Какие величины описывают колебательное движение. Колебательное движение. Основные величины, характеризующие колебательное движение. Решение графических задач

Какие величины описывают колебательное движение. Колебательное движение. Основные величины, характеризующие колебательное движение. Решение графических задач
Какие величины описывают колебательное движение. Колебательное движение. Основные величины, характеризующие колебательное движение. Решение графических задач

Колебательное движение. Основные величины, характеризующие колебательное движение. Решение графических задач.

Если посмотреть историю физики, то можно увидеть, что главные открытия были связаны по существу с колебаниями

Л. И. Мандельштам

Цели: формировать понятие колебательное движение, понимание условий возникновения колебательного движения. Формировать знание основных величин характеризующих колебательное движение.

Иметь: понятие колебательное движение, знать отличие колебательного движения от других видов колебательного движения. Знать величины, характеризующие колебательное движение. Знать понятие свободные колебания, гармонические колебания

Уметь: решать задачи, используя теоретический материал

Развивать внимание, логику мышления, память

Воспитывать интерес к предмету

Тип: изучение нового материала

Оборудование: учебник, рабочая тетрадь, флипчарт, тестеры, GLX Explorer, датчик силы, пружина, груз массой 500грамм

Ход урока

Организационный момент (1 мин) Подготовка изучению нового материала (2-3 мин)

Флешанимация: периодически движутся участки сердца и легких, колеблются ветви деревьев при порыве ветра, ноги и руки при ходьбе, колеблются струны гитар, колеблется спортсмен на батуте и школьник, пытающийся подтянуться на перекладине, пульсируют звезды (будто дышат), колеблются атомы в узлах кристаллической решетки…

Остановимся! В чем общность этих движений? (эти движения повторяются) В чем отличие этого движения от других видов движения?

3. Объяснение нового материала (20 мин)

Ученый Л. И. Мандельштам говорил, что если посмотреть историю физики, то можно увидеть, что главные открытия были связаны по существу с колебаниями. И нам тоже сегодня предстоят открытия.

Цель нашего урока

Колебание - это движение тела, которое точно или приблизительно точно повторяется через одинаковые промежутки времени. Движения вблизи положения устойчивого равновесия всегда имеют колебательный характер.

Рассмотрим каким условиям должны удовлетворять силы, действующие на тело чтобы оно совершало колебательное движение

Демонстрация: груз подвешен напружине.

На доске схема груза подвешенного на пружине
Флипчарт стр3 Проблема? Какие силы действуют на груз. Почему груз находится в состоянии покоя?

Груз на штативе находится в покое при условии равенства по модулю действующих на него противоположно направленных силы тяжести Fтяж и Fупр

F= Fтяж + Fупр=0

Флипчарт стр 4 Смещаем груз вниз

Схема на доске

Проблема: Как изменяются силы, действующие на груз смещенный вниз

Fупр увеличивается, Fтяж остается неизменной. Равнодействующая сил действующих на груз направлена вверх.

Проблема: Как изменяются силы, действующие на груз смещенный вверх

Fупр уменьшается, Fтяж остается неизменной. Равнодействующая сил действующих на груз направлена вниз.

Следовательно равнодействующая всех сил действующих на груз подвешенный на пружине в любой точке траектории направляет груз к положению равновесия

ВЫВОД сила возвращающая груз в положение равновесия является сила упругости, которая зависит от отклонения и от положения равновесия.

Проблема: Какому закону подчиняется сила упругости.

Закону Гука: Fупр =-kx.

как зависят сила упругости и смещение (они прямо пропорциональные величины)

Механические колебания, которые происходят под действием силы, пропорциональной смещению и направленной противоположно ему, являются гармоническими колебаниями

Вывод: Для возникновения колебательного движения необходимо:

1. Сила, возвращающая в исходное положение

2. Трение должно быть по возможности малым, так как это приводит к затуханию колебаний

https://pandia.ru/text/80/288/images/image004_9.gif" width="42" height="42">Основные величины, характеризующие колебания - амплитуда, период и частота.
Мы уже встречались с периодическим движением. Вспомним, какими величинами характеризовался данный вид движения?

Колебательное движение характеризуют так же

Проблема: дайте определение этих величин, единицы измерения , формулы

Период колебания - минимальный промежуток времени, через который движение тела повторяется.

Т-период (с)

Один оборот тела по окружности называют циклом
Частота колебаний - число колебаний, которое тело совершает за 1 секунду.

Частота (Гц=с-1)

Еще одна величина которая характеризует колебательное движение

Амплитуда колебания - максимальное отклонение тела от среднего положения (положения равновесия)..gif" width="26" height="14 src=">= - А и точке DIV_ADBLOCK205">

Ускорение наоборот в точке х=0 а-максимально, в = - А и точке =А ускорение равно нулю
Колебания, которые совершает система после того, как она выведена из состояния равновесия и затем, предоставлена самой себе, называются свободными колебаниями.

Для наглядного представления о движении тела при механических колебаниях можно провести следующий опыт

На столах у ребят установка:

2. датчик силы

3. пружина

4. груз массой 500грамм

Выводим груз из состояния равновесия на экране получаем график колебательного движения.

Гармоническим колебанием называется колебание, при котором смещение тела от положения равновесия меняется от времени по закону синуса или косинуса. Например,

Величина называется фазой, - начальной фазой..jpg" align="left" width="360" height="149 src=">на рисунке представлен график колебаний

используя который мы можем определить период частоту, амплитуду колебаний

1) колебательное движение

2) Условия необходимые для колебательного движения

3) величины характеризующие колебательное движение

4) В каких точках траектории колеблющегося тела скорость равна: нулю, максимальна? В каких точках траектории колеблющегося тела ускорение равноа: нулю, максимальна?

5. Закрепление.

· Работа с графиком рис 80 упр 21 (1-3)

· Качественная задача: Будут ли возможны колебания шарика, закрепленного на пружине, если вся система придет в состояние невесомости

· Частота колебаний напряжения в электрической сети равна 50 Гц. Определите период колебаний

· При изменении пульса человека было зафиксировано 75 пульсаций крови за 1 мин. Определите период сокращения сердечной мышцы

· Какова частота колебаний поршня двигателя автомобиля, если за 0,5 мин поршень совершат 600 колебаний

· Как записывают уравнение гармонического колебательного движения, если начальная фаза равна нулю, период 4с, амплитуда 0,1м

6. Домашнее задание § 24-25 ответить на вопросы для самоконтроля, выучить определения. упр 21 (4)

7. проверка понимания

1. Характерная черта колебательного движения

А)поступательность

В) прямолинейность

С) периодичность

D)равномерность

E) нет правильного ответа

2. Максимальное смещение тела от положения равновесия – это …

А)амплитуда

В) период

С) частота

D)жесткость

3. Что показывает частота колебаний?

С) максимальное смещение

D) нет правильного ответа

E) количество циклов

4. Что показывает период колебаний?

А) время одного полного колебания

В) число колебаний в единицу времени

С) максимальное смещение

D) нет правильного ответа

E) количество циклов

5. Какова частота колебаний груза, если период колебаний его равен 0,5 сек

6. Частота колебаний крыльев воробья примерно 10 Гц. Каков период этих колебаний?

Тема: «Величины, характеризующие колебательное движение »

Цель: ввести понятия, амплитуды, периода и частоты колебаний, закрепить изученный материал на примере решения задач.

Тип урока: комбинированный.

№ п/п.

Этап урока

Деятельность учителя

Деятельность учащихся

Приветствие

(2 мин.)

Учитель заходит в класс, приветствует учеников.

Приветствуют, садятся.

Проверка домашнего задания

(5-10 мин.)

Какое движение называют колебательным?

Что называют периодом колебаний? Смещением?

Что такое маятник? Какой маятник называют математическим?

Какой маятник называют пружинным?

Какие из перечисленных ниже движений являются механическими ко­лебаниями: а) движение качелей; б) движение мяча, падающего на зем­лю; в) движение звучащей струны гитары?

которое совершает колебательные движения

Минимальный промежуток времени, через который движение повторяется, называют периодом колебания.

Отклонение тела от положения равновесия называют смещением.

Математическим маятником называется подвешенный к тонкой нити груз, размеры которого много меньше длины нити, а его масса много больше массы нити.

Пружинным маятником называется подвешенный к пружине груз, размеры которого много меньше длины пружины, а его масса много больше массы пружины.

Только а) и в)

Объяснение нового материала

(15-20 мин.)

Сравним колебания двух одинаковых маятников (или изображенных на рисунке 54 учебника, стр. 93). Первый маятник колеблется с большим размахом, т. е. его крайние положения находятся дальше от положения равновесия, чем у второго маятника.

Наибольшее (по модулю) отклонение колеблющегося тела от положения равновесия называется амплитудой колебаний.

Если колеблющееся тело пройдет от начала колебаний путь, рав­ный четырем амплитудам, то оно совершит одно полное колебание. Например, движение первого шарика от О 1 к В 1 затем от В 1 к А 1

и вновь к О 1 составляет одно полное колебание.

Промежуток времени, в течение которого тело совершает одно полное колебание, называется периодом колебаний.

Период колебаний обычно обозначается буквой Т и в СИ измеря­ется в секундах (с).

[T]= с.

Подвесим к стойке два маятника - один длинный, другой корот­кий. Отклоним их от положения равновесия на одно и то же расстоя­ние и отпустим. Мы заметим, что по сравнению с длинным маятником короткий за то же время совершает большее число колебаний.

Число колебаний в единицу времени называется частотой колебаний.

Обозначается частота буквой («ню»). За единицу частоты при­нято одно колебание в секунду. Эта единица в честь немецкого учено­го Генриха Герца названа герцем (Гц).

[]=Гц

Если, например, маятник в одну секунду совершает 2 колебания, то частота его колебаний равна 2 Гц (или 2-J , а период колебаний (т. е. время одного полного колебания) равен 0,5 с. Чтобы найти пе­риод колебания, необходимо одну секунду разделить на число коле­баний в эту секунду, т. е. на частоту:

Таким образом, период колебания Т и частота колебаний v связа­ны следующей зависимостью:

На примере колебаний маятников разной длины приходим к вы­воду: частота и период свободных колебаний нитяного маятника зависят от длины его нити. Чем больше длина нити маятника, тем больше период колебаний и меньше частота.

Частота свободных колебаний называется собственной частотой колебательной системы.

Теперь рассмотрим колебания двух одинаковых маятников (рис. 56), движущихся следующим образом. В один и тот же момент времени левый маятник из крайнего ле­вого положения начинает движение вправо, а правый маятник из крайнего правого положения движется влево. Оба маятника колеблются с одной и той же частотой (поскольку длины их нитей равны) и с одинаковыми амплитудами. Однако эти колебания отличаются друг от друга: в любой момент времени ско­рости маятников направлены в проти­воположные стороны.

В таком случае говорят, что колебания маят­ников происходят в противоположных фазах.

Маятники, изображенные на рисунке 54, тоже колеблются с одинаковыми частотами. Скорости этих маятников в любой момент времени направлены одинаково. В этом случае говорят, что маятни­ки колеблются в одинаковых фазах.

Рассмотрим еще один случай. В момент, изображенный на рисунке 57, а , скорости обоих маятников направлены вправо. Но че­рез некоторое время (рис. 57, б) они будут направлены в разные сто­роны. В таком случае говорят, что колебания происходят с опреде­ленной разностью фаз.

Физическая величина, называемая фазой, используется не толь­ко при сравнении колебаний двух или нескольких тел, но и для опи­сания колебаний одного тела.

Существует формула для определения фазы в любой момент вре­мени, но этот вопрос рассматривается в старших классах.

Таким образом, колебательное движение характеризуется амплитудой, частотой (или периодом ) и фазой .

Закрепление пройденного материала

(10-15 мин.)

Решение задач

Задача 1

Частота колебаний стометрового железнодорожного моста равна 2 Гц. Определите период этих колебаний.

Дано: Решение

= 2 Гц

Т - ?

Ответ: Т=0,5 с.

Задача 2

Период вертикальных колебаний железнодорожного вагона равен 0,5 с. Определите частоту колебаний вагона.

Дано: Решение

Т = 0,5 с

- ?

Ответ: Т=2 Гц.

Задача 3

Игла швейной машины делает 600 полных колебаний в одну минуту. Какова частота колебаний иглы, выраженная в герцах?

Вопросы.

1. Что называется амплитудой колебания; периодом колебания; частотой колебания? Какой буквой обозначается и в каких единицах измеряется каждая из этих величин?

Амплитудой колебания называется наибольшее по модулю отклонение колеблющегося тела от положения равновесия. Она обозначается буквой А и в системе СИ измеряется в метрах (м), но можно измерять и в сантиметрах, а также и в градусах.
Периодом колебания называется промежуток времени в течении которого тело совершает полное колебание. Он обозначается буквой Т и в системе СИ измеряется в секундах (с).
Частотой колебания называется число колебаний в единицу времени. Она обозначается буквой ∪ (ню) и в системе СИ измеряется в Герцах (Гц, 1Гц = 1с -1).

2. Что такое одно полное колебание?

Полное колебание - это колебание за время Т (период колебания).

3. Какая математическая зависимость существует между периодом и частотой колебания?

4. Как зависят: а) частота; б) период свободных колебаний маятника от длины его нити?

а) частота колебания маятника ∪ уменьшается с увеличением длины нити l; б) период Т колебания маятника растет с увеличением длины нити l.

5. Что называется собственной частотой колебательной системы?

Частота свободных колебаний называется собственной частотой колебательной системы. Например, если отклонить груз нитяного маятника от положения равновесия и отпустить, то он будет колебаться с собственной частотой, если же грузу сообщить определенную, отличную от нуля скорость, то он будет колебаться с другой частотой.

6. Как направлены по отношению друг к другу скорости двух маятников в любой момент времени, если эти маятники колеблются в противоположных фазах? в одинаковых фазах?

Если маятники колеблются в противоположных фазах, то в любой момент времени их скорости будут направлены противоположно друг другу, и наоборот, если они колеблются в одинаковых фазах, то их скорости сонаправлены.

Упражнения.

1. На рисунке 58 изображены пары колеблющихся маятников. В каких случаях два маятника колеблются: в одинаковых фазах по отношению друг к другу? в противоположных фазах?


В одинаковых фазах колеблется система б). В противоположных фазах а), в), г).

2. Частота колебаний стометрового железнодорожного моста равна 2 Гц. Определите период этих колебаний.


3. Период вертикальных колебаний железнодорожного вагона равен 0,5 с. Определите частоту колебаний вагона.


4. Игла швейной машины делает 600 полных колебаний в одну минуту. Какова частота колебаний иглы, выраженная в герцах?


5. Амплитуда колебаний груза на пружине равна 3 см. Какой путь от положения равновесия пройдет груз за 1/4 Т, 1/2 Т, 3/4 Т, Т?


6. Амплитуда колебаний груза на пружине равна 10 см, частота 0,5 Гц. Какой путь пройдет груз за 2 с?


7. Горизонтальный пружинный маятник, изображенный на рисунке 49, совершает свободные колебания. Какие величины, характеризующие это движение (амплитуда, частота, период, скорость, сила, под действием которой совершаются колебания), являются постоянными, а какие - переменными? (Трение не учитывайте).

Постоянными величинами являются - амплитуда, частота, период. Переменными - скорость и сила.

При помощи данного видеоурока вы сможете самостоятельно изучить тему «Величины, характеризующие колебательное движение». На этом уроке вы узнаете, как и какими величинами характеризуются колебательные движения. Будет дано определение таких величин, как амплитуда и смещение, период и частота колебания.

Обсудим количественные характеристики колебаний. Начнем с самой очевидной характеристики – амплитуды. Амплитуда обозначается большой буквой А и измеряется в метрах.

Определение

Амплитудой называют максимальное смещение от положения равновесия.

Часто амплитуду путают с размахом колебаний. Размах – это когда тело совершает колебание из одной крайней точки в другую. А амплитуда – это максимальное смещение, т. е. расстояние от точки равновесия, от линии равновесия до крайней точки, в которую оно попало. Помимо амплитуды, существует еще одна характеристика – смещение. Это текущее отклонение от положения равновесия.

А – амплитуда –

х – смещение –

Рис. 1. Амплитуда

Посмотрим, как отличаются амплитуда и смещение на примере. Математический маятник находится в состоянии равновесия. Линия расположения маятника в начальный момент времени – линия равновесия. Если отвести маятник в сторону – это и будет его максимальное смещение (амплитуда). В любой другой момент времени расстояние не будет амплитудой, а будет просто смещением.

Рис. 2. Отличие амплитуды и смещения

Следующая характеристика, к которой мы переходим, называется период колебаний .

Определение

Периодом колебаний называется промежуток времени, в течение которого совершается одно полное колебание.

Обратите внимание, что величина «период» обозначается большой буквой , определяется она следующим образом: , .

Рис. 3. Период

Стоит добавить, что чем больше мы берем число колебаний за большее время, тем точнее мы определим период колебаний.

Следующая величина - это частота .

Определение

Число колебаний, совершенных за единицу времени, называют частотой колебаний.

Рис. 4. Частота

Обозначается частота греческой буквой , которая читается как «ню». Частота - это отношение числа колебаний ко времени, за которое эти колебания произошли: .

Единицы измерения частоты . Эту единицу называют «герц» в честь немецкого физика Генриха Герца. Обратите внимание, что период и частота связаны через число колебаний и время, в течение которых это колебание совершается. Для каждой колебательной системы частота и период есть величины постоянные. Связь между этими величинами довольно проста: .

Кроме понятия «частота колебаний» нередко пользуются понятием «циклическая частота колебаний», то есть количество колебаний за секунд. Обозначается она буквой и измеряется в радианах за секунду .

Графики свободных незатухающих колебаний

Мы уже знаем решение главной задачи механики для свободных колебаний - закон синуса или косинуса. Также мы знаем, что графики являются мощнейшим инструментом исследования физических процессов. Поговорим о том, как будут выглядеть графики синусоиды и косинусоиды в применении к гармоническим колебаниям.

Для начала определимся с особыми точками во время колебаний. Это необходимо для того, чтобы правильно выбрать масштаб построения. Рассмотрим математический маятник. Первый вопрос, который возникает: какую функцию использовать - синус или косинус? Если колебание начинается с верхней точки - максимального отклонения, законом движения будет закон косинуса. Если же начать движение с точки равновесия - законом движения будет закон синуса.

Если законом движения будет закон косинуса, то через четверть периода маятник будет находиться в положении равновесия, еще через четверть - в крайней точке, еще через четверть - опять в положении равновесия, и еще через одну четверть вернется в начальное положение.

Если маятник колеблется по закону синуса, то через четверть периода он будет находиться в крайней точке, еще через четверть - в положении равновесия. Потом опять в крайней точке, но с другой стороны, и через еще четверть периода вернется в положение равновесия.

Итак, масштабом времени будет не произвольные значение 5 с, 10 с и т. д., а доли периода. Мы будем строить график по четвертям долей периода.

Перейдем к построению. меняется либо по закону синуса, либо по закону косинуса. Ось ординат - , ось абсцисс - . Масштаб времени равен четвертям периода: График будет лежать в пределах от до .

Рис. 5. Графики зависимости

График для колебания по закону синуса выходит из нуля и обозначен темно-синим цветом (рис. 5). График для колебания по закону косинуса выходит из положения максимального отклонения и обозначен голубым цветом на рисунке. Графики выглядят абсолютно идентично, но сдвинуты по фазе относительно друг друга на четверть периода или радиан.

Аналогичный вид будут иметь графики зависимости и , ведь они тоже меняются по гармоническому закону.

Особенности колебаний математического маятника

Математический маятник - это материальная точка массой , подвешенная на длинной нерастяжимой невесомой нити длиной .

Обратите внимание на формулу периода колебаний математического маятника: , где - длина маятника, - ускорение свободного падения.

Чем больше длина маятника, тем больше период его колебаний (рис. 6). Чем длиннее нить, тем дольше маятник раскачивается.

Рис. 6 Зависимость периода колебаний от длины маятника

Чем больше ускорение свободного падения, тем меньше период колебаний (рис. 7). Чем больше ускорение свободного падения, тем сильнее небесное тело притягивает грузик и тем быстрее он стремится вернуться в положение равновесия.

Рис. 7 Зависимость периода колебаний от ускорения свободного падения

Обратите внимание, что период колебаний не зависит от массы груза и амплитуды колебаний (рис. 8).

Рис. 8. Период колебаний не зависит от амплитуды колебаний

Первым на этот факт обратил внимание Галилео Галилей. На основании этого факта предложен механизм маятниковых часов.

Следует отметить, что точность формулы максимальна лишь для малых, сравнительно небольших отклонений. Например, для отклонения погрешность формулы составляет . Для более крупных отклонений точность формулы не столь велика.

Рассмотрим качественные задачи, которые описывают математический маятник.

Задача. Как изменится ход маятниковых часов, если их: 1) перевезти из Москвы на Северный полюс; 2) перевезти из Москвы на экватор; 3) поднять высоко в гору; 4) вынести из нагретого помещения на мороз.

Для того чтобы правильно ответить на вопрос задачи, необходимо понять, что имеется в виду под «ходом маятниковых часов». Маятниковые часы основаны на математическом маятнике. Если период колебаний часов будет меньше, чем нам нужно, часы начнут спешить. Если же период колебаний станет больше, чем необходимо, часы будут отставать. Задача сводится к ответу на вопрос: что произойдет с периодом колебаний математического маятника в результате всех перечисленных в задаче действий?

Рассмотрим первую ситуацию. Математический маятник переносится из Москвы на Северный полюс. Вспоминаем, что Земля имеет форму геоида, то есть сплюснутого у полюсов шара (рис. 9). Это значит, что на полюсе величина ускорения свободного падения несколько больше, чем в Москве. А раз ускорение свободного падения больше, то период колебаний станет несколько меньше и маятниковые часы начнут спешить . Здесь мы пренебрегаем тем, что на Северном полюсе холоднее.

Рис. 9. Ускорение свободного падения больше на полюсах Земли

Рассмотрим вторую ситуацию. Переносим часы из Москвы на экватор, предполагая, что температура не меняется. Ускорение свободного падения на экваторе несколько меньше, чем в Москве. Это значит, что период колебаний математического маятника увеличится и часы начнут отставать .

В третьем случае часы поднимают высоко в гору, тем самым увеличивая расстояние до центра Земли (рис. 10). Это значит, что ускорение свободного падения на вершине горы меньше. Период колебаний увеличивается, часы будут отставать .

Рис. 10 Ускорение свободного падения больше на вершине горы

Рассмотрим последний случай. Часы выносят из теплой комнаты на мороз. При понижении температуры линейные размеры тел уменьшаются. Это значит, что длина маятника немного сократится. Раз длина стала меньше, то период колебаний также уменьшился. Часы будут спешить .

Мы рассмотрели самые типичные ситуации, которые позволяют разобраться с тем, как работает формула периода колебаний математического маятника.

В заключение рассмотрим еще одну характеристику колебаний - фазу . О том, что такое фаза, более подробно мы будем говорить в старших классах. Сегодня мы должны рассмотреть, с чем можно эту характеристику сравнить, сопоставить и как ее для себя определить. Удобнее всего фазу колебаний сопоставить со скоростью движения маятника.

На рисунке 11 представлены два одинаковых маятника. Первый маятник отклонили влево на определенный угол, второй тоже отклонили влево на определенный угол, такой же, как и первый. Оба маятника будут совершать абсолютно одинаковые колебания. В этом случае можно сказать, что маятники совершают колебания с одинаковой фазой, поскольку скорости маятника имеют одно направление и равные модули.

На рисунке 12 два таких же маятника, но один отклонен влево, а другой - вправо. У них тоже одинаковые по модулю скорости, но направление противоположное. В этом случае говорят, что маятники совершают колебания в противофазе.

Во всех других случаях, как правило, упоминают о разности фаз.

Рис. 13 Разница фаз

Фазу колебаний в произвольный момент времени можно рассчитать по формуле , то есть как произведение циклической частоты на время, прошедшее с начала колебаний. Измеряется фаза в радианах.

Особенности колебаний пружинного маятника

Формула колебаний пружинного маятника: . Таким образом, период колебаний пружинного маятника зависит от массы груза и жесткости пружины.

Чем больше масса груза, тем больше его инертность. То есть маятник будет медленнее разгоняться, период его колебаний будет больше (рис. 14).

Рис. 14 Зависимость периода колебаний от массы

Чем больше жесткость пружины, тем быстрее она стремится вернуться в положение равновесия. Период пружинного маятника будет меньше.

Рис. 15 Зависимость периода колебаний от жесткости пружины

Рассмотрим применение формулы на примере задачи.

Рис. 17 Период колебаний

Если подставить теперь все необходимые значения в формулу для вычисления массы, получим:

Ответ: масса грузика составляет приблизительно 10 г.

Так же, как и в случае с математическим маятником, для пружинного маятника период колебаний не зависит от его амплитуды. Естественно, что это справедливо только для небольших отклонений от положения равновесия, когда деформация пружины является упругой. Этот факт был положен в основу устройства пружинных часов (рис. 18).

Рис. 18 Пружинные часы

Заключение

Конечно, кроме колебаний и тех характеристик, о которых мы говорили, существуют и другие не менее важные характеристики колебательного движения. Но о них мы поговорим в старшей школе.

Список литературы

  1. Кикоин А.К. О законе колебательного движения // Квант. - 1983. - № 9. - С. 30-31.
  2. Кикоин И.К., Кикоин А.К. Физика: учеб. для 9 кл. сред. шк. - М.: Просвещение, 1992. - 191 с.
  3. Черноуцан А.И. Гармонические колебания - обычные и удивительные // Квант. - 1991. - № 9. - С. 36-38.
  4. Перышкин А.В., Гутник Е.М. Физика. 9 кл.: учебник для общеобразоват. учреждений / А.В. Перышкин, Е.М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300 с.
  1. Интернет-портал «abitura.com» ()
  2. Интернет-портал «phys-portal.ru» ()
  3. Интернет-портал «fizmat.by» ()

Домашнее задание

  1. Что такое математический и пружинный маятники? Какая разница между ними?
  2. Что такое гармоническое колебание, период колебания?
  3. Груз массой 200 г колеблется на пружине с жесткостью 200 Н/м. Найдите полную механическую энергию колебаний и наибольшую скорость движения груза, если амплитуда колебаний 10 см (трением пренебречь).

какие величины характеризуют колебательное движение? в каких единицах они измеряются?

  1. Любые колебания характеризуются следующими параметрами:
    Смещение (х) - отклонение колеблющейся точки от положения равновесия в данный момент времени м.
    Амплитуда колебаний (А) наибольшее смещение от положения равновесия м. Если колебания незатухающие, то амплитуда постоянна.
    Период колебаний (Т)- время, за которое совершается одно полное колебание. Выражается в секундах с.
    Частота колебаний (v) - число полных колебаний за единицу времени. В СИ измеряется в герцах (Гц) .
    Единица измерения названа так в честь известного немецкого физика Генриха Герца (1857...1894).
    1 Гц это одно колебание в секунду. Примерно с такой частотой бьется человеческое сердце. Слово херц по-немецки означает сердце.
    Фаза колебаний - физическая величина, определяющая смещение x в данный момент времени. Измеряется в радианах (рад) .
    Период и частота колебаний связаны между собой обратно пропорциональной зависимостью:
    T = 1/v.
  2. В какие величины характеризуют колебательное движение:
    1. А (амплитуда) - метры, сантиметры, градусы.
    2. Т (период) - секунды.
    3. V (частота) -Гц.
  1. Загрузка... кто придумал паркур? Давид Белль Паркур возник во Франции в конце XX века, его прообразом являются тренировки французских солдат или пожарных по преодолению полосы...
  2. Загрузка... что такое Модификация Модификация (позднелат. modificatio установление меры, от лат. modus мера, вид, образ, преходящее свойство и лат. facio делать) , преобразование, усовершенствование, видоизменение...
  3. Загрузка... Можно ли дарить часы на новый год?? Легко. Можно. Работаю в часовом магазине около 15 лет. Примерно 60% покупают в подарок. А на новый...
  4. Загрузка... чем занимается прокурор обвинением следит)))))) за всеми))) Прокуратура правоохранительный орган системы следствия и поддержания государственного обвинения в судопроизводстве, а также надзора за соблюдением...
  5. Загрузка... понятие чести - понятие морального сознания и категория этики, по своему содержанию и природе отражаемого в ней морального отношения, аналогично понятию достоинства Подобно достоинству,...
  6. Загрузка... Кто имеет право получить награды Национального Наградного Фонда Российской Федерации? А сколько эта, так называемая "награда" вам обойдется?? ? Это одна из многих "шарашкиных"...