Современные системы солнечного теплоснабжения. Советское и российское солнечное теплоснабжение — научные и инженерные школы Техника безопасности системы солнечного теплоснабжения

Современные системы солнечного теплоснабжения. Советское и российское солнечное теплоснабжение — научные и инженерные школы Техника безопасности системы солнечного теплоснабжения
Современные системы солнечного теплоснабжения. Советское и российское солнечное теплоснабжение — научные и инженерные школы Техника безопасности системы солнечного теплоснабжения

На базе использования гелиоустановок могут быть решены задачи отопления, охлаждения и горячего водоснабжения жилых, административных зданий, промышленных и сельскохозяйственных объектов. Гелиоустановки имеют следующую классификацию:

  • по назначению: системы горячего водоснабжения; системы отопления; комбинированные установки для целей теплохладоснабжения;
  • по виду используемого теплоносителя: жидкостные; воздушные;
  • по продолжительности работы: круглогодичные; сезонные;
  • по техническому решению схемы: одноконтурные; двухконтурные; многоконтурные.

Наиболее часто применяемыми теплоносителями в системах солнечного теплоснабжения являются жидкости (вода, раствор этиленгликоля, органические вещества) и воздух. Каждый из них имеет определенные преимущества и недостатки. Воздух не замерзает, не создает больших проблем, связанных с утечками и коррозией оборудования. Однако из-за низкой плотности и теплоемкости воздуха размеры воздушных установок, расходы мощности на перекачку теплоносителя выше, чем у жидкостных систем. Поэтому в большинстве эксплуатируемых систем солнечного теплоснабжения предпочтение отдается жидкостям. Для жилищно-коммунальных нужд основной теплоноситель - вода.

При работе солнечных коллекторов в периоды с отрицательной температурой наружного воздуха необходимо либо использовать в качестве теплоносителя антифриз, либо каким-то способом избегать замерзания теплоносителя (например, своевременным сливом воды, нагревом ее, утеплением солнечного коллектора).

Гелиоустановками горячего водоснабжения круглогодичного действия с дублирующим источником теплоты могут быть оборудованы дома сельского типа, многоэтажные и многоквартирные дома, санатории, больницы и другие объекты. Сезонные установки, такие как, например, душевые установки для пионерских лагерей, пансионатов, передвижные установки для геологов, строителей, чабанов функционируют обычно в летние и переходные месяцы года, в периоды с положительной температурой наружного воздуха. Они могут иметь дублирующий источник теплоты или обходиться без него в зависимости от типа объекта и условий эксплуатации.

Стоимость гелиоустановок горячего водоснабжения может составлять от 5 до 15% стоимости объекта и зависит от климатических условий, стоимости оборудования и степени его освоенности.

В гелиоустановках, предназначенных для систем отопления, в качестве теплоносителей используют как жидкости, так и воздух. В многоконтурных гелиоустановках в разных контурах могут быть использованы различные теплоносители (например, в гелиоконтуре - вода, в распределительном - воздух). У нас в стране преобладающее распространение получили водяные гелиоустановки для теплоснабжения.

Площадь поверхности солнечных коллекторов, необходимая для систем отопления, обычно в 3-5 раз превышает площадь поверхности коллекторов для систем горячего водоснабжения, поэтому коэффициент использования этих систем ниже, особенно в летний период года. Стоимость установки для системы отопления может составлять 15-35% стоимости объекта.

К комбинированным системам могут быть отнесены установки круглогодичного действия для целей отопления и горячего водоснабжения, а также установки, работающие в режиме теплового насоса и тепловой трубы для целей тепло-хладоснабжения. Эти системы пока не применяются широко в промышленности.

Плотность потока солнечной радиации, приходящей на поверхность коллектора, в значительной степени определяет теплотехнические и технико-экономические показатели систем солнечного теплоснабжения.

Плотность потока солнечной радиации изменяется в течение дня и в течение года. Это является одной из характерных особенностей систем, использующих солнечную энергию, и при проведении конкретных инженерных расчетов гелиоустановок вопрос о выборе расчетного значения Е является определяющим.

В качестве расчетной схемы системы солнечного теплоснабжения рассмотрим схему, представленную на рис.3.3, которая дает возможность учесть особенности работы различных систем. Солнечный коллектор 1 преобразует энергию солнечного излучения в теплоту, которая передается в бак-аккумулятор 2 через теплообменник 3. Возможно расположение теплообменника в самом баке- аккумуляторе. Циркуляция теплоносителя обеспечивается насосом. Нагретый теплоноситель поступает в системы горячего водоснабжения и отопления. В случае недостатка или отсутствия солнечной радиации в работу включается дублирующий источник теплоты горячего водоснабжения или отопления 5.


Рис.3.3. Схема системы солнечного теплоснабжения: 1 - солнечные коллекторы; 2 - бак-аккумулятор горячей воды; 3 - теплообменник; 4 - здание с напольным отоплением; 5 - дублер (источник дополнительной энергии); 6 - пассивная солнечная система; 7 - галечный аккумулятор; 8 - заслонки; 9 -вентилятор; 10 - поток теплого воздуха в здание; 11- подача рециркуляционного воздуха из здания

В системе солнечного отопления использованы солнечные коллекторы нового поколения "Радуга" НПП "Конкурент" с улучшенными теплотехническими характеристиками за счет использования селективного покрытия на теплопоглощающей панели из нержавеющей стали и светопрозрачного покрытия из особо прочного стекла с высокими оптическими характеристиками.

В системе в качестве теплоносителя используют: воду при плюсовых температурах или антифриз в отопительный период (солнечный контур), воду (второй контур напольного отопления) и воздух (третий контур воздушного солнечного отопления).

В качестве дублирующего источника использован электрокотел.

Повышение эффективности систем гелиоснабжения может быть достигнуто за счет использования различных методов аккумулирования тепловой энергии, рационального сочетания гелиосистем с тепловыми котельными и теплонасосными установками, сочетания активных и пассивных систем разработки эффективных средств и методов автоматического управления.

Описание:

Особое значение при проектировании олимпийских объектов в Сочи имеет использование экологически чистых возобновляемых источников энергии и в первую очередь энергии солнечной радиации. В связи с этим будет интересен опыт разработки и внедрения пассивных солнечных систем теплоснабжения в жилых и общественных зданиях в провинции Ляонин (Китай), поскольку географическое расположение и климатические условия данной части Китая сопоставимы с аналогичными характеристиками Сочи.

Опыт Китайской Народной Республики

Чжао Цзиньлин , канд. техн. наук, Даляньский политехнический ун-т (КНР), стажер кафедры промышленных теплоэнергетических систем,

А. Я. Шелгинский , доктор техн. наук, проф., науч. руководитель, МЭИ (ТУ), Москва

Особое значение при проектировании олимпийских объектов в Сочи имеет использование экологически чистых возобновляемых источников энергии и в первую очередь энергии солнечной радиации. В связи с этим будет интересен опыт разработки и внедрения пассивных солнечных систем теплоснабжения в жилых и общественных зданиях в провинции Ляонин (Китай), поскольку географическое расположение и климатические условия данной части Китая сопоставимы с аналогичными характеристиками Сочи.

Применение возобновляемых источников энергии (ВИЭ) для систем теплоснабжения является актуальным и весьма перспективным в настоящее время при условии грамотного подхода к данному вопросу, т. к. традиционные источники энергии (нефть, газ и т. п.) не безграничны. В связи с этим многие страны, включая КНР, переходят на использование экологически чистых возобновляемых источников энергии, одним из которых является теплота солнечного излучения.

Возможность эффективного использования теплоты солнечного излучения в Китайской Народной Республике зависит от региона, поскольку климатические условия в разных частях страны сильно отличаются: от умеренного континентального (запад и север) с жарким летом и суровой зимой, субтропического в центральных районах страны до тропического муссонного на южном побережье и островах, обуславливается географическим местонахождением территории, на которой находится объект (таблица).

Таблица
Распределение солнечных ресурсов по территории Китая
Зона Годовая
длительность
инсоляции, ч
Солнечная
радиация,
MДж/(м 2 .год)
Район
Китая
Соответствующие районы
в других странах мира
I 2 800-3 300 7 550-9 250 Тибет и т. д. Северные районы Пакистана и Индии
II 3 000-3 200 5 850-7 550 Хэбэй и т. д. Джакарта (Индонезия)
III 2 200-3 000 5 000-5 850 Пекин, Далянь и т. д. Вашингтон (США)
IV 1 400-2 200 4 150-5 000 Хубжй, Хунань и т.д. Милан (Италия), Германия, Япония
V 1 000-1 400 3 350-4 150 Сычуань и Гуйчжоу Париж (Франция), Москва (Россия)

В провинции Ляонин интенсивность солнечной радиации составляет от 5 000 до 5 850 МДж/м 2 в год (в Сочи – около 5 000 МДж/м 2 в год), что позволяет активно применять системы отопления и охлаждения зданий на основе использования энергии солнечной радиации. Такие системы, преобразующие теплоту солнечного излучения и наружного воздуха, можно разделить на активные и пассивные.

В пассивных системах солнечного теплоснабжения (ПССТ) используется естественная циркуляция нагретого воздуха (рис. 1), т. е. гравитационные силы.

В активных системах солнечного теплоснабжения (рис. 2) задействованы дополнительные источники энергии для обеспечения ее работы (например, электроэнергия). Теплота солнечного излучения поступает на солнечные коллекторы, где частично аккумулируется и передается промежуточному теплоносителю, который насосами транспортируется и распределяется по помещениям.

Возможны системы с нулевым потреблением теплоты и холода, где соответствующие параметры воздуха в помещениях обеспечиваются без дополнительных энергозатрат за счет:

  • необходимой тепловой изоляции;
  • выбора конструкционных материалов здания с соответствующими теплохладоаккумулирующими свойствами;
  • использования в системе дополнительных теплохладоаккумуляторов с соответствующими характеристиками.

На рис. 3 представлена усовершенствованная схема работы пассивной системы теплоснабжения здания c элементами (шторы, клапаны), позволяющими более точно регулировать температуру воздуха внутри помещения. На южной стороне здания устанавливается так называемая стена Тромба, которая состоит из массивной стены (бетонной, кирпичной или каменной) и стеклянной перегородки, устанавливаемой на небольшом расстоянии от стены с внешней стороны. Наружная поверхность массивной стены окрашена в темный цвет. Через стеклянную перегородку нагревается массивная стена и воздух, находящийся между стеклянной перегородкой и массивной стеной. Нагретая массивная стена за счет излучения и конвективного теплообмена передает накопленную теплоту в помещение. Таким образом, в этой конструкции совмещаются функции коллектора и аккумулятора теплоты.

Воздух, находящийся в прослойке между стеклянной перегородкой и стеной, в холодный период времени и в солнечный день используется в качестве теплоносителя для подачи теплоты в помещение. Для предотвращения теплооттоков в окружающую среду в холодный период времени в ночное время и избыточных теплопритоков в солнечные дни теплого периода времени используются шторы, которые значительно сокращают теплообмен между массивной стеной и внешней окружающей средой.

Шторы выполняются из нетканых материалов с серебристым покрытием. Для обеспечения необходимой циркуляции воздуха используются воздушные клапаны, которые расположены в верхней и нижней частях массивной стены. Автоматическое управление работой воздушных клапанов позволяет поддерживать необходимые теплопритоки или теплооттоки в обслуживаемом помещении.

Система пассивного солнечного теплоснабжения работает следующим образом:

1. В холодный период времени (отопление):

  • солнечный день – штора поднята, клапаны открыты (рис. 3а). Это приводит к нагреву массивной стены через стеклянную перегородку и нагреву воздуха, находящегося в прослойке между стеклянной перегородкой и стеной. Теплота поступает в помещение от нагретой стены и нагретого в прослойке воздуха, циркулирующего через прослойку и помещение под воздействием гравитационных сил, вызванных разностью плотностей воздуха при разных температурах (естественная циркуляция);
  • ночь, вечер или пасмурный день – штора опущена, клапаны закрыты (рис. 3б). Теплооттоки во внешнюю среду значительно сокращаются. Температура в помещении поддерживается за счет поступления теплоты от массивной стены, накопившей эту теплоту от солнечного излучения;

2. В теплый период времени (охлаждение):

  • солнечный день – штора опущена, нижние клапаны открыты, верхние – закрыты (рис. 3в). Штора предохраняет нагрев массивной стены от солнечного излучения. Наружный воздух поступает в помещение с затененной стороны дома и выходит через прослойку между стеклянной перегородкой и стеной в окружающую среду;
  • ночь, вечер или пасмурный день – штора поднята, нижние клапаны открыты, верхние – закрыты (рис. 3г). Наружный воздух поступает в помещение с противоположной стороны дома и выходит в окружающую среду через прослойку между стеклянной перегородкой и массивной стеной. Стена охлаждается в результате конвективного теплообмена с воздухом, проходящим через прослойку, и за счет оттока теплоты излучением в окружающую среду. Охлажденная стена в дневное время поддерживает необходимый температурный режим в помещении.

Для расчета систем пассивного солнечного отопления зданий разработаны математические модели нестационарного теплопереноса при естественной конвекции для обеспечения помещений необходимыми температурными условиями в зависимости от теплофизических свойств ограждающих конструкций, суточного изменения солнечного излучения и температуры наружного воздуха .

Для определения достоверности и уточнения полученных результатов в Даляньском политехническом университете разработана, изготовлена и исследована экспериментальная модель жилого дома, расположенного в г. Далянь, с пассивными солнечными системами отопления. Стена Тромба размещается только на южном фасаде, с автоматическими воздушными клапанами и шторами (рис. 3, фото).

При проведении эксперимента использовались:

  • малая метеостанция;
  • приборы для измерения интенсивности солнечной радиации;
  • анемограф RHAT-301 для определения скорости воздуха в помещении;
  • термометрограф TR72-S и термопары для замеров температуры в помещении.

Экспериментальные исследования проводились в теплый, переходной и холодный периоды года при различных метеорологических условиях.

Алгоритм решения поставленной задачи представлен на рис. 4.

Результаты эксперимента подтвердили достоверность полученных расчетных соотношений и позволили скорректировать отдельные зависимости с учетом конкретных граничных условий.

В настоящее время в провинции Ляонин находится много жилых домов и школ, в которых используются пассивные солнечные системы отопления.

Анализ пассивных солнечных систем теплоснабжения показывает, что они являются достаточно перспективными в отдельных климатических регионах в сравнении с остальными системами по следующим причинам:

  • дешевизна;
  • простота обслуживания;
  • надежность.

К недостаткам пассивных солнечных систем отопления следует отнести то, что параметры воздуха внутри помещения могут отличаться от требуемых (расчетных) при изменении температуры наружного воздуха за пределами, принятыми в расчетах.

Для достижения хорошего энергосберегающего эффекта в системах теплохладоснабжения зданий с более точным поддержанием температурных условий в заданных пределах целесообразно комбинированное использование пассивных и активных солнечных систем теплохладоснабжения.

В связи с этим необходимы дальнейшие теоретические исследования и проведение экспериментальных работ на физических моделях с учетом ранее полученных результатов.

Литература

1. Zhao Jinling, Chen Bin, Liu Jingjun, Wang Yongxun Dynamic thermal performance simulation of an improved passive solar house with trombe wall ISES Solar word Congress, 2007, Beijing China, Vols 1-V: 2234–2237.

2. Zhao Jinling, Chen Bin, Chen Cuiying, Sun Yuanyuan Study on dynamic thermal response of the passive solar heating systems. Journal of Harbin Institute of Technology (New Series). 2007. Vol. 14: 352–355.

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ НАУЧНО-ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ
ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО РАСЧЕТУ И ПРОЕКТИРОВАНИЮ
СИСТЕМ СОЛНЕЧНОГО ТЕПЛОСНАБЖЕНИЯ

РД 34.20.115-89

СЛУЖБА ПЕРЕДОВОГО ОПЫТА ПО «СОЮЗТЕХЭНЕРГО»

Москва 1990

РАЗРАБОТАНО Государственным ордена Трудового Красного Знамени научно-исследовательским энергетическим институтом им. Г.М. Кржижановского

ИСПОЛНИТЕЛИ М.Н. ЕГАЙ, О.М. КОРШУНОВ, А.С. ЛЕОНОВИЧ, В.В. НУШТАЙКИН, В.К. РЫБАЛКО, Б.В. ТАРНИЖЕВСКИЙ, В.Г. БУЛЫЧЕВ

УТВЕРЖДЕНО Главным научно-техническим управлением энергетики и электрификации 07.12.89 г.

Начальник В.И. ГОРИЙ

Срок действия устанавливается

с 01.01.90

до 01.01.92

Настоящие Методические указания устанавливают порядок выполнения расчета и содержат рекомендации по проектированию систем солнечного теплоснабжения жилых, общественных и промышленных зданий и сооружений.

Методические указания предназначены для проектировщиков и инженерно-технических работников, занимающихся разработкой систем солнечного теплоснабжения и горячего водоснабжения.

. ОБЩИЕ ПОЛОЖЕНИЯ

где f - доля полной среднегодовой тепловой нагрузки, обеспечиваемой за счет солнечной энергии;

где F - площадь поверхности СК, м 2 .

где Н - среднегодовая суммарная солнечная радиация на горизонтальную поверхность, кВт · ч/м 2 ; находится из приложения ;

а, b - параметры, определяемые из уравнения () и ()

где r - характеристика теплоизолирующих свойств ограждающих конструкций здания при фиксированном значении нагрузки ГВС, представляет собой отношение суточной нагрузки отопления при температуре наружного воздуха равной 0 °С к суточной нагрузке ГВС. Чем больше r , тем больше доля отопительной нагрузки по сравнению с долей нагрузки ГВС и тем менее совершенной является конструкция здания с точки зрения тепловых потерь; r = 0 принимается при расчете только системы ГВС. Характеристика определяется по формуле

где λ - удельные тепловые потери здания, Вт/(м 3 · °С);

m - количество часов в сутках;

k - кратность вентиляционного обмена воздуха, 1/сут;

ρ в - плотность воздуха при 0 °С, кг/м 3 ;

f - коэффициент замещения, ориентировочно принимается от 0,2 до 0,4.

Значения λ , k , V , t в , s закладываются при проектировании ССТ.

Значения коэффициента α для солнечных коллекторов II и III типов

Значения коэффициентов

α 1

α 2

α 3

α 4

α 5

α 6

α 7

α 8

α 9

607,0

80,0

1340,0

437,5

22,5

1900,0

1125,0

25,0

298,0

148,5

61,5

150,0

1112,0

337,5

700,0

1725,0

775,0

Значения коэффициента β для солнечных коллекторов II и III типов

Значения коэффициентов

β 1

β 2

β 3

β 4

β 5

β 6

β 7

β 8

β 9

1,177

0,496

0,140

0,995

3,350

5,05

1,400

1,062

0,434

0,158

2,465

2,958

1,088

3,550

4,475

1,775

Значения коэффициентов а и b находятся из табл. .

Значения коэффициентов а и b в зависимости от типа солнечного коллектора

Значения коэффициентов

0,75

0,80

где q i - удельная годовая теплопроизводительность СГВС при значениях f , отличных от 0,5;

Δq - изменение годовой удельной теплопроизводительности СГВС, %.

Изменение значения удельной годовой теплопроизводительности Δq от годового поступления солнечной радиации на горизонтальную поверхность H и коэффициента f

. РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ СИСТЕМ СОЛНЕЧНОГОТЕПЛОСНАБЖЕНИЯ

где З с - удельные приведенные затраты на единицу вырабатываемой тепловой энергии ССТ, руб./ГДж;

З б - удельные приведенные затраты на единицу вырабатываемой тепловой энергии базовой установкой, руб./ГДж.

где С c - приведенные затраты на ССТ и дублер, руб./год;

где к с - капитальные затраты на ССТ, руб.;

к в - капитальные затраты на дублер, руб.;

E н - нормативный коэффициент сравнительной эффективности капитальных вложений (0,1);

Э с - доля эксплуатационных расходов от капитальных затрат на ССТ;

Э в - доля эксплуатационных расходов от капитальных затрат на дублер;

Ц - стоимость единицы тепловой энергии, вырабатываемой дублером, руб./ГДж;

N д - количество тепловой энергии, вырабатываемой дублером в течение года, ГДж;

к э - эффект от снижения загрязнения окружающей среды, руб.;

к п - социальный эффект от экономии зарплаты персонала, обслуживающего дублер, руб.

Удельные приведенные затраты определяются по формуле

где С б - приведенные затраты на базовую установку, руб./год;

Определение термина

Солнечный коллектор

Устройство для улавливания солнечной радиации и преобразования ее в тепловую и другие виды энергии

Часовая (суточная, месячная и т.д.) теплопроизводительность

Количество тепловой энергии, отводимой от коллектора за час (сутки, месяц и т.д.) работы

Плоский солнечный коллектор

Нефокусирующий солнечный коллектор с поглощающим элементом плоской конфигурации (типа «труба в листе», только из труб и т.п.) и плоской прозрачной изоляцией

Площадь тепловоспринимающей поверхности

Площадь поверхности поглощающего элемента, освещенная солнцем в условиях нормального падения лучей

Коэффициент тепловых потерь через прозрачную изоляцию (днище, боковые стенки коллектора)

Поток тепла в окружающую среду через прозрачную изоляцию (днище, боковые стенки коллектора), отнесенный к единице площади тепловоспринимающей поверхности, при разности средних температур поглощающего элемента и наружного воздуха в 1 °С

Удельный расход теплоносителя в плоском солнечном коллекторе

Расход теплоносителя в коллекторе, отнесенный к единице площади тепловоспринимающей поверхности

Коэффициент эффективности

Величина, характеризующая эффективность переноса тепла от поверхности поглощающего элемента к теплоносителю и равная отношению фактической теплопроизводительности к теплопроизводительности при условии, что все термические сопротивления передачи тепла от поверхности поглощающего элемента к теплоносителю равны нулю

Степень черноты поверхности

Отношение интенсивности излучения поверхности к интенсивности излучения черного тела при той же температуре

Пропускательная способность остекления

Пропускаемая прозрачной изоляцией доля солнечного (инфракрасного, видимого) излучения, падающего на поверхность прозрачной изоляции

Дублер

Традиционный источник тепловой энергии, обеспечивающий частичное или полное покрытие тепловой нагрузки и работающий в сочетании с системой солнечного теплоснабжения

Система солнечного теплоснабжения

Система, обеспечивающая покрытие нагрузки отопления и горячего водоснабжения за счет солнечной энергии

Приложение 2

Теплотехнические характеристики солнечных коллекторов

Тип коллектора

Общий коэффициент тепловых потерь U L , Вт/(м 2 · °С)

Поглощательная способность тепло-приемной поверхности α

0,95

0,90

0,95

Степень черноты поглощательной поверхности в диапазоне рабочих температур коллектора ε

0,95

0,10

0,95

Пропускательная способность остекления τ п

0,87

0,87

0,72

Коэффициент эффективности F R

0,91

0,93

0,95

Максимальная температура теплоносителя, °С

Примечани е. I - одностекольный неселективный коллектор; II - одностекольный селективный коллектор; III - двухстекольный неселективный коллектор.

Приложение 3

Технические характеристики солнечных коллекторов

Изготовитель

Братский завод отопительного оборудования

Спецгелиотепломонтаж ГССР

КиевЗНИИЭП

Бухарский завод гелиоаппаратуры

Длина, мм

1530

1000 - 3000

1624

1100

Ширина, мм

1008

Высота, мм

70 - 100

Масса, кг

50,5

30 - 50

Тепловоспринимающая поверхность, м

0,6 - 1,5

0,62

Рабочее давление, МПа

0,2 - 0,6

Приложение 4

Технические характеристики проточных теплообменников типа ТТ

Диаметр наружный/внутренний, мм

Проходное сечение

Поверхность нагрева одной секции, м 2

Длина секции, мм

Масса одной секции, кг

внутренней трубы, см 2

кольцевого канала, см 2

внутренней трубы

наружной трубы

ТТ 1-25/38-10/10

25/20

38/32

3,14

1,13

1500

ТТ 2-25/38-10/10

25/20

38/32

6,28

6,26

1500

Приложение 5

Годовой приход суммарной солнечной радиации на горизонтальную поверхность (Н), кВт · ч/м 2

Азербайджанская ССР

Баку

1378

Кировобад

1426

Мингечаур

1426

Армянская ССР

Ереван

1701

Ленинакан

1681

Севан

1732

Нахичевань

1783

Грузинская ССР

Телави

1498

Тбилиси

1396

Цхакая

1365

Казахская ССР

Алма-Ата

1447

Гурьев

1569

Форт-Шевченко

1437

Джезказган

1508

Ак-Кум

1773

Аральское море

1630

Бирса-Кельмес

1569

Кустанай

1212

Семипалатинск

1437

Джаныбек

1304

Колмыково

1406

Киргизская ССР

Фрунзе

1538

Тянь-Шань

1915

РСФСР

Алтайский край

Благовещенка

1284

Астраханская область

Астрахань

1365

Волгоградская область

Волгоград

1314

Воронежская область

Воронеж

1039

Каменная степь

1111

Краснодарский край

Сочи

1365

Куйбышевская область

Куйбышев

1172

Курская область

Курск

1029

Молдавская ССР

Кишинев

1304

Оренбургская область

Бузулук

1162

Ростовская область

Цимлянск

1284

Гигант

1314

Саратовская область

Ершов

1263

Саратов

1233

Ставропольский край

Ессентуки

1294

Узбекская ССР

Самарканд

1661

Тамдыбулак

1752

Тахнаташ

1681

Ташкент

1559

Термез

1844

Фергана

1671

Чурук

1610

Таджикская ССР

Душанбе

1752

Туркменская ССР

Ак-Молла

1834

Ашхабад

1722

Гасан-Кули

1783

Кара-Богаз-Гол

1671

Чарджоу

1885

Украинская ССР

Херсонская область

Херсон

1335

Аскания Нова

1335

Сумская область

Конотоп

1080

Полтавская область

Полтава

1100

Волынская область

Ковель

1070

Донецкая область

Донецк

1233

Закарпатская область

Берегово

1202

Киевская область

Киев

1141

Кировоградская область

Знаменка

1161

Крымская область

Евпатория

1386

Карадаг

1426

Одесская область

30,8

39,2

49,8

61,7

70,8

75,3

73,6

66,2

55,1

43,6

33,6

28,7

28,8

37,2

47,8

59,7

68,8

73,3

71,6

64,2

53,1

41,6

31,6

26,7

26,8

35,2

45,8

57,7

66,8

71,3

69,6

62,2

51,1

39,6

29,6

24,7

24,8

33,2

43,8

55,7

64,8

69,3

67,5

60,2

49,1

37,6

27,6

22,7

22,8

31,2

41,8

53,7

62,8

67,3

65,6

58,2

47,1

35,6

25,6

20,7

20,8

29,2

39,8

51,7

60,8

65,3

63,6

56,2

45,1

33,6

23,6

18,7

18,8

27,2

37,8

49,7

58,8

63,3

61,6

54,2

43,1

31,6

21,6

16,7

16,8

25,2

35,8

47,7

56,8

61,3

Температура кипения, °С

106,0

110,0

107,5

105,0

113,0

Вязкость, 10 -3 Па · с:

при температуре 5 °С

5,15

6,38

при температуре 20 °С

7,65

при температуре -40 °С

7,75

35,3

28,45

Плотность, кг/м 3

1077

1483 - 1490

Теплоемкость кДж/(м 3 · °С):

при температуре 5 °С

3900

3524

при температуре 20 °С

3340

3486

Коррозионная способность

Сильная

Средняя

Слабая

Слабая

Сильная

Токсичность

Нет

Средняя

Нет

Слабая

Нет

Примечани е. Теплоносители на основе углекислого калия имеют следующие составы (массовая доля):

Рецептура 1 Рецептура 2

Калий углекислый, 1,5-водный 51,6 42,9

Натрий фосфорнокислый, 12-водный 4,3 3,57

Натрий кремнекислый, 9-водный 2,6 2,16

Натрий тетраборнокислый, 10-водный 2,0 1,66

Флуоресцоин 0,01 0,01

Вода До 100 До 100

В среднем по году, в зависимости от климатических условий и широты местности, поток солнечного излучения на земную поверхность составляет от 100 до 250 Вт/м 2 , достигая пиковых значений в полдень при ясном небе, практически в любом (независимо от широты) месте, около 1 000 Вт/м 2 . В условиях средней полосы России солнечное излучение «приносит» на поверхность земли энергию, эквивалентную примерно 100-150 кг условного топлива на м 2 в год.

Математическое моделирование простейшей солнечной водонагревательной установки, проведенное в Институте высоких температур Российской академии наук с использованием современных программных средств и данных типичного метеогода показало, что в реальных климатических условиях средней полосы России целесообразно использование сезонных плоских солнечных водонагревателей, работающих в период с марта по сентябрь. Для установки с отношением площади солнечного коллектора к объему бака-аккумулятора 2 м 2 /100 л вероятность ежедневного нагрева воды в этот период до температуры не менее чем 37 ° С составляет 50-90%, до температуры не менее чем 45°С — 30-70%, до температуры не менее чем 55 ° С — 20-60%. Максимальные значения вероятности относятся к летним месяцам.

«Ваш Солнечный Дом» разрабатывает, комплектует и поставляет , как с пассивной, так и с активной циркуляцией теплоносителя. Описание этих систем вы можете найти в соответствующих разделах нашего сайта. Заказ и покупка осуществляется через .

Очень часто задается вопрос, можно ли использовать солнечные нагревательные установки для отопления в условиях России. По этому поводу написана отдельная статья — «Солнечная поддержка отопления»

Продолжить чтение

1. Солнечные коллекторы.

Солнечный коллектор является основным элементом установки, в которой энергия излучения Солнца преобразуется в другую форму полезной энергии. В отличие от обычных теплообменников, в которых происходит интенсивная передача тепла от одной жидкости к другой, а излучение несущественно, в солнечном коллекторе перенос энергии к жидкости осуществляется от удаленного источника лучистой энергии. Без концентрации солнечных лучей плотность потока падающего излучения составляет в лучшем случае -1100 Вт/м 2 и является переменной величиной. Длины волн заключены в интервале 0,3 - 3,0 мкм. Они значительно меньше величин длин волн собственного излучения большинства поверхностей, поглощающих излучение. Таким образом, исследование солнечных коллекторов связано с уникальными проблемами теплообмена при низких и переменных плотностях потока энергии и относительно большой роли излучения.

Солнечные коллекторы могут применяться как с концентрацией, так и без концентрации солнечного излучения. В плоских коллекторах поверхность, воспринимающая солнечное излучение, является одновременно поверхностью, поглощающей излучение. Фокусирующие коллекторы, обычно имеющие вогнутые отражатели, концентрируют падающее на всю их поверхность излучение на теплообменник с меньшей площадью поверхности, увеличивая тем самым плотность потока энергии.

1.1. Плоские солнечные коллекторы. Плоский солнечный коллектор представляет собой теплообменник, предназначенный для нагрева жидкости или газа за счет энергии излучения Солнца.

Плоские коллекторы могут применяться для нагрева теплоносителя до умеренных температур, t ≈ 100 o C. К их преимуществам следует отнести возможность использования как прямой, так и рассеянной солнечной радиации; они не требуют слежения за солнцем и не нуждаются в повседневном обслуживании. В конструктивном отношении они проще, чем система, состоящая из концентрирующих отражателей, поглощающих поверхностей и механизмов слежения. Область применения солнечных коллекторов - системы отопления жилых и производственных зданий, системы кондиционирования, горячего водоснабжения, а также энергетические установки с низкокипящим рабочим телом, работающие обычно по циклу Ренкина.

Основными элементами типичного плоского солнечного коллектора (рис.1) являются: "черная" поверхность, которая поглощает солнечную радиацию и передает ее энергию теплоносителю (как правило жидкости); прозрачные относительно солнечного излучения покрытия, расположенные над поглощающей поверхностью, которые уменьшают конвективные и радиационные потери в атмосферу; теплоизоляция обратной и торцевой поверхностей коллектора для снижения потерь за счет теплопроводности.


Рис.1. Принципиальная схема плоского солнечного коллектора.

а) 1 - прозрачные покрытия; 2 - изоляция; 3 - труба с теплоносителем; 4 - поглощающая поверхность;

б) 1.поверхность, поглощающая солнечную радиацию, 2-каналы теплоносителя, 3-стекло(??), 4-корпус,

5- тепловая изоляция.

Рис.2 Солнечный коллектор типа лист - труба.

1 - верхний гидравлический коллектор; 2 - нижний гидравлический коллектор; 3 - п труб, расположенных на расстоянии W друг от дру­га; 4 - лист (поглощающая пластина); 5- соединение; 6 - труба (не в масштабе);

7 - изоляция.

1.2. Эффективность коллектора . Эффективность коллектора определяется его оптическим и тепловым КПД. Оптический КПД η о показывает, какая часть солнечной радиации, достигшая поверхности остекления коллектора, оказывается поглощенной абсорбирующей черной поверхностью, и учитывает потери энергии, связанные с отличием от единицы коэффициента пропускания стекла и коэффициента поглощения абсорбирующей поверхности. Для коллектора с однослойным остеклением

где (τα) n - произведение коэффициента пропускания стекла τ на коэффициент поглощения α абсорбирующий излучение поверхности при нормальном падении солнечных лучей.

В том случае, если угол падения лучей отличается от прямого, вводится поправочный коэффициент k, учитывающий увеличение потерь на отражение от стекла и поверхности, поглощающей солнечную радиацию. На рис. 3 приведены графики k = f(1/ cos 0 - 1) для коллекторов с однослойным и двухслойным остеклением. Оптический КПД с учетом угла падения лучей, отличного от прямого,

Рис. 3. Поправочный коэффициент, учитывающий отражение солнечных лучей от поверхности стекла и черной абсорбирующей поверхности.

Кроме этих потерь в коллекторе любой конструкции присутствуют потери теплоты в окружающую среду Q пот, которые учитываются тепловым КПД, который равен отношению количества полезной теплоты, отведенной от коллектора за определенное время, к количеству энергии излучения, поступающей к нему от Солнца за то же время:

где Ω площадь апертуры коллектора; І - плотность потока солнечной радиации.

Оптический и тепловой КПД коллектора связаны отношением

Тепловые потери характеризуются полным коэффициентом потерь U

где Т а - температура черной поверхности, абсорбирующей солнечную радиацию; Т о -температура окружающей среды.

Величина U с достаточной для расчетов точностью может считаться постоянной. В этом случае подстановка Q пот в формулу для теплового кпд приводит к уравнению

Тепловой КПД коллектора может быть записан также через среднюю температуру протекающего через него теплоносителя:

где T t = (Т вх + Т вых) /2 - средняя температура теплоносителя; F" - параметр, обычно называемый «эффективностью коллектора» и характеризующий эффективность переноса теплоты от поверхности, поглощающей солнечную радиацию, к теплоносителю; он зависит от конструкции коллектора и почти не зависит от других факторов; типичные значения параметра F"≈: 0,8-0,9 - для плоских воздушных коллекторов; 0,9-0,95 - для плоских жидкостных коллекторов; 0,95-1,0 - для вакуумных коллекторов.

1.3. Вакуумные коллекторы. В том случае, когда необходим нагрев до более высоких температур, используют вакуумные коллекторы. В вакуумном коллекторе объем, в котором находится черная поверхность, поглощающая солнечную радиацию, отделен от окружающей среды вакуумированным пространством, что позволяет значительно уменьшить поте­ри теплоты в окружающую среду за счет теплопроводности и конвекции. Потери на излучение в значительной степени подавляются путем применения селективного покрытия. Так как полный коэффициент потерь в вакуумном коллекторе мал, теплоноситель в нем можно нагреть до более высоких температур (120-150 °С), чем в плоском коллекторе. На рис. 9.10 показаны примеры конструктивного выполнения вакуумных коллекторов.

Рис. 4. Типы вакуумных коллекторов.

1 - трубка с теплоносителем; 2 - пластина с селективным покрытием, поглощающая солнечное излучение; 3 тепловая труба; 4 теплосъемный элемент; 5 стеклянная трубка с селективным покрытием; б - внутренняя трубка для подачи теплоносителя; 7 наружный стеклянный баллон; 8 вакуум