240 (ГОСТ 9504-60).

7 . Расчет режимов резания

1 Глубина резания t, мм, зависит от припуска на обработку и требуемого класса шероховатости обработанной поверхности менее 5 мм, то фрезерования будем выполнять за один проход.

2 Величину подачи выбирают по справочной литературе в зависимости от механических свойств обрабатываемого материала, режущего инструмента и требуемого класса шероховатости поверхности.

На фрезерных станках настраивается минутная подача Sм, мм/ мин, т.е. скорость перемещения стола с закрепленной деталью относительно фрезы. Элементы срезаемого слоя, а следовательно, и физико-механические параметры процесса фрезерования, зависят от подачи на зуб Sz, т.е. перемещения стола с деталью (в мм) за время поворота фрезы на 1 зуб. Шероховатость обработанной поверхности зависит от подачи на один оборот фрезы S0, мм/ об.

Между этими тремя значениями имеется следующая зависимость:

где n и z - соответственно частота вращения и число зубьев фрезы.

Значение подачи Sz возьмем из справочной литературы

Тогда по формуле (2) рассчитаем SM

3 Расчетную скорость резания определим по эмпирической формуле

где Cv - коэффициент скорости резания, зависящий от материалов режущей части инструмента и заготовки и от условий обработки;

T - расчетная стойкость фрезы, мин;

m - показатель относительной стойкости;

Xv, Yv, Uv, pv, qv, - соответственно показатели степени влияния глубины резания, подачи, ширины фрезерования, числа зубьев и диаметра фрезы на скорость резания;

Kv - поправочный коэффициент на измененные условия.

Значение коэффициента и показателей степени в формуле скорости резания при фрезеровании

Cv = 445; qv = 0,2;pv; Xv = 0,15; Yv = 0,35, nv = 0,2; pv =0; m = 0,32

Поправочный коэффициент Kv определяется как произведение ряда коэффициентов

где Kмv - коэффициент, учитывающий влияние механических свойств обрабатываемого материала на скорость резания;

Kпv - коэффициент, учитывающий состояние поверхности заготовки;

Kиv - коэффициент, учитывающий инструментальный материал.

Kпv = 0,8; Kиv = 1.

Из формулы (4) найдем поправочный коэффициент:

Тогда по формуле (3) найдем расчетную скорость резания

Частота вращения шпинделя, об/ мин подсчитываем по формуле

где Vp - расчетная скорость резания, м/ мин;

D - диаметр фрезы, мм.

По формуле (5) найдем расчетную частоту вращения шпинделя

Теперь подсчитаем фактическую частоту вращения nф, ближайшую из паспортных данных станка. Для этого найдем цn и определим весь ряд n

где nz и n1 - максимальное и минимальное значение частоты вращения;

n - количество ступеней частоты вращения.

Теперь определим из геометрического ряда

n2 = n1 цn = 31 1,261 = 39,091;

n3 = n1 ц2n = 31 1,2612 = 49,294;

n4 = n1 ц3n = 31 1,2613 = 62,159

n5 = n1 ц4n = 31 1,2614 = 78,383

n6 = n1 ц5n = 31 1,2615 =98,841

n4 = n1 ц3n = 31 1,2613 = 124,638

n4 = n1 ц3n = 31 1,2613 = 157,169

n4 = n1 ц3n = 31 1,2613 = 198,19

n4 = n1 ц3n = 31 1,2613 = 249,918

n4 = n1 ц3n = 31 1,2613 = 315,147

n4 = n1 ц3n = 31 1,2613 = 397,4

Таким образом nф =315,147 об/ мин.

Теперь мы можем определить Vф по формуле (7)

где D - диаметр фрезы, мм;

nф - частота вращения, об/ мин.

4 Минутную подачу подсчитываем по формуле

Подставляем в формулу (8) значения получаем

Определим значение Sм ближайшее меньшее из паспортных данных станка Sм = 249,65 мм/ мин

Определим фактическую подачу на зуб

Подставляя в формулу (9) значения получим

5 Силу резания при фрезеровании определим по эмпирической формуле

где t - глубина фрезерования;

Sz - фактическая подача, мм/ зуб;

z - число зубьев фрезы;

D - диаметр фрезы, мм

nф - фактическая частота вращения фрезы об/ мин.

Значения коэффициента Cp и показателей степени Xp,Yp, Up, qp имеют следующие значения

Cp = 545; Xp = 0,9; Yp = 0,74; Up = 1; qp = 1.

Значения поправочного коэффициента Kp при фрезеровании зависит от качества обрабатываемого материала.

Тогда получаем

Коэффициент использования мощности станка определяется по формуле

где Nэд - мощность приводного электродвигателя, кВт;

Nпот - потребная мощность на шпинделе, которая определяется по формуле

где Nэ - эффективная мощность на резание, кВт, определяется по формуле

Подставив значение в формулу (13) получим

Подставив значения в формулу (12) получим

Теперь вычислим коэффициент использования мощности станка

Фактическая стойкость инструмента Тф рассчитывается по формуле

Подставим в формулу (14) значения и получим

6 Время затраченное в процессе фрезерования определяется по формуле

где L - расчетная длина обработки, мм;

i - число проходов;

Sм - фактическая подача, мм/ мин;

Расчетную длину обработки определим по формуле(16)

где l - длина обработки, мм;

l1 - величина врезания, мм;

l2 - перебег фрезы, мм.

Величина врезания l1 вычисляется по формуле (17)

где t - глубина резания, мм;

D - диаметр фрезы, мм.

Получаем

Величину перебега l2 примем 4 мм.

Находим расчетную длину обработки L:

По формуле (15) вычислим основное время

8 . Нормирование времени, определение расценки и себестоимости механической обработке детали

1 Штучное время на механическую обработку одной детали вычисляется по формуле

где t0 - основное технологическое время, мин;

tв - вспомогательное время, мин;

tоб - время организационного и технического обслуживания рабочего места, мин;

tф - время перерывов на отдых и физические потребности, мин.

Основное технологическое время равно сумме значений машинного времени для всех переходов данной операции.

Таким образом получаем

где t01, t02, t03 - основное время для обработки каждой поверхности, которое мы вычислим из пропорции

Из пропорции (20) получаем

Находим t0i

t01 = 0,00456 100 = 0,456 мин

t02 = 0,00456 100 = 0,456 мин

t03 = 0,00456 100 = 0,456 мин

По формуле (19) вычислим Уt0:

Вспомогательное время - время на установку, закрепление и снятие детали, подвод и отвод инструмента, включение станка, проверку размеров.

Используя литературу получаем

Время на организационное и техническое обслуживание рабочего места tоб включает: время на подналадку, чистку и смазку станка, на получение и раскладку инструмента, смену затупившегося инструмента и т.п.

Время на обслуживание рабочего места tоб, а также на отдых и физические потребности tф назначаются на операцию и вычисляются по формуле

где б - процент на обслуживание рабочего места;

в - процент на отдых и физические потребности.

По формуле (21) получаем

Таким образом теперь по формуле (18) мы можем подсчитать tшт

2 Штучно-калькуляционное время на операцию вычисляется по формуле (22)

где tпз - подготовительно-заключительное время на всю партию деталей, мин;

n - число деталей в партии.

3 Это время определяется в целом на операцию и включает время, затраченное рабочим на ознакомление с технологической картой обработки детали, на изучение чертежа, наладку станка, получение, подготовку, установку и снятие приспособления для выполнения данной операции.

В соответствии с литературой подготовительно-заключительное время принимаем равным 30 мин.

4 Расценка на выполненную работу, то есть стоимость рабочей силы P определяется по формуле (23)

где Cт - тарифная ставка соответствующего разряда;

K - коэффициент.

Значение тарифной ставки, соответствующей 4 разряду, принимаем равной

Cт = 247,64 руб/ ч

Коэффициент K принимаем равным 2,15.

Таким образом по формуле (23) получаем

5 Себестоимость механической обработки деталей С включает стоимость рабочей силы Р и стоимость накладных расходов Н и определяется по формуле (24)

где Н - стоимость накладных расходов, руб.;

Р - стоимость рабочей силы, руб.

Стоимость накладных расходов принимаем равным 1000% от стоимости рабочей силы

По формуле (25) находим Н

Таким образом подсчитаем себестоимость механической обработки

9 . Конструирование приспособления

В задачу курсовой работы входит разработка конструкции одного приспособления, входящего в технологическую оснастку проектируемого процесса механической обработки.

Станочные приспособления предназначены для установки и закрепления обрабатываемой детали и разделяются: по степени специализации - на универсальные, переналаживаемые, сборные из нормализованных деталей и узлов; по степени механизации - на ручные, механизированные, автоматические; по назначению - на приспособления для токарных, сверлильных, фрезерных, шлифовальных и др. станков; по конструкции - на одно- и многоместные, одно- и многопозиционные.

Выбор вида приспособления зависит от типа производства, программы выпуска деталей, от формы, размеров обрабатываемой детали и от требуемой точности обработки.

При проектировании станочного приспособления решаются следующие основные задачи:

1) упразднение трудоемкой операции - разметки деталей перед обработкой;

2) сокращение вспомогательного времени на установку, закрепление и переустановку детали относительно инструмента;

3) повышения точности обработки;

снижение машинного и вспомогательного времени за счет одновременной обработки нескольких деталей или совмещенной обработки несколькими инструментами;

облегчение труда рабочего и снижения трудоемкости обработки;

повышение технологических возможностей и специализация станка

В результате применения приспособления должны значительно возрасти производительность и снизится себестоимость обработки.

В качестве приспособления для фрезерования выбираем станочные тиски ГОСТ 18684-73, в которых были модернизированы прижимные губки. Данная модернизация способствует облегчению труда рабочих.

10. Оформление технической документации

В качестве основного документа технической документации представлена маршрутная карта, где указаны все операции и переходы, а также оборудование, приспособление, режущий и измерительный инструмент, количество рабочих.

Указан профиль и размеры.

Вторым технологическим документом является операционная карта. В ней указаны переходы на одну операцию, указан её номер и материал заготовки, её масса и твердость детали. Для всех переходов указан режущий и измерительный инструмент.

Кроме того, подсчитаны расчетные размеры, глубина резания число проходов, обороты шпинделя и скорость режимов обработки. Подсчитано машинное и вспомогательное время.

11 . Основные сведения о технике безопасности при работе на металлорежущих станках

Техника безопасности охватывает комплекс технических устройств и правил, обеспечивающих нормальную жизнедеятельность человека в процессе труда и исключающих производственный травматизм. При работе на металлорежущих станках рабочий должен быть предохранен от действия электрического тока, от ударов движущимися частями станка, а также обрабатываемыми деталями или режущим инструментом вследствие слабого их закрепления или поломки, от отделяющейся стружки, от воздействия пыли и СОЖ.

Общие правила техники безопасности при работе на металлорежущих станках

1. К самостоятельной работе допускаются лица, прошедшие медицинское освидетельствование, прошедшие вводный инструктаж, первичный инструктаж на рабочем месте, имеющие удостоверение по охране труда.

2. Выполнять только работу, входящую в круг обязанностей.

3. Работать только в исправной, аккуратно заправленной спецодежде и спецобуви, предусмотренными инструкциями по охране труда.

4. Пользоваться только исправными приспособлениями, оснасткой, инструментом, применять их по назначению.

5. Не оставлять без присмотра включенные (работающие) машины и механизмы, оборудование.

При уходе даже на короткое время отключать его от электросети вводным выключателем.

6. Не проходить под поднятым грузом.

7. Не стирать спецодежду в керосине, бензине, растворителях, эмульсиях и не мыть в них руки.

8. Не прикасаться к токоведущим частям электрооборудования машин и механизмов, обрабатываемым заготовкам и деталям при их вращении.

9. Не обдувать сжатым воздухом детали, не пользоваться сжатым воздухом для удаления стружки.

10. Пользоваться при работе деревянным настилом и содержать его в исправном состоянии и чистоте.

11. Основные опасные и вредные производственные факторы:

возможность поражения электротоком;

возможность получения ожогов и механических повреждений стружкой;

повышенный уровень шума;

возможность падения устанавливаемых и обрабатываемых деталей, заготовок.

12. При работе на станках применение перчаток или рукавиц не допустимо.

Требования безопасности по окончании работ.

1. Выключить станок, обесточить электрооборудование.

2. Привести в порядок рабочее место.

3. Протереть и смазать трущиеся части станка.

4. Убрать разлитые масло и эмульсию, посыпав загрязненные места песком.

5. Уборку стружки, пыли производить щеткой-сметкой.

6. Использованные во время уборки и при работе тряпки, ветошь вынести за пределы цеха в отведенные для этой цели места.

7. При сдаче смены сообщить мастеру и сменщику о замеченных недостатках и принятых мерах по их устранению.

8. Вымыть лицо и руки теплой водой с мылом или принять душ.

Техника безопасности при работе на токарно-винторезном станке.

1. Перед включением станка необходимо убедиться, что его пуск не опасен для людей, находящихся у станка.

3. Обеспечить надежное крепление детали.

4. При обработке детали в центрах запрещается применять центра с изношенными конусами.

7. Запрещается прикасаться руками к вращающимся частям станка, а также к обрабатываемой детали.

8. Во избежание захвата одежды вращающимися частями необходимо аккуратно заправить спецодежду, волосы убрать под головной убор.

9. Запрещается производить уборку, чистку, смазку, установку и съем детали при работе станка.

10. Подступы к электрошкафу и рабочее место не должны быть загромождены.

11. При получении травмы необходимо поставить в известность мастера участка или начальника цеха.

12. Внимание!

Во избежание перегрева мотора не разрешается производить более 60 включений в час при оборотах шпинделя в минуту до 250, не более 30 включений в час при оборотах свыше 250 в минуту и не более 6 включений в час при оборотах шпинделя 750 в минуту .

Список литературы
1. Справочник технолога-машиностроителя: В 2 т. Т. /Под ред. Косиловой А.Г. и Мещеряковой Р.К. М.,1972.-694 с. Т. 2 /Под ред. Малова А.Н. - М.: 1972. - 568 с.
2. Федин А.П. Материаловедение и технология материалов: (Методические указания и задания на контрольные работы). - Гомель:БелГУТ.-1992.-83с.
3. Зобнин Н.П. и др. Обработка металлов резанием. - М.: Всесоюзное издательско - полиграфическое объединение Министерства путей сообщения, 1962. - 299 с.
Лахтин Ю.М., Леонтьева В.П. Материаловедение.-М.,1990.-528 с.
Справочник металлиста. Т. 5/. /Под ред. Б.Л. Богуславского. -М.: Машиностроение, 1997. -673с.
Мастеров В.А., Берковский В.С. Теория пластической деформации и обработка металлов давлением. -М.: Металлургия, 1989.400 с.
Казаченко В.П., Савенко А.Н., Терешко Ю.Д. Материаловедение и технология материалов. Ч.III. Обработка металлов резанием: Пособие к курсовому проектированию.-Гомель: БелГУТ.1997.-47с.
Размещено на Allbest.ru
...

Подобные документы

    Разработка приспособления для фрезерования шпоночного паза. Структура технологического процесса механической обработки детали. Выбор оборудования, инструмента; расчет режимов резания; нормирование, определение себестоимости детали; техника безопасности.

    курсовая работа , добавлен 26.07.2013

    Процесс обработки металлов резанием, его роль в машиностроении. Основные требования, предъявляемые к проектируемой детали. Выбор оборудования, приспособлений, инструмента для обработки детали. Расчёт режимов резания. Вид заготовки и припуски на обработку.

    курсовая работа , добавлен 26.03.2013

    Разработка технологического процесса механической обработки вала к многоковшовому погрузчику зерна ТО-18А. Определение типа производства. Расчет припусков на обработку, режимов резания, норм времени, точности операций. Проект станочного приспособления.

    курсовая работа , добавлен 07.12.2010

    Тип производства, количество деталей в партии. Вид заготовки и припуски на обработку. Структура технологического процесса, выбор оборудования и приспособлений. Нормирование времени, определение расценки и себестоимости механической обработки деталей.

    курсовая работа , добавлен 08.03.2016

    Разработка технологического процесса механической обработки детали, способ получения заготовки корпуса клапана. Операционные эскизы и технологическая схема сборки, проект приспособления для закрепления и установки детали, припуски на ее обработку.

    курсовая работа , добавлен 27.01.2012

    Определение последовательности технологических операций механической обработки детали "Вал". Обоснование выбора станков, назначение припусков на обработку. Расчет режимов резания, норм времени и коэффициентов загрузки станков, их потребного количества.

    курсовая работа , добавлен 29.01.2015

    Способ получения заготовок для детали "корпус нижнего подшипника". Тип производства, служебное назначение детали. Технологический маршрутный процесс сборки и механической обработки корпуса. Pасчет припусков на обработку размеров заготовки; режимы резания.

    курсовая работа , добавлен 22.12.2014

    Технологический процесс механической обработки детали "водило", выбор материала, назначение производства. Оценка сложности, методы обработки и сборки. Определение режимов резания, детальное нормирование одной операции и оформление чертежа заготовки.

    курсовая работа , добавлен 26.04.2012

    Описание и технологический анализ детали "Корпус вспомогательного тормоза". Характеристика заданного типа производства. Выбор заготовки, ее конструирование. Разработка и обоснование технологического процесса механической обработки. Расчет режимов резания.

    курсовая работа , добавлен 10.02.2016

    Назначение и конструкция детали "винт", технологический маршрут механической обработки. Определение типа производства и способа получения заготовки. Расчёт припусков, подбор оборудования, режущего и мерительного инструмента; выбор режимов резания.