Испытания первых анаэробных силовых установок. "калина" - российская подводная лодка пятого поколения с воздухонезависимой энергетической (анаэробной) установкой (внэу). Принцип действия газотурбинных силовых установок

Испытания первых анаэробных силовых установок.
Испытания первых анаэробных силовых установок. "калина" - российская подводная лодка пятого поколения с воздухонезависимой энергетической (анаэробной) установкой (внэу). Принцип действия газотурбинных силовых установок

Рендер подводной лодки проекта «Амур-950» с анаэробной энергетической установкой

ЦКБ МТ «Рубин»

Перспективная российская анаэробная энергетическая установка, которую планируется установить на опытовую подводную лодку проекта 677 «Лада» и новую неатомную субмарину проекта «Калина», получит батарею удвоенной мощности. Как пишет Mil.Press FlotProm, электрическая мощность усовершенствованной батареи составит сто киловатт вместо 50 у существующего сегодня образца. Разработку и испытания новой батареи для анаэробных энергетических установок подводных лодок планируется завершить к 2020 году.

Современные дизель-электрические подводные лодки имеют несколько преимуществ перед более крупными атомными подводными кораблями. Одним из главных таких преимуществ является практически полная бесшумность хода в подводном положении, поскольку в этом случае за движение корабля отвечают лишь тихие электромоторы, питающиеся от аккумуляторных батарей. Перезарядка этих батарей производится от дизельных генераторов в надводном положении или на глубине, с которой возможно выставить шноркель, специальную трубу, по которой воздух может подаваться к генераторам.

К недостаткам обычных дизель-электрических подводных лодок относится относительно небольшое время, которое корабль может провести под водой. В лучшем случае оно может достигать трех недель (для сравнения, у атомных подлодок этот показатель составляет 60-90 дней), после чего подлодке придется всплыть и запустить дизельные генераторы. Анаэробная энергетическая установка, для работы которой не нужен забортный воздух, позволит неатомной подводной лодке находиться в подводном положении существенно дольше. Например, подлодка проекта «Лада» с такой установкой может находиться под водой 45 суток.

Перспективная российская анаэробная энергетическая установка будет использовать для работы водород высокой степени очистки. Этот газ будут получать на борту корабля из дизельного топлива методом риформинга, то есть преобразования топлива в водородсодержащий газ и ароматические углеводороды, которые затем будут проходить через установку выделения водорода. Затем водород будет подаваться в водородно-кислородные топливные элементы, где и будет вырабатываться электричество для двигателей и бортовых систем.


Батарея БТЭ-50К-Э на испытательном стенде

Крыловский государственный научный центр

Батарея, иначе называемая электрохимическим генератором, разрабатывается Центральным научно-исследовательским институтом судовой электротехники и технологии. Эта батарея, вырабатывающая электричество за счет реакции водорода и кислорода, получила название БТЭ-50К-Э. Ее мощность составляет 50 киловатт. Мощность усовершенствованной батареи составит сто киловатт. Новая батарея будет входить в состав энергетических модулей перспективных неатомных подлодок мощностью 250-450 киловатт.

Помимо самих электрохимических элементов, иначе называемых водородными топливными ячейками, в состав таких модулей будут входить конверторы углеводородного топлива. Именно в них и будет проходить процесс риформинга дизельного топлива. Как рассказал изданию Mil.Press FlotProm один из разработчиков новой батареи, конвертор углеводородного топлива в настоящее время находится на стадии разработки. Ранее сообщалось, что разработку анаэробной энергетической установки для подводных лодок планируется завершить до конца 2018 года.

В феврале прошлого года исследователи из Технологического института Джорджии о разработке компактной четырехтактовой поршневой установки для каталитического риформинга метана и получения водорода. Новые установки могут быть объединены в цепь, тем самым повышая выход водорода. Установка достаточно компактна и не требует сильного нагрева. Реактор работает по четырехтактному циклу. На первом такте метан, смешанный с паром, через клапаны подается в цилиндр. При этом поршень в цилиндре плавно опускается. После того, как поршень достигает нижней точки, подача смеси перекрывается.

На втором такте поршень поднимается, сжимая смесь. Одновременно цилиндр подогревается до 400 градусов Цельсия. В условиях высокого давления и нагрева происходит процесс риформинга. По мере выделения водорода, он проходит через мембрану, которая останавливает углекислый газ, также образующийся во время риформинга. Углекислый газ при этом поглощается адсорбирующим материалом, смешанным с катализатором.

На третьем такте поршень опускается в самое нижнее положение, резко снижая давление в цилиндре. При этом углекислый газ высвобождается из адсорбирующего материала. Затем начинается четвертый такт, на котором в цилиндре открывается клапан, а поршень вновь начинает подниматься. Во время четвертого такта углекислый газ из цилиндра выдавливается в атмосферу. После четвертого такта цикл начинается снова.

Василий Сычёв

Неразличимые в морской глубине, практически бесшумные и, что самое главное - полностью автономные. Именно таковой будет неатомная субмарина «Лада». Эту возможность лодке обеспечит новейшая анаэробная - воздухонезависимая энергетическая установка (ВНЭУ). Она избавит корабль от необходимости постоянно всплывать на поверхность для подзарядки аккумуляторов и пополнения запаса воздуха, необходимого для работы дизель-генераторов в подводном положении. Благодаря новым агрегатам, «Лада» сможет находиться в подводном положении до нескольких недель, не выдавая своего присутствия.
Неатомные подводные лодки приводятся в движение моторами с помощью накопленной аккумуляторами электроэнергии. Однако, заряда батарей хватает ненадолго. Передвижение в зоне боевого патрулирования со скоростью 2-4 узла в подводном положении может длиться максимум четверо суток; при этом батареи разряжаются на 80%. И для их подзарядки требуется двое суток. При движении с максимальной скоростью, аккумуляторы вообще разряжаются за считанные часы. После этого их приходится подзаряжать с помощью дизеля, которому для работы нужен воздух. То есть, лодка должна обязательно всплыть на поверхность на подзарядку аккумуляторов, тем самым полностью себя демаскировав.
Именно по этой причине во Время второй мировой войны погибло больше экипажей лодок, чем их было уничтожено глубинными бомбами или минами в подводном положении. Всплывавшие на поверхность лодки становились легкой мишенью для барражирующей над морем авиации противника. И зачастую, спасаясь от авиаудара, экипаж совершал экстренное погружение, даже не успев закрыть люк рубочной шахты.
Анаэробный, или воздухонезависимый двигатель - это двигатель, которому для работы не нужен атмосферный воздух. Корабль может не всплывать постоянно на поверхность для подзарядки, а значит, будет оставаться незамеченным для противника.
Пионерами в мировой разработке ВНЭУ считаются немцы с субмариной проекта U-212/214. В 2014 году об успехах в создании аналогичных систем сообщила французская оборонная компания DCNS. Созданная ей установка предназначена для подлодок типа «Scorpene». Другой проект DCNS - более крупная субмарина, известная под именами «SMX Ocean» и «Shortfin Barracuda», был выбран ВМС Австралии для своей программы. Однако самой успешной и опасной считается шведская лодка HSwMS Gotland. Этот корабль стал настоящей легендой. Причем не шведского, а американского флота.
Корабль построен из маломагнитной стали. На его борту стоят 27 компенсирующих электромагнитов, которые полностью исключают обнаружение корабля детекторами магнитных аномалий. Благодаря всережимному электродвигателю и виброзащите механизмов, Gotland практически не различается локаторами даже в непосредственной близости от американских кораблей. Лодка сливается с естественным тепловым и шумовым фоном океана. Но самое главное, что она, вооруженная 18 торпедами, может не всплывать на поверхность до 20 суток.
Самые совершенные российские неатомные подводные лодки проекта 636.3 «Варшавянка» за малошумность и скрытность получили название «черная дыра». Сегодня они вооружены самыми совершенными торпедами и крылатыми ракетами «Калибр». Первые способны потопить любой корабль или даже авианосец. Вторые - уничтожить береговую цель на дальности до 2,5 тысяч километров. Но, как и корабли второй мировой войны, «Варшавянка» вынуждена часто всплывать для подзарядки аккумуляторов, а значит, в длительном противостоянии экипаж такого корабля всегда будет уязвим.

Новейшие подлодки «Лада» идут на смену «Варшавянкам». Сегодня в составе Военно-морского флота уже несет боевую вахту первая субмарина этого проекта «Санкт-Петербург». Вторую - «Кронштадт» сдадут флоту в 2018 году. Третья - «Великие Луки» еще на стапелях судостроительного завода. Предполагается, что следующая за ней лодка будет спущена на воду уже с отечественной анаэробной энергетической установкой. По своим характеристикам она будет существенно отличатся от тех, что стоят на западных кораблях. Над этим сегодня работают два конструкторских бюро традиционно занимающиеся проектированием подводных кораблей: Санкт-петербургское морское бюро машиностроения «Малахит» и Центральное конструкторское бюро морской техники «Рубин».
Детали проекта пока находятся в тайне. Известно, что в основу российской разработки заложен паровой реформинг с электрохимическим генератором на твердотельных элементах. Уже создан его промышленный образец. Из принципиальных технологий в нем реализовано получение из дизельного топлива водорода, создание электрохимического генератора, извлекающего из водорода электрический ток и удаление отходов жизнедеятельности первого цикла. То есть, того, который получается в ходе реакции СО2. Это принципиально отличает российскую систему от зарубежных аналогов, поскольку не нужно возить запас водорода на борту. Его получают непосредственно в установке с помощью реформинга дизельного топлива.Профессор академии военных наук Вадим Козюлин говорит, что появление воздухонезависимых кораблей серьезно повысит боевой потенциал дизель-электрических подводных лодок. Основное место их применения - внутренние моря с малыми глубинами. Это Балтийское, Черное, Каспийское или Южно-Китайское.

Но самым перспективным оказалось направление, связанное с превращением химической энергии непосредственно в электрическую, без процесса горения или механического движения, иными словами с выработкой электрической энергии бесшумным способом. Речь идет об электрохимических генераторах. На практике такой способ нашел применение на современной германской подводной лодке U-212 . Компоновка анаэробной энергетической установки показана на рисунке 12.

Электромеханический генератор создан на базе топливныхэлементов. По сути это аккумуляторная батарея с постоянной подзарядкой. Физика его работы базируется на процессе, обратном электролизу воды, когда при соединении водорода с кислородом выделяется электроэнергия. При этом энергетическое превращение происходит бесшумно, а единственным побочным продуктом реакции является дистиллированная вода, которой достаточно легко найти применение на подводной лодке.

По критериям эффективности и безопасности водород хранится в связанном состоянии в форме металлогидрида (сплав металла в соединении с водородом), а кислород - в сжиженном виде в специальных емкостях между легким и прочным корпусами субмарины. Между водородным и кислородным катодами находятся полимерные электролитные мембраны протонного обмена, выполняющие функцию электролита.

Мощность одного элемента достигает 34 кВт, а КПД энергетической установки составляет до 70 процентов. Несмотря на очевидные преимущества разработанной установки на топливных элементах, она не обеспечивает требуемые оперативно-тактические характеристики подводной лодки океанского класса, прежде всего в части, касающейся выполнения скоростных маневров при преследовании цели или уклонении от торпедной атаки противника. Поэтому подводные лодки проекта 212 оснащены комбинированной двигательной установкой, в которой для движения на высоких скоростях под водой используются аккумуляторные батареи или топливные элементы, а для плавания в надводном положении - традиционный дизель-генератор, в состав которого входит 16-цилиндровый V-образный дизель и синхронный генератор переменного тока. Дизель генераторы используются также для подзарядки аккумуляторных батарей - традиционного элемента неядерных подводных лодок. Электрохимический генератор, состоящий из девяти модулей топливных элементов, имеет суммарную мощность 400 л. с. и обеспечивает движение подлодки в подводном положении со скоростью 3 узла в течение 20 суток с показателями шумности ниже уровня естественных шумов моря.

Комбинированные силовые установки

В последнее время стали популярны комбинированные силовые установки. Первоначально комбинированные энергетические установки породили желание обеспечить военным кораблям одновременно высокую скорость для боя большую дальность плавания для действий в удаленных районах Мирового океана. В частности, та на германских крейсерах времен второй мировой войны появилась комбинация котлотурбинной и дизельной энергетических установок. В 1960-е годы на кораблях появились газовые турбины, которые по своей экономичности и особенностям эксплуатации могли использоваться только кратковременно и на больших оборотах. Для компенсации этого недостатка их стали комбинировать с котлотурбинной (COSAG) или дизельной (CODAG) энергетической установкой. Несколько позже появились та называемые маршевые газовые турбин, к которым требовались форсажные турбины (COGAG). Только появление всережимных газовых турбин позволили перейти к однородной газотурбинной энергетической установке.

Бывают даже уникальные комбинации энергетических установок CODEAG (дизель-газотурбинная с полным электродвижением), которая встречается на фрегате «Duke » Королевских ВМС Великобритании. При его создании конструкторы исходили из необходимости обеспечить сверхнизкий уровень шумности на малых ходах при использовании буксируемой антенны гидроакустической системы, а также быстрый переход от малой скорости хода к высокой. Установка включает в себя две газовые турбины суммарной мощностью 31000 л. с., два гребных электродвигателя постоянного тока мощностью по 2000 л. с., встроенных в линии гребных валов и работающих от четырех дизель-генераторов суммарной мощностью 8100 л. с. Такая главная энергетическая установка работает в четырех режимах: малой скорости с минимальным уровнем шумности при отключенных главных редукторах; высокой скорости хода при работе газовых турбин на винты через редукторы совместно с гребными электродвигателями; промежуточной скорости при работе одной газовой турбины на один винт и одного гребного электродвигателя на другой винт при отключенном редукторе; маневрирование при использовании только дизелей. Винты работают на задний ход только от гребных электродвигателей.

то есть, в отличие от ДВС, двигателя внутреннего сгорания, где рабочее тело это одновременно сгораемое топливо внутри цилиндра, в стирлинге топливо горит снаружи, греет рабочее тело (воздух) внутри цилиндра, а далее как обычно - кривошип, итд

в данной статье я не увидел собственно главной позиционируемой фишки, анаэробности, то есть, как в ДВС нужен кислород для горения, так и в стирлинге используется тот же процесс горения, то есть, кислород все равно нужен
просто горение перенесено снутри наружу и все. Ну, и еще у стирлинга горение идет постоянно, а не импульсно взрывообразно, как в ДВС, отсюда его бесшумность, полезная для подлодки. Но на этом и все плюсы

я то думал, вместо горения будут использованы какие либо другие экзотермические хим реакции, например с участием воды вместо кислорода, что логично, на суше вокруг полно кислорода, под водой - собсна воды.
я не знаю, сыпьте в цилиндр или снаружи его, ну хоть негашеную известь, да поливайте водой, выделяемое тепло преобразуйте во вращение
зачем заявлять анаэробный двигатель и все равно использовать кислород

далее, если развивать мысль - в проекте используется электродвигатель как основной маршевый, и стирлинг будет нужен только для подзарядки батарей, так не проще ли тогда сосредоточиться на средствах непосредственного получения ЭДС посредством хим реакций без механики?
Это мне напомнило, как я летом на даче без света к автомобильному аккуму подключал инвертор на 220, к которому подключал энергосберегающие лампочки, на светодиодах, в которых низковольтное напряжение. Потом до меня дошло, что тупо сначала повышать напряжение с 12 до 220, а потом в лампочке оно снова понижается, сделал самодельный светодиод на 12в и аккума стало хватать раза в три надольше..

В советское время в подольске делали сухозаряженые аккумуляторы, на пластины которых прессовали состав, соответствующий заряженному состоянию свинцового аккумулятора. Такой аккум может храниться на складе очень долго и быть заряженным, потом покупатель наливает туда электролит, и сразу ставит на автомобиль. Грузите к примеру на подлодку сухие пластины с электролитом, которые в процессе движения расходуются, и меняются свежими, а далее в доке грузится новый материал, как топливо, а отработанный выгружается и в заводских условиях регенерируется в новый сухозаряженный. Все. Никакого двойного преобразования с КПД паровоза, никакого кислорода, действительно анаэробная схема.

Ну со свинцовокислотным аккумом это просто мысль навскидку, можно гораздо совершеннее придумать процесс например на литии, это еще минус вес и минус опасная кислота

Российские разработчики приступили к испытаниям анаэробной энергетической установки для перспективных дизель-электрических подводных лодок; испытания проходят наземные прототипы. Об этом, как сообщает РИА Новости, заявил президент Объединенной судостроительной корпорации Алексей Рахманов. По его словам, в ближайшее время разработчики — центральное конструкторское бюро морской техники «Рубин», морское бюро машиностроения «Малахит» и Крыловский государственный научный центр — также планируют создать морской прототип анаэробной установки.

Современные дизель-электрические подводные лодки имеют несколько преимуществ перед более крупными атомными подводными кораблями. Одним из главных таких преимуществ является практически полная бесшумность хода в подводном положении, поскольку в этом случае за движение корабля отвечают лишь тихие электромоторы, питающиеся от аккумуляторных батарей. Перезарядка этих батарей производится от дизельных генераторов в надводном положении или на глубине, с которой возможно выставить шноркель, специальную трубу, по которой воздух может подаваться к генераторам.

К недостаткам обычных дизель-электрических подводных лодок относится относительно небольшое время, которое корабль может провести под водой. В лучшем случае оно может достигать трех недель, но обычно не превышает 7-10 дней. После этого подлодке необходимо всплыть и запустить дизельные генераторы. Анаэробная энергетическая установка, для работы которой не нужен забортный воздух, позволит неатомной подводной лодке находиться в подводном положении существенно дольше.

Испытания российской анаэробной энергетической установки для подводных лодок планируется завершить до конца 2021 года. Параллельно с ее разработкой и испытаниями специалисты занимаются оценкой экономической составляющей проекта — насколько будет дорогой установка в серийном производстве, в какую сумму будет обходиться ее эксплуатация и обслуживание, а также многие другие аспекты. «У любой работы должен быть экономический смысл. Как только мы его увидим, будем реализовывать», — ответил Рахманов.

Перспективная российская анаэробная энергетическая установка будет использовать для работы водород высокой степени очистки. Этот газ планируется получать на борту корабля из дизельного топлива методом риформинга, то есть преобразования топлива в водородсодержащий газ и ароматические углеводороды, которые затем будут проходить через установку выделения водорода. Затем водород будет подаваться в водородно-кислородные топливные элементы, где и будет вырабатываться электричество для двигателей и бортовых систем.

Топливные элементы разрабатываются Центральным научно-исследовательским институтом судовой электротехники и технологии. Водородные батареи, вырабатывающие электричество за счет реакции водорода и кислорода, получили название БТЭ-50К-Э. Мощность одного такого элемента составляет 50 киловатт. Мощность усовершенствованной батареи составит 100 киловатт. Новая батарея будет входить в состав энергетических модулей перспективных неатомных подлодок мощностью 250-450 киловатт.

Помимо самих электрохимических элементов в состав таких модулей будут входить конверторы углеводородного топлива. Именно в них и будет проходить процесс риформинга дизельного топлива. Конвертор углеводородного топлива пока еще находится на стадии разработки.

В конце сентября судостроительный завод «Адмиралтейские верфи» спустил на воду дизель-электрическую подводную лодку «Кронштадт», первый серийный корабль проекта 677 «Лада». Ожидается, что подводная лодка пройдет полную серию испытаний и будет передана российскому флоту до конца 2019 года. Проект 677 в перспективе предусматривает установку на подлодки анаэробных энергетических установок. Кроме того, такие энергетические установки планируется использовать на перспективных дизель-электрических подводных лодках пятого поколения проекта «Калина».