От чего зависит громкость и высота тона. Физические параметры звука

От чего зависит громкость и высота тона. Физические параметры звука
От чего зависит громкость и высота тона. Физические параметры звука

Звуковые волны, как и другие волны, характеризуются такими объективными величинами, как частота, амплитуда, фаза колебаний, скорость распространения, интенсивность звука и другими. Но, кроме этого, они описываются тремя субъективными характеристиками. Это - громкость звука, высота тона и тембр.

Чувствительность человеческого уха различна для разных частот. Для того чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью, но если эта интенсивность превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существует наименьшая (порог слышимости ) и наибольшая (порог болевого ощущения ) интенсивность звука, которая способна вызвать звуковое ощущение. На рисунке 1 представлена зависимость порогов слышимости и болевого ощущения от частоты звука. Область, расположенная между этими двумя кривыми, является областью слышимости . Наибольшее расстояние между кривыми приходится на частоты, к которым ухо наиболее чувствительно (1000-5000 Гц).

Если интенсивность звука - величина, объективно характеризующая волновой процесс, то субъективной характеристикой звука является громкость Громкость зависит от интенсивности звука, т.е. определяется квадратом амплитуды колебаний в звуковой волне и чувствительностью уха (физиологическими особенностями). Так как интенсивность звука , то чем больше амплитуда колебаний, тем громче звук.

Высота тона - качество звука, определяемое человеком субъективно на слух и зависящее от частоты звука. Чем больше частота, тем выше тон звука.

Звуковые колебания, происходящие по гармоническому закону, с определенной частотой, воспринимаются человеком как определенный музыкальный тон . Колебания высокой частоты воспринимаются как звуки высокого тона , звуки низкой частоты - как звуки низкого тона . Диапазон звуковых колебаний, соответствующий изменению частоты колебаний в два раза, называется октавой . Так, например, тон "ля" первой октавы соответствует частоте 440 Гц, тон "ля" второй октавы - частоте 880 Гц.

Музыкальным звукам соответствуют звуки, издаваемые гармонически колеблющимся телом.

Основным тоном сложного музыкального звука называется тон, соответствующий наименьшей частоте, которая имеется в наборе частот данного звука. Тоны, соответствующие остальным частотам в составе звука, называются обертонами . Если частоты обертонов кратны частоте основного тона, то обертоны называются гармоническими, причем основной тон с частотой называется первой гармоникой , обертон со следующей частотой - второй гармоникой и т.д.

Музыкальные звуки с одним и тем же основным тоном различаются тембром, который определяется наличием обертонов - их частотами и амплитудами, характером нарастания амплитуд в начале звучания и их спадом в конце звучания.

При одной высоте тона звуки, издаваемые, например, скрипкой и пианино, отличаются тембром .

Восприятие звука органами слуха зависит от того, какие частоты входят в состав звуковой волны.

Шумы - это звуки, образующие сплошной спектр, состоящий из набора частот, т.е. в шуме присутствуют колебания всевозможных частот.

Говоря о строении слухового аппарата, мы переходим постепенно к принципу анализа мозгом полученного сигнала от слуховой улитки. В чем он заключается? И как мозг расшифровывает его? Как он определяет высоту тона звука? Сегодня мы как раз поговорим о последнем, так как в нем автоматически раскрываются ответы и на первые два вопроса.

Надо отметить, что мозг определяет только периодические синусоидальные компоненты звука. Восприятие высоты тона человеком так же зависит от громкости и длительности. В прошлой статье мы говорили о базилярной мембране и ее строении. Как известно, она обладает неоднородностью по жесткости строения. Это позволяет ей механически разбивать звук на компоненты, у которых есть особое место размещение на ее поверхности. Откуда волосковые клетки позже подают сигнал в мозг. Из-за этой особенности строения мембраны, «звуковая» волна, пробегающая по ее поверхности, имеет разные максимумы: низкие частоты – вблизи вершины мембраны, высокие – у овального окна. Мозг автоматически пытается определить высоту по этой «топографической карте», находя на ней локализацию фундаментальной частоты. Этот метод можно ассоциировать с многополосным фильтром. Отсюда взята теория «критических полос», которую мы обсуждали ранее:

Но это не единственный подход! Второй способ – это определение высоты тона по гармоникам: если найти минимальную частотную разницу между ними, то она всегда равна фундаментальной частоте – [(n +1) f 0 — (nf 0)]= f 0, где n – номера гармоник. А также вместе с ним используется и третий метод: нахождение общего сомножителя от деления всех гармоник на последовательные числа и, толкаясь от него, определяется высота звука. Эксперименты полностью подтвердили обоснованность этих способов: слуховая система, находя максимумы гармоник, проводит над ними вычислительные операции и если даже вырезать основной тон или расставить гармоники в нечетной последовательнос ти, при котором метод 1 и 2 не помогут, то человек определяет высоту звука 3 методом.

Но как оказалось – это не все возможности мозга! Были проведены хитрые эксперименты, которые удивили ученых. Дело заключается в том, что три метода работаю только с первыми 6-7 гармониками. Когда в каждую «критическую полосу» попадает по одной гармонике звукового спектра мозг спокойно «определяет» их. Но стоит, каким либо гармониками находиться настолько близко друг к другу, что в одну область слухового фильтра попадает их несколько, то мозг их распознает хуже или вообще не определяет: это относиться к звукам с гармониками выше седьмой. Вот здесь вступает четвертый метод – метод «времени»: мозг начинает анализировать время поступления сигналов с органа Корти с фазой колебания всей базилярной мембраны. Этот эффект получил название «запирание фазы». Дело заключается в том, что при колебании мембраны, когда она движется в сторону волосковых клеток, те соприкасаются с ней, образуя нервный импульс.
При движении обратно, ни какого электрического потенциала не появляется. Появляется взаимосвязь – время между импульсами в любом отдельном волокне будет равно целому числу 1, 2, 3 и так далее, умноженному на период в основной звуковой волне f = nT . Как это помогает в работе в купе вместе с критическими полосами? Очень просто: мы знаем, что когда две гармоники находятся настолько близко, что попадают в одну «частотную область», то между ними возникает эффект «биения» (которую музыканты слышат при настройке инструмента) – это просто одно колебание со средней частотой, равной разности частот. При этом период у них будет T =1/ f 0. Таким образом, все периоды выше шестой гармоники одинаковы или имеют разряд в цело число, то есть значение n / f 0. Далее мозг просто высчитывает частоту основного тона.

Звуковые волны, как и другие волны, характеризуются такими объективными величинами, как частота, амплитуда, фаза колебаний, скорость распространения, интенсивность звука и другими. Но. кроме этого, они описываются тремя субъективными характеристиками. Это - громкость звука, высота тона и тембр.

Чувствительность человеческого уха различна для разных частот. Для того чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью, но если эта интенсивность превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существует наименьшая (порог слышимости) и наибольшая (порог болевого ощущения) интенсивность звука, которая способна вызвать звуковое ощущение. На рисунке 15.10 представлена зависимость порогов слышимости и болевого ощущения от частоты звука. Область, расположенная между этими двумя кривыми, является областью слышимости. Наибольшее расстояние между кривыми приходится на частоты, к которым ухо наиболее чувствительно (1000-5000 Гц). 

Если интенсивность звука - величина, объективно характеризующая волновой процесс, то субъективной характеристикой звука является громкость Громкость зависит от интенсивности звука, т.е. определяется квадратом амплитуды колебаний в звуковой волне и чувствительностью уха (физиологическими особенностями). Так как интенсивность звука \(~I \sim A^2,\) то чем больше амплитуда колебаний, тем громче звук.

Высота тона - качество звука, определяемое человеком субъективно на слух и зависящее от частоты звука. Чем больше частота, тем выше тон звука.

Звуковые колебания, происходящие по гармоническому закону, с определенной частотой, воспринимаются человеком как определенный музыкальный тон. Колебания высокой частоты воспринимаются как звуки высокого тона, звуки низкой частоты - как звуки низкого тона. Диапазон звуковых колебаний, соответствующий изменению частоты колебаний в два раза, называется октавой. Так, например, тон "ля" первой октавы соответствует частоте 440 Гц, тон "ля" второй октавы - частоте 880 Гц.

Музыкальным звукам соответствуют звуки, издаваемые гармонически колеблющимся телом.

Основным тоном сложного музыкального звука называется тон, соответствующий наименьшей частоте, которая имеется в наборе частот данного звука. Тоны, соответствующие остальным частотам в составе звука, называются обертонами. Если частоты обертонов кратны частоте \(~\nu_0\) основного тона, то обертоны называются гармоническими, причем основной тон с частотой \(~\nu_0\) называется первой гармоникой, обертон со следующей частотой \(~2 \nu_0\) - второй гармоникой и т.д.

Музыкальные звуки с одним и тем же основным тоном различаются тембром, который определяется наличием обертонов - их частотами и амплитудами, характером нарастания амплитуд в начале звучания и их спадом в конце звучания.

При одной высоте тона звуки, издаваемые, например, скрипкой и пианино, отличаются тембром.

Восприятие звука органами слуха зависит от того, какие частоты входят в состав звуковой волны.

Шумы - это звуки, образующие сплошной спектр, состоящий из набора частот, т.е. в шуме присутствуют колебания всевозможных частот.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 431-432.

Мы от рождения до смерти пребываем в океане звуков. В городе мы постоянно слышим звуки движущихся машин, разговоры прохожих, фоновые шумы. Дома работают электроприборы, мы включаем телевизоры, радиоприемники, компьютеры. Можно не замечать эти звуки, не обращать на них внимания, но они влияют на наше мировосприятие и на самочувствие. Когда мы находимся, как кажется в тишине, за городом, на природе звуки все равно существуют вокруг нас. листвы, жужжание насекомых, шелест шагов по траве. Абсолютной тишины на Земле в естественных условиях не существует.

С точки зрения физики звук - это упругие волны, распространяющиеся в среде и создающие в ней механические колебания. От чего зависит высота звука и другие наши ощущения?

С точки зрения физиологии звук связан со слухом. И напрямую связан с нашими органами чувств.

Средой для распространения звуковых волн может быть воздух, вода, металл и другие вещества.

Поскольку звук - это он описывается теми же параметрами, что и любая волна. Это частота, длина волны, амплитуда, вектор волны (направление), скорость.

Человек слышит звуки в диапазоне от 15 Гц до 20 000 Гц. Диапазон ниже уровня слышимости называется инфразвуком, выше уровня и до 1 Ггц называется ультразвуком. Выше 1 Ггц - это гиперзвук.

Высота звука

Единица измерения высоты звука это мел. Мелы распределяются по шкале через интервалы, которые на слух воспринимаются как равные.

Ученые обнаружили, что, если воспроизводить короткие импульсы с интервалом 5 миллисекунд, то на слух они будут восприниматься непрерывно.

Как любая информация наших органов чувств, звуковая информация обрабатывается мозгом. Рассмотрим, от чего зависит частота звука. Известен так называемый эффект Шепарда. Звукоряд, который создает иллюзию постоянно повышающегося или понижающегося тона, хотя на самом деле ничего не меняется. Это достигается наложением звуковых волн по октавам (кратным по частоте). Этот эффект интуитивно использовали Бах, Равель, Шопен.

Тоны звука

Сложный тон - это звучание нескольких частот сразу. Простой тон можно воспроизвести с помощью генератора звуковых сигналов, или камертоном. Сложный тон создается музыкальными инструментами и человеческим голосом. Спектр сложного тона состоит из основной частоты и множества дополнительных гармоник, так называемых обертонов. От чего зависит высота тона звука и самого звука? Она зависит от основной частоты тона. Но и интенсивность влияет на восприятие высоты звучания. Чем интенсивность больше, тем звук кажется ниже.

Громкость звука

Громкость звука характеризует уровень звукового ощущения. От чего зависит громкость и высота звука? Восприятие громкости звука - ощущение субъективное и зависит как от интенсивности звука, так и от возраста, пола, этнической принадлежности, условий прослушивания. Ощущение громкости описывается психофизическим законом Вебера-Фехнера. В соответствии с этим законом, если интенсивность звука растет в геометрической прогрессии, то ощущение громкости - в арифметической. (Логарифмическая зависимость). От чего зависит громкость и высота звучания? От множества причин. Высота звучания кажется ниже, когда громкость увеличивается. Человеку всегда низкие и высокие частоты кажутся тише, чем средние.

Тембр звука

Тембр определяется Окраску спектру придают обертоны (гармоники основной частоты). Они придают эмоциональную окраску любому звучанию. От чего зависят высота и тембр звука? Они зависят от конструкции и материалов музыкальных инструментов, от особенностей человеческого голоса. Возникающие многочисленные обертоны придают звучанию неповторимость.

Каждая из знаменитых скрипок Страдивари обладала уникальным тембром. Это определялось и формой резонатора, и типом дерева, и даже лаком покрытия.

Некоторые считают, что особенное восприятие звука человеком способствовало в древности его выживанию. Для анализа внешних шумов необходимо было понять, от чего зависит высота звука, вычленить из массы шумов, звуковых частот звуки подкрадывающегося хищника или вовремя услышать приближение какой-либо природной катастрофы.

Сейчас появилась возможность синтезировать любые звуки, обрабатывать существующие аудиозаписи для достижения нужного эффекта. Но еще на заре звукозаписи делались звуковые комбинации. Примером такого эффекта может служить знаменитый крик Тарзана, созданный искусственно в 1932 г.

Архитектурная акустика

От чего зависит Конечно, от помещения, в котором он возникает.

Об этом знали еще в древности и строили храмы с учетом акустических элементов, теоретическое обоснование для которых было разработано впоследствии. Это и акустическая форма куполов, и акустические раковины.

Сила звука (интенсивность звука, определяющая его мощность) определяется как

Плотность звуковой энергии (Дж/м3) - определяет энергию звука, отнесенную к единице объема среды

Звуковая мощность - поток звуковой энергии W (Вт/м2)

Высота звука

Громкость звука

Тембр звука

Звуковое давление

Звуковое давление p - переменное избыточное давление, возникающее в среде при прохождении звуковой волны. Обычно звуковое давление мало по сравнению с постоянным давлением в среде. Звуковое давление следует отличать от давления звука.(см. табл.1)

отсюда 1 дБ - уровень звукового давления, для которого

Таблица 1. Уровни звукового давления (Муртазов А.К., 2007)

Высота звука

Высотой звука называется отражение в нашем сознании частоты колебания упругого тела. Мы воспринимаем как звук одного и того же названия не определенную частоту, а ряд близких частот. Например, как а1 мы воспринимаем колебательные движения не только с частотой 440 к/с, но и с частотами 435, 436, 437, 438, 439, 441, 442, 443, 444, 445 к/с (приблизительно). Таким образом, в нашем сознании частота перерабатывается в высоту.

Человек способен слышать весьма малые изменения высоты звука. Слуховой аппарат человека отмечает изменение высоты не одинаково в разных областях частот. Наиболее остро мы замечаем изменение высоты тонов в области от 500 до З 000 к/с. Для того, чтобы заметить эту разницу, требуется изменение в 5 центов (1/40 тона).

В низком регистре этот интервал увеличивается до 1/10 тона (например, в субконтроктаве). В высоком регистре, после З 000 к/с, интервал различения звуков по высоте также немного увеличивается. При одновременном слушании двух звуков можно заметить очень небольшую разницу между ними, благодаря биениям, которые отчетливо слышны, если слушать оба звука одним ухом. При слушании двух звуков, поочередно подводимых к разным ушам, разница, наоборот, увеличивается.

Если мы будем слушать короткие по времени звуки, постепенно уменьшая их длительность, то заметим, что значительное уменьшение длительности вызывает потерю ощущения высоты этих звуков.

Необходимо некоторое минимальное количество колебаний в секунду для того, чтобы человек мог судить о высоте звука. Исследования показали, что минимальная длительность звука, необходимая для определения его высоты, зависит от его частоты. (см.табл.2).

Таблица 2. Минимальная длительность звука, необходимая для определения его высоты

Из приведенной таблицы видно, что наиболее короткие звуки возможны в области частот от 700 до 3 200 к/с, т. е. от f2 до g4.

В низком регистре, в области субконтроктавы и контроктавы, длительность звука должна быть довольно большой.

Способность человека определять заданные музыкальные интервалы и воспроизводить их голосом, а также способность определять абсолютную высоту заданных звуков и воспроизводить их голосом являются свойствами музыкального слуха.

В первом случае, когда отношение между высотами звуков оценивается человеком как музыкальный интервал, как некоторое определенное качество, слух называется относительным.

Так как при некоторых изменениях между частотами звуков музыкальный интервал между ними сохраняет свою качественную определенность, то каждый интервал может иметь несколько количественных выражений.

Наличие относительного слуха совершенно необходимо для музыканта. Развитие его предусмотрено учебными планами музыкальных школ, училищ и консерваторий.

Во втором случае, т. е. при наличии способности определять абсолютную высоту заданных звуков (ступеней) или воспроизводить их голосом, слух называется абсолютным.

Обычно человек, обладающий абсолютным слухом, имеет также и относительный, но бывают случаи, когда при абсолютном слухе человек воспринимает музыкальные интервалы не как некоторое определенное качество, а лишь как сумму не связанных между собою звуков.

Абсолютный слух бывает двух типов - истинный и ложный. Для первого типа необходимо наличие у человека особых физиологических задатков. Второй тип абсолютного слуха требует постоянных и длительных упражнений.

Так, если истинный слух проявляется уже с самого раннего детства, то ложный слух можно выработать только в более зрелом возрасте. Критерием хорошего, истинного абсолютного слуха является способность быстро определять высоту заданного звука. Человек, обладающий ложным абсолютным слухом, обычно путем упражнений запоминает какой-либо один звук, например, б, а остальные звуки, он определяет, сравнивая их по высоте с этим звуком. Кроме того, встречаются лица, у которых абсолютный слух существует лишь по отношению к тому инструменту, на котором они играют. Но во всех случаях абсолютный слух способен определять и воспроизводить не частоту звука, а его высоту, т. е. его принадлежность к той или иной ступени.

Некоторые лица, не обладающие абсолютным слухом, могут определять высоту звуков, пользуясь какими-нибудь добавочными способами. Например, некоторые певцы определяют высоту звука, пользуясь ощущением напряжения голосовых связок.

Путем упражнений можно, безусловно, развить относительный слух. Что же касается превращения ложного абсолютного слуха в близкий к истинному, то это пока еще не доказано опытами.

Для музыканта большое значение имеет наличие внутреннего слуха - способность воображать высоту звуков и (в частности) созвучий. Внутренний слух позволяет исполнителю составить представление о музыкальном произведении до его прослушивания, а композитору дает возможность создавать произведение без помощи инструмента.

Для точного определения частоты колебаний звучащего тела применяются разнообразные приборы и методы.

Простейшим и наиболее старым методом является слуховое сравнение данного звука с другим, близким к нему по высоте звуком, частота колебаний которого точно известна, и последующий счет биений, возникающих между этими двумя звуками. Так например, если исследуемый звук дает с сравнительным звуком частоты 440 к/с полтора биения в секунду, а с другим сравнительным звуком частоты 444 к/с два с половиной биения в секунду, то частота его колебаний будет равна 141,5 к/c, и так далее.

Однако слуховой способ сравнения труден, так как требует специальной тренировки слуха исследователя. А если испытуемый звук дается человеком (например, голосом, на скрипке и т. п., на духовом инструменте), то он обычно инстинктивно подстраивается ко второму, слышимому им звуку измерительного прибора. Поэтому результаты сравнения получаются неточными.

Более точное определение частоты колебаний звучащих тел дает стробоскопический метод сравнения. При этом исследуемый звук превращается в световые импульсы (вспышки лампы с тлеющим разрядом), освещающие систему вращающихся дисков с чередующимися черными и белыми секторами, соотношения скоростей которых пропорциональны соотношениям между числами колебаний какой-либо музыкальной системы. При совпадении числа колебаний исследуемого звука с числом проходящих секторов на каком-либо из измерительных дисков, изображение на последнем покажется остановившимся. Это есть момент унисона двух колебательных процессов.

В существующих наиболее распространенных стробоскопических частотомерах применены комплекты из 12 измерительных дисков, скорости которых настроены по равномерно-темперированной музыкальной скале. Особое приспособление позволяет плавно изменять скорость вращения всех дисков одновременно в пределах ±3%, что соответствует изменению высоты звуков в пределах ± половины полутона. Указатель на шкале прибора дает возможность, в момент достижения унисона с исследуемым звуком, сразу прочесть высоту последнего относительно ближайшего, нормального темперированного звука, с точностью до 0,01 полутона (т. е. до одного цента).

Прибор очень чувствителен, не требует от оператора специальной тренировки слуха, и не издает никаких звуков, к которым мот бы подстраиваться исполнитель.

Получаемые на нем в музыкальных (логарифмических) единицах высоты звуков могут быть, при надобности, переведены в соответствующие частоты колебаний (герцы), при помощи специальных таблиц.