Теплоизолирующая способность воздушных прослоек. Термическое сопротивление замкнутых воздушных прослоек Размер воздушной прослойки

Теплоизолирующая способность воздушных прослоек. Термическое сопротивление замкнутых воздушных прослоек Размер воздушной прослойки
Теплоизолирующая способность воздушных прослоек. Термическое сопротивление замкнутых воздушных прослоек Размер воздушной прослойки

Малый коэффициент теплопроводности воздуха в порах строительных материалов, достигающий 0,024 Вт/(м °С), привел к идее замены в наружных ограждающих конструкциях строительных материалов воздухом, т. е. созданию наружных ограждений из двух стенок с воздушной прослойкой между ними. Однако теплотехнические качества таких стен оказались чрезвычайно низкими, т.к. передача теплоты воздушными прослойками происходит иначе, чем в телах твердых и сыпучих. Для воздушной прослойки такой пропорциональности не существует. В твердом материале передача теплоты происходит только теплопроводностью, в воздушной прослойке к этому присоединяется еще передача теплоты конвекцией и излучением.

На рис показан вертикальный разрез воздушной прослойки, имеющей толщину δ, и температуры на ограничивающих поверхностях τ 1 и τ 2 , причем τ 1 > τ 2 . При такой разности температур через воздушную прослойку будет проходить тепловой поток Q.

Передача теплоты теплопроводностью подчиняется закону передачи теплоты в твердом теле. Следовательно, можно написать:

Q 1 =(τ 1 - τ 2)λ 1 /δ

где λ 1 - коэффициент теплопроводности неподвижного воздуха (при температуре 0 °С λ 1 = 0,023 Вт/(м °С)), Вт/(м °С); δ - толщина прослойки, м.

Конвекция воздуха в прослойке возникает вследствие разности температур на ее поверхностях и имеет характер естественной конвекции. При этом у поверхности с более высокой температурой воздух нагревается и движется в направлении снизу вверх, а у более холодной поверхности охлаждается и движется в направлении сверху вниз. Таким образом, в вертикальной воздушной прослойке создается постоянная циркуляция воздуха, показанная на рис стрелками. По аналогии с формулой для количества теплоты, передаваемой конвекцией, можно написать:

Q 2 =(τ 1 - τ 2)λ 2 /δ 2

где λ 2 - условный коэффициент, называемый коэффициентом передачи теплоты конвекцией, Вт/(м °С).

В отличие от обычного коэффициента теплопроводности этот коэффициент не является постоянной величиной, а зависит от толщины прослойки, температуры воздуха в ней, разности температур на поверхностях прослойки и расположения прослойки в ограждении.

Для вертикальных прослоек значения величин коэффициентов влияние температуры воздуха в пределах от +15 до -10 °С на теплопередачу конвекцией не превышает 5 %, а поэтому им можно пренебречь.

Коэффициент передачи теплоты конвекцией возрастает с увеличением толщины прослойки. Это возрастание объясняется тем, что в тонких прослойках восходящий и нисходящий токи воздуха взаимно тормозятся и в очень тонких прослойках (меньше 5 мм) величина λ 2 становится равной нулю. С увеличением толщины прослойки, наоборот, конвекционные токи воздуха становятся более интенсивными, увеличивая значение λ 2 . С увеличением разности температур на поверхностях прослойки величина λ 2 возрастает вследствие повышения интенсивности конвекционных токов в прослойке.

Увеличение значений λ 1 + λ 2 в горизонтальных прослойках при потоке теплоты снизу вверх объясняется непосредственным направлением конвекционных токов по вертикали от нижней поверхности, имеющей более высокую температуру, к верхней поверхности, имеющей более низкую температуру. В горизонтальных прослойках при потоке теплоты сверху вниз конвекция воздуха отсутствует, поскольку поверхность с более высокой температурой расположена над поверхностью с более низкой температурой. В этом случае принимается λ 2 = 0.

Кроме передачи теплоты теплопроводностью и конвекцией в воздушной прослойке происходит еще непосредственное излучение между поверхностями, ограничивающими воздушную прослойку. Количество теплоты Q 3 , передаваемой в воздушной прослойке излучением от поверхности с более высокой температурой τ 1 к поверхности с более низкой температурой τ 2 , можно выразить по аналогии с предыдущими выражениями в виде:

Q 2 =(τ 1 - τ 2)α л

где α л - коэффициент теплоотдачи излучением, Вт/(м2 °С).

В этом равенстве отсутствует множитель δ, т. к. количество теплоты, передаваемой излучением, в воздушных прослойках, ограниченных параллельными плоскостями, не зависит от расстояния между ними.

Коэффициент α л определяется по формуле. Коэффициент α л также не является постоянной величиной, а зависит от коэффициентов излучения поверхностей, ограничивающих воздушную прослойку и, кроме того, от разности четвертых степеней абсолютных температур этих поверхностей.

При температуре, равной 25 °С, значение температурного коэффициента увеличивается на 74 % по сравнению с его значением при температуре -25 °С. Следовательно, теплозащитные свойства воздушной прослойки будут улучшаться по мере понижения ее средней температуры. В теплотехническом отношении лучше располагать воздушные прослойки ближе к наружной поверхности ограждения, где температуры в зимнее время будут более низкими.

Выражение λ 1 + λ 2 + α л δ можно рассматривать как коэффициент теплопроводности воздуха в прослойке, подчиняющийся законам передачи теплоты через твердые тела. Этот суммарный коэффициент носит название «эквивалентного коэффициента теплопроводности воздушной прослойки» λ э Таким образом, имеем:

λ э = λ 1 + λ 2 + α л δ

Зная эквивалентный коэффициент теплопроводности воздуха в прослойке, термическое сопротивление его определяют по формуле так же, как и для слоев из твердых или сыпучих материалов, т. е.

Эта формула применима только для замкнутых воздушных прослоек, т. е. не имеющих сообщения с наружным или внутренним воздухом. Если прослойка имеет сообщение с наружным воздухом, то в результате проникания холодного воздуха термическое сопротивление ее может не только стать равным нулю, но и послужить причиной уменьшения сопротивления теплопередаче ограждения.

Для уменьшения количества теплоты, проходящей через воздушную прослойку, необходимо уменьшить одну из составляющих полного количества теплоты, передаваемой прослойкой. Эта задача прекрасно решена в стенках сосудов, предназначенных для хранения жидкого воздуха. Стенки этих сосудов состоят из двух стеклянных оболочек, между которыми выкачивается воздух; поверхности стекла, обращенные внутрь прослойки, покрываются тонким слоем серебра. При этом количество теплоты, передаваемой конвекцией, сводится к нулю вследствие значительного разрежения воздуха в прослойке.

В строительных конструкциях с воздушными прослойками передача теплоты излучением

значительно сокращается при покрытии излучающих поверхностей алюминием, имеющим малый коэффициент излучения С = 0,26 Вт/(м 2 К 4). Передача теплоты теплопроводностью при обычных разрежениях воздуха не зависит от его давления, и только при разрежении ниже 200 Па коэффициент теплопроводности воздуха начинает уменьшаться

В порах строительных материалов передача теплоты происходит так же, как и в воздушных прослойках Вот почему коэффициент теплопроводности воздуха в порах материала имеет различные значения в зависимости от размеров пор. Повышение теплопроводности воздуха в порах материала при повышении температуры происходит, главным образом, вследствие увеличения теплопередачи излучением.

При проектировании наружных ограждений с воздушными прослойками необходимо

учитывать следующее:

1) эффективными в теплотехническом отношении являются прослойки небольшой

2) при выборе толщины воздушных прослоек желательно учитывать, чтобы λ э воздуха в них не был больше коэффициента теплопроводности материала, которым можно было бы заполнить прослойку; обратный случай может быть, если это оправдывается экономическими соображениями;

3) рациональнее делать в ограждающей конструкции несколько прослоек малой

толщины, чем одну большой толщины;

4) воздушные прослойки желательно располагать ближе к наружной стороне ограждения,

т. к. при этом в зимнее время уменьшается количество теплоты, передаваемой излучением;

5) воздушная прослойка должна быть замкнутой и не сообщаться с воздухом; если необходимость сообщения прослойки с наружным воздухом вызывается другими соображениями, как например, обеспечением бесчердачных покрытий от конденсации в них влаги, то это необходимо учитывать при расчете;

6) вертикальные прослойки в наружных стенах необходимо перегораживать горизонтальными

диафрагмами на уровне междуэтажных перекрытий; более частое перегораживание прослоек по высоте практического значения не имеет;

7) для сокращения количества теплоты, передаваемой излучением, можно рекомендовать одну из поверхностей прослойки покрывать алюминиевой фольгой, имеющей коэффициент излучения С = 1,116 Вт/(м 2 К 4). Покрытие фольгой обеих поверхностей практически не уменьшает передачу теплоты.

Также в строительной практике нередко встречаются наружные ограждения, имеющие воздушные прослойки, сообщающиеся с наружным воздухом. Особенно большое распространение получили прослойки, вентилируемые наружным воздухом, в бесчердачных совмещенных покрытиях как наиболее эффективная мера борьбы с конденсацией в них влаги. При вентилировании воздушной прослойки наружным воздухом последний, проходя через ограждение, отнимает от него теплоту, увеличивая теплоотдачу ограждения. Это приводит к ухудшению теплозащитных свойств ограждения и повышению его коэффициента теплопередачи. Расчет ограждений с вентилируемой воздушной прослойкой проводится с целью определения температуры воздуха в прослойке и действительных величин сопротивления теплопередаче и коэффициента теплопередачи таких ограждений.

23.Конструктивные решения отдельных узлов зданий (оконные перемычки, откосы, углы, стыки и т.п.) с целью недопущения конденсации на внутренних поверхностях.

Дополнительное количество теплоты, теряемое через наружные углы, невелико по сравнению с полной теплопотерей наружных стен. Понижение же температуры поверхности стены в наружном углу особенно неблагоприятно с санитарно-гигиени­ ческой точки зрения как единственная причина отсыревания и промерзания наруж­ ных углов*. Это понижение температуры вызывается двумя причинами:

1) геометрической формой угла, т. е. неравенством площадей тепловосприятия и теплоотдачи в наружном углу; в то время как на глади стены площадь тешювоспри­ ятия F в равна площади теплоотдачи F н, в наружном углу площадь тепловосприятия F в оказывается меньше площади теплоотдачи F н; таким образом, наружный угол испытывает большее охлаждение, чем гладь стены;

2) уменьшением коэффициента α в тепловосприятия в наружном углу против гла­ ди стены в основном вследствие уменьшения передачи теплоты излучением, а также в результате понижения интенсивности конвекционных токов воздуха в наружном углу. Уменьшение величины α в увеличивает сопротивление тепловосприятию R в, а это оказывает влияние на понижение температуры наружного угла Ту.

При конструировании наружных углов необходимо принимать меры к повыше­ нию температуры на их внутренней поверхности, т. е. утеплять углы, что можно де­ лать следующими способами.

1. Скашиванием внутренних поверхностей наружного угла вертикальной плоскостью. При этом с внутренней стороны прямой угол разбивается на два тупых угла (рис. 50а). Ши­ рина скашивающей плоскости должна быть не менее 25 см. Это скашивание можно делать или тем же материалом, из которого состоит стена, или другим материалом с несколько меньшим коэффициентом теплопроводности (рис. 506). В последнем случае утепление уг­ лов можно делать независимо от возведения стен. Эта мера рекомендуется для утепления углов уже существующих зданий, если теп­ лотехнический режим этих углов оказывает­ ся неудовлетворительным (отсыревание или промерзание). Скашивание утла при ширине скашивающей плоскости 25 см снижает раз­ ность температур между гладью стены и наружным углом, по данным опыта, при­

мерно на 30 %.
Какое влияние оказывает утепление угла скашиванием, видно на примере 1,5-кир-

пичной стены опытного дома в Москве. При /н = -40 °С угол промерз (рис. 51).
В ребрах двух тупых углов, образованных пересечением плоскости скашивания с гранями прямого угла, промерзание поднялось на 2 м от пола; на самой же плоскости

скашивания это промерзание поднялось только до высоты около 40 см от пола, т. е. на середине плоскости скашивания температура поверхности оказалась более высокой, чем у ее примыкания к поверхности наружных стен. Если бы угол не был утеплен, то он промерз бы на всю высоту.

2. Скруглением наружного угла. Внутренний радиус скругления должен быть не менее 50 см. Скругле- ние угла можно делать как по обеим поверхностям угла, так и по одной его внутренней поверхности (рис. 50г).

В последнем случае утепление аналогично скашиванию угла и радиус скругления может быть уменьшен до 30 см.

В гигиеническом отношении скругление угла дает еще бо­ лее благоприятный результат, поэтому в первую очередь ре­ комендуется для лечебных и других зданий, к чистоте кото­ рых предъявляются повышенные требования. Скругление угла при радиусе 50 см снижает разность температур между

гладью стены и наружным углом примерно на 25 %.
3. Устройством на наружной поверхности угла утепля­ ющих пилястр (рис. 50д) - обычно в деревянных домах.

В брусчатых и рубленых домах эта мера имеет особенно
большое значение при рубке стен в лапу, в этом случае пи­
лястры защищают угол от излишней потери теплоты по тор­
цам бревен вследствие большей теплопроводности древеси­ ны вдоль волокон. Ширина пилястр, считая от наружной грани угла, должна быть не менее полуторной толщины стены. Пилястры должны иметь достаточное термичес­ кое сопротивление (ориентировочно не менее R = 0,215 м2 °С/Вт, что соответствует деревянным пилястрам из досок 40 мм). Дощатые пилястры на углах стен, рубленных в лапу, желательно ставить на слой утеплителя.

4. Установкой в наружных углах стояков разводящего трубопровода центрально­ го отопления. Эта мера наиболее эффективна, т. к. при этом температура внутренней поверхности наружного угла может стать даже выше температуры на гла­ ди стены. Поэтому при проектировании систем центрального отопления стояки раз­ водящего трубопровода, как правило, прокладываются во всех наружных углах зда­ ния. Стояк отопления повышает температуру в углу примерно на 6 °С при расчетной температуре наружного воздуха.

Карнизным узлом назовем узел примыкания чердачного перекрытия или совме­ щенного покрытия к наружной стене. Теплотехнический режим такого узла близок к теплотехническому режиму наружного угла, но отличается от него тем, что примы­ кающее к стене покрытие имеет более высокие теплозащитные качества, чем стена, а при чердачных перекрытиях температура воздуха на чердаке будет несколько выше температуры наружного воздуха.

Неблагоприятный теплотехнический режим карнизных узлов вызывает необ­ ходимость их дополнительного утепления в выстроенных домах. Это утепление приходится делать со стороны помещения, причем оно должно проверяться рас­ четом температурного поля карнизного узла, т. к. иногда излишнее утепление мо­ жет привести к отрицательным результатам.

Утепление более теплопроводными древесноволокнистыми плитами оказалось значительно эффективнее, чем малотеплопроводным пенополистиролом.

Аналогичным температурному режиму карнизного узла является режим цоколь­ ного узла. Понижение температуры в углу примыкания пола первого этажа к поверх­ ности наружной стены может оказаться значительным и приближаться к температуре в наружных углах.

Для повышения температуры пола первых этажей у наружных стен желательно повышать теплозащитные свойства пола по периметру здания. Необходимо также, чтобы цоколь имел достаточные теплозащитные качества. Это имеет особенно боль­ шое значение при полах, расположенных непосредственно на грунте или бетонной подготовке. В этом случае рекомендуется устройство за цоколем по периметру здания теплой отсыпки, например, шлаком.

Полы, укладываемые по балкам с подпольным пространством между конструк­ цией цокольного перекрытия и поверхностью земли, имеют более высокие тепло­ защитные свойства по сравнению с полом на сплошном основании. Плинтус, при­ биваемый к стенам у пола, утепляет угол между наружной стеной и полом. Поэтому в первых этажах зданий необходимо обращать внимание на повышение теплозащит­ ных свойств плинтусов, что может быть достигнуто увеличением их размеров и уста­ новкой на слое мягкого утеплителя.

Понижение температуры внутренней поверхности наружных стен крупнопанель­ ных домов наблюдается также против стыков панелей. В однослойных панелях это вызвано заполнением полости стыка более теплопроводным материалом, чем мате­ риал панели; в многослойных панелях -бетонными ребрами, окаймляющими па­ нель.

Для предупреждения конденсации влаги на внутренней поверхности вертикаль­ ных стыков панелей наружных стен домов серии П-57 используют прием повышения температуры путем замоноличивания стояка отопления в примыкающей к стыку пе­ регородке.

Недостаточное утепление наружных стен в междуэтажном поясе может вызвать значительное понижение температуры пола у наружных стен даже в кирпичных до­ мах. Это обычно наблюдается при утеплении наружных стен с внутренней стороны только в пределах помещения, а в междуэтажном поясе стена остается неутепленной. Повышенная воздухопроницаемость стен в междуэтажном поясе может привести к дополнительному резкому охлаждению междуэтажного перекрытия.

24.Теплоустойчивость наружных ограждающих конструкций и помещений.

Неравномерность отдачи теплоты приборами отопления вызывает колебания температуры воздуха в помещении и на внутренних поверхностях наружных ограж­ дений. Величины амплитуд колебания температуры воздуха и температур внутренних поверхностей ограждений будут зависеть не только от свойств отопительной системы, теплотехнических качеств его наружных и внутренних ограждающих конструкций, а также от оборудования помещения.

Теплоустойчивость наружного ограждения - это его способность давать большее или меньшее изменение температуры внутренней поверхности при колебании тем­ пературы воздуха в помещении или температуры наружного воздуха. Чем меньше из­ менение температуры внутренней поверхности ограждения при одной и той же амп­ литуде колебания температуры воздуха, тем оно более теплоустойчиво, и наоборот.

Теплоустойчивость помещения - это его способность уменьшать колебания тем­ пературы внутреннего воздуха при колебаниях теплового потока от отопительного прибора. Чем меньше при прочих равных условиях будет амплитуда колебания тем­ пературы воздуха в помещении, тем оно будет более теплоустойчивым.

Для характеристики теплоустойчивости наружных ограждений О. Е. Власовым было введено понятие коэффициента теплоустойчивости ограждения φ. Коэффициент φ есть отвлеченное число, представляющее собой отношение разности температур внутреннего и наружного воздуха к максимальной разности температур внутреннего воздуха ивнутренней поверхности ограждения. Величина φ будет зависеть от теплотехнических свойств ограждения, а также от системы отопления и ее эксплуатации
Для вычисления величины φ О. Е. Власовым дана следующая формула:

φ=R o /(R в +m/Y в)

где R о - сопротивление теплопередаче ограждения, м2 °С/Вт; R в - сопротивление тепловосприятию, м2 °С/Вт; Y в - коэффициент теплоусвоения внутренней поверхности ограждения, Вт/(м2 °С).

25.Потери теплоты на нагревание инфильтрующегося наружного воздуха через ограждающие конструкции помещений.

Затраты теплоты Q и Вт, для нагревания инфильтрующегося воздуха и помещениях жилых и общественных зданий при естественной вытяжной вентиляции, не ком­пенсируемого подогретым приточным воздухом, следует принимать равным большей из величин, рассчитанных согласно методике, по формулам:

Q и = 0,28ΣG i C (t в -t н) k;

G i =0.216(ΣF ок)×ΔP 2/3 /R i(ок)

где - ΣG i расход инфильтруюшегося воздуха, кг/ч, через огражда­ющие конструкции помещения, с - удельная теплоемкость воздуха, равная 1 кДж/(кг-°С); t в,t н - расчетные температуры воздуха в помещении н наружного воздуха в холодный период года, С; k - коэффи­циент, учитывающий влияние встречного теплового потока в конст­рукциях, равный: 0,7 - для стыков панелей стен, для окон с тронны­ми переплетами, 0,8 - для окон и балконных дверей с раздельными переплетами и 1,0 -для одинарных окон, окон и балконных дверей со спаренными переплетами и открытых проемов; ΣF ок – вся площадь, м; ΔP – расчетная разность давлений на расчетном этаже, Па; R i(ок) – сопротивление паропроницанию м 2 ×ч×Па/мг

Подсчитанные для каждого помещения расходы теп­лоты на нагревание инфильтрующегося воздуха следует добавить к теплопотерям этих помещений.

Для поддержания расчетной температуры воздуха по­мещении система отопления должка компенсировать теп­лопотери помещения. Однако следует иметь в виду, что кроме теплопотерь в помещении могут быть дополни­тельные расходы теплоты: на нагревание поступающих в помещение холодных материалов и въезжающего тран­спорта.

26.потери теплоты через ограждающие конструкции помещения

27.Расчетные теплопотери помещения.

Каждая система отопления предназначена для созда­ния в колодный период года в помещениях здания задан­ной температуры воздуха, соответствующей комфортным условиям и отвечающей требованиям технологического процесса. Тепловой режим в зависимости от назначения помещений может быть как постоянным, так и перемен­ным.

Постояннын тепловой режим должен поддерживать­ся круглосуточно в течение всего отопительного периода в зданиях: жилых, производственных с непрерывным ре­жимом работы, детских и лечебных учреждений, гости­ниц, санаториев и т. и.

Неременный тепловой режим характерен для произ­водственных зданий с одно- и двухсменной работой, а также для ряда общественных зданий (административ­ные, торговые, учебные и т. п.) и зданий предприятий обслуживания населения. В помещениях этих зданий не­обходимые тепловые условия поддерживают только в ра­бочее время. В нерабочее время используют либо имею­щуюся систему отопления, либо устраивают дежурное отопление, поддерживающее в помещении пониженную температуру воздуха. Если в рабочее время тенлопосту- пления превышают потери теплоты, то устраивают толь­ко дежурное отопление.

Теплопотери в помещении складываются из потерь через ограждающие конструкции (учитывается ориентация конструкции по концам света) и из расхода тепла на нагревание наружного холодного воздуха, поступающего в помещение для его вентиляции. Кроме того учитываются теплопоступления в помещение от людей и электробытовых приборов.

Дополнительный расход тепла для нагревания наружного холодного воздуха поступающего в помещение для его вентиляции.

Дополнительный расход тепла на нагревания наружного воздуха поступающего в помещение путем инфильтрации.

Теплопотери через ограждающие конструкции.

Поправочный коэффициент учитывающий ориентацию по сторонам света.

n - коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху

28.Виды нагревательных приборов.

Отопительные приборы, применяемые в системах цен­трального отопления, подразделяются: по преобладаю­щему способу теплоотдачи - на радиационные (подвес­ные панели), конвективно-радиационные (приборы с глад­кой внешней поверхностью) и конвективные (конвекторы с ребристой поверхностью и ребристые трубы); по виду материала - на приборы металлические (чугунные из серого чугуна и стальные из листовой стали и стальных труб), малометаллические (комбинированные) и неме­таллические (керамические радиаторы, бетонные панели с заделанными стеклянными или пластмассовыми труба­ми или с пустотами, вообще без труб и др.); по характеру внешней поверхности - на гладкие (радиаторы, панели, гладкотрубные приборы), ребристые (конвекторы, реб­ристые трубы, калориферы).

Радиаторы чугунные и стальные штампованные. Про­мышленность выпускает секционные и блочные чугунные радиаторы. Секционные радиаторы собирают из отдель­ных секций, блочные - из блоков. Производство чугунных радиаторов требует большого расхода металла, они трудоемки в изготовлении и монтаже. При этом усложняется изготовление панелей вследствие устройства в них ниши для установки радиа­торов, Кроме того, производство радиаторов приводит к загрязнению окружающей среды. Изготовляют однорядные и двухрядные сталь­ные панельные радиаторы: штампованные колончатые типа РСВ1 и штампованные змеевиковые типа РСГ2

Ребристые трубы. Ребристые трубы изготовляют чу­гунными длиной 0,5; 0,75; I; 1,5 и 2 м с круглыми ребра­ми и поверхностью нагрева 1; 1,5; 2; 3 и 4 м 2 (рис. 8.3). На концах трубы предусмотрены фланцы для присоеди­нения их к фланцам теплопровода системы отопления. Оребренность прибора увеличивает теплоотдающую по­верхность, но затрудняет очистку его от пыли и понижает коэффициент теплопередачи. Ребристые трубы в помеще­ниях с продолжительным пребыванием людей не уста­навливают.

Конвекторы. В последние годы стали широко приме­няться конвекторы - отопительные приборы, передаю­щие теплоту в основном конвективным путем.

29.классификация отопительных приборов.требования предевляемые к ним.

30.Расчет необходимой поверхности отопительных приборов.

Целью отопления является компенсация потерь каждого обогреваемого помещения для обеспечения в нем расчетной температуры. Система отопления представляет собой комплекс инженерных устройств, обеспечивающих выработку тепловой энергии и передачи ее в каждое обогреваемое помещение в требуемом количестве.

– температура подоваемой воды, равная 90 0 С;

– температура обратной воды, равная 70 0 С.

Все расчеты в таблице 10.

1) Определяем общую тепловую нагрузку на стояк:

, Вт

2) Количество теплоносителя, проходящего через стояк:

Gст=(0,86* Qст)/(tг- tо), кг/ч

3) Коэффициент затекания в однотрубной системе α=0,3

4) Зная коэффициент затекания, можно определить количество теплоносителя, проходящий через каждый нагревательный прибор:

Gпр= Gст*α, кг/ч

5) Определяем температурный напор для каждого прибора:

где Gпр – расход теплопотери через прибор,

– полная теплопотеря данного помещения

6) Определяем температуры теплоносителя в нагревательном приборе на каждом этаже:

tвх = tг - ∑ Qпр/ Qст(tг- tо) , 0 С

где ∑Qпр – теплопотери всех предшествующих помещений

7) Температура теплоносителя на выходе из прибора:

tвых= tвх- Δtпр, 0 С

8) Определяем среднюю температуру теплоносителя в отопительном приборе:

9) Определяем температурный напор между средней температурой теплоносителя в приборе и температурой окружающего воздуха

10) Определяем требуемую теплоотдачу одной секции отопительного прибора:

где Qну- номинальный условный тепловой поток, т.е. количество тепла в Вт, отданное одной секцией отопительного прибора МС-140-98. Qну=174 Вт.

Если расход теплоносителя через прибор G находится в пределах 62..900, то коэффициент с=0,97 (коэффициент учитывает схему подключения отопительных приборов). Коэффициенты n, p выбираются из справочника в зависимости от вида отопительного прибора, расхода теплоносителя в нём и схемы подачи теплоносителя в прибор.

Для всех стояков принимаем n=0,3 , p=0 ,

Для третьего стояка принимаем c=0,97

11) Определяем требуемое минимальное количество секций отопительных приборов:

N= (Qпр/(β3* ))*β4

β 4 – коэффициент, учитывающий способ установки радиатора в помещении.

Радиатор установленный под подоконником с декоративной защитной решёткой установленной с лицевой стороны = 1,12 ;

радиатор с декоративной защитной решёткой установленной с лицевой стороны и свободной верхней частью = 0,9 ;

радиатор установленный в нише стены и свободной лицевой частью = 1,05 ;

радиаторы расположенные друг над другом = 1,05.

Принимаем β 4 =1,12

β 3 – коэффициент, учитывающий число секций в одном радиаторе

3 - 15 секций = 1 ;

16 - 20 секций = 0,98 ;

21 - 25 секций = 0,96.

Принимаем β 3 =1

Т.к. требуется установка 2 –х отопительных приборов в помещении, то распределяем Q приб 2/3 и 1/3 соответственно

Рассчитываем количество секций для 1-ого и 2-ого отопительного прибора

31.Основные факторы, определяющие величину коэффициента теплопередачи нагревательного прибора.

Коэффициент теплопередачи отопительного прибора

Основными факторами, определяющими величину k являются: 1) вид и конструктивные особенности, приданные типу прибора при его разработке; 2) температурный напор при эксплуатации прибора

Среди второстепенных факторов, влияющих на коэф­фициент теплопередачи приборов систем водяного отопле­ния, прежде всего укажем на расход воды G np , включен­ный в формулу.В зависимости от расхода воды из­меняются скорость движения w и режим течения воды в приборе, т. е. условия теплообмена на его внутренней поверхности. Кроме того, изменяется равномерность тем­пературного поля на внешней поверхности прибора.

На коэффициент теплопередачи влияют также следую­щие второстепенные факторы:

а) скорость движения воздуха v у внешней поверхности прибора.

б) конструкция ограждения прибора.

в) расчетное значение атмосферного давления, установленное для места расположения здания

г) окраска прибора..

На значении коэффициента теплопередачи сказываются также качество обработки внешней поверхности, загряз­ненность внутренней поверхности, наличие воздуха в при­борах и другие эксплуатационные факторы.

32Виды систем отопления. Области применения.

Системы отопления: виды, устройство, выбор

Одной из важнейших составляющих инженерного обеспечения являетсяотопление.

Важно знать, что хорошим показателем работы системы отопления является способность системы поддерживать комфортную температуру в доме при температуре теплоносителя низкой настолько, насколько это возможно, тем самым затраты на эксплуатацию системы отопления сводятся к минимуму.

Все отопительные системы, с использованием теплоносителя, делятся на:

· системы отопления с естественной циркуляцией (гравитационная система), т.е. движение теплоносителя внутри замкнутой системы возникает за счет разницы веса горячего теплоносителя в подающей трубе (вертикальном стояке большого диаметра) и холодного - после остывания в приборах и обратном трубопроводе. Необходимое оборудование для этой системы – это расширительный бак открытого типа, который устанавливается в самой верхней точке системы. Довольно часто он же используется для заполнения и подпитки системы теплоносителем.

· система отопления с принудительной циркуляцией основана на действии насоса, который заставляет двигаться теплоноситель, преодолевая сопротивление в трубах. Такой насос называется циркуляционным и позволяет отапливать большое количество помещений с разветвленной системы труб и радиаторов, когда разница температур на входе и выходе не обеспечивает достаточную силу теплоносителю, чтобы преодолеть всю сеть. К необходимому оборудованию, используемому при этой системе отопления, стоит отнести расширительный мембранный бак, циркуляционный насос, группу безопасности.

Первый вопрос, который следует изучить при выборе системы отопления, - какой источник энергии будет использоваться: твердое топливо (уголь, дрова и др.); жидкое топливо (мазут, солярка, керосин); газ; электричество. Топливо является основой для выбора отопительного оборудования и расчета общих затрат при максимальном наборе других показателей. Расход топлива загородных домов существенно зависит от материала и конструкции стен, объема дома, режима его эксплуатации и возможности системы отопления по управлению температурными характеристиками. Источником тепла в коттеджах являются одноконтурные (только для отопления) и двухконтурные (отопления и горячее водоснабжение) котлы.

  • Административно-территориальное устройство Челябинской области: понятие, виды административно-территориальных единиц, населенных пунктов
  • Анализ валового производства молока в ОАО «Семьянское» Воротынского района Нижегородской области


  • Контрольная работа

    по теплофизике № 11

    Термическое сопротивление воздушной прослойки

    1. Доказать, что линия снижения температуры в толще многослойного ограждения в координатах «температура - термическое сопротивление» является прямой

    2. От чего зависит термическое сопротивление воздушной прослойки и почему

    3. Причины, вызывающие возникновение разности давления с одной и другой стороны ограждения

    температура сопротивление воздух прослойка ограждение

    1. Доказать, что линия снижения температуры в толще многослойного ограждения в координатах «температура - термическое сопротивление» является прямой

    Пользуясь уравнением сопротивления теплопередаче ограждения можно определить толщину одного из его слоев (чаще всего утеплителя - материала с наименьшим коэффициентом теплопроводности), при котором ограждение будет иметь заданную (требуемую) величину сопротивления теплопередаче. Тогда требуемое сопротивление утеплителя можно вычислить как, где - сумма термических сопротивлений слоев с известными толщинами, а минимальную толщину утеплителя - так: . Для дальнейших расчетов толщину утеплителя необходимо округлять в большую сторону кратно унифицированным (заводским) значениям толщины того или иного материала. Например, толщину кирпича - кратно половине его длины (60 мм), толщину бетонных слоев - кратно 50 мм, а толщину слоев из иных материалов - кратно 20 или 50 мм в зависимости от шага, с которым они изготавливаются на заводах. При ведении расчетов сопротивлениями удобно пользоваться из-за того, что распределение температур по сопротивлениям будет являться линейным, а значит расчеты удобно вести графическим способом. В этом случае угол наклона изотермы к горизонту в каждом слое одинаков и зависит только от соотношения разности расчетных температур и сопротивления теплопередачи конструкции. А тангенс угла наклона есть не что иное как плотность теплового потока, проходящего через данное ограждение: .

    При стационарных условиях плотность теплового потока постоянна во времени, и значит, где R х - сопротивление части конструкции, включающее сопротивление теплообмену внутренней поверхности и термические сопротивления слоев конструкции от внутреннего слоя до плоскости, на которой ищется температура.

    Тогда. Например, температура между вторым и третьим слоем конструкции может быть найдена так: .

    Приведенные сопротивления теплопередаче неоднородных ограждающих конструкций или их участков (фрагментов) следует определять по справ очнику, приведенные сопротивления плоских ограждающих конструкций с теплопроводными включениями также следует определять по справ очнику.

    2. От чего зависит термическое сопротивление воздушной прослойки и почему

    Происходит помимо передачи тепла теплопроводностью и конвекцией в воздушной прослойке еще и непосредственное излучение между поверхностями, ограничивающими воздушную прослойку.

    Уравнение теплообмена излучением: , где б л - коэффициент передачи тепла излучением, в большей степени зависящий от материалов поверхностей прослойки (чем ниже коэффициенты излучения материалов, тем меньше и б л) и средней температуры воздуха в прослойке (с увеличением температуры растет коэффициент теплопередачи излучением).

    Таким образом, где л экв - эквивалентный коэффициент теплопроводности воздушной прослойки. Зная л экв, можно определить термическое сопротивление воздушной прослойки. Впрочем, сопротивления R вп можно определить и по справ очнику. Они зависят от толщины воздушной прослойки, температуры воздуха в ней (положительной или отрицательной) и вида прослойки (вертикальной или горизонтальной). О количестве тепла, передаваемого теплопроводностью, конвекцией и излучением через вертикальные воздушные прослойки, можно судить по следующей таблице.

    Толщина прослойки, мм

    Плотность теплового потока, Вт/м 2

    Количество тепла в %, передаваемого

    Эквивалентный коэффициент теплопроводности, м о С/Вт

    Термическое сопротивление прослойки, Вт/м 2о С

    теплопроводностью

    конвекцией

    излучением

    Примечание: приведенные в таблице величины соответствуют температуре воздуха в прослойке, равной 0 о С, разности температур на ее поверхностях 5 о С и коэффициенту излучения поверхностей С=4,4.

    Таким образом, при проектировании наружных ограждений с воздушными прослойками необходимо учитывать следующее:

    1) увеличение толщины воздушной прослойки мало влияет на уменьшение количества тепла, проходящего через нее, и эффективными в теплотехническом отношении являются прослойки небольшой толщины (3-5 см);

    2) рациональнее делать в ограждении несколько прослоек малой толщины, чем одну прослойку большой толщины;

    3) толстые прослойки целесообразно заполнять малотеплопроводными материалами для увеличения термического сопротивления ограждения;

    4) воздушная прослойка должна быть замкнутой и не сообщаться с наружным воздухом, то есть вертикальные прослойки необходимо перегораживать горизонтальными диафрагмами на уровне междуэтажных перекрытий (более частое перегораживание прослоек по высоте практического значения не имеет). Если есть необходимость устройства прослоек, вентилируемых наружным воздухом, то они подлежат особому расчету;

    5) вследствие того, что основная доля тепла, проходящего через воздушную прослойку, передается излучением, прослойки желательно располагать ближе к наружной стороне ограждения, что повышает их термическое сопротивление;

    6) кроме того, более теплую поверхность прослойки рекомендуется покрывать материалом с малым коэффициентом излучения (например, алюминиевой фольгой), что значительно уменьшает лучистый поток. Покрытие же таким материалом обеих поверхностей практически не уменьшает передачу тепла.

    3. Причины, вызывающие возникновение разности давления с одной и другой стороны ограждения

    В зимнее время воздух в отапливаемых помещениях имеет температуру более высокую, чем наружный воздух, и, следовательно, наружный воздух обладает большим объемным весом (плотностью) по сравнению с внутренним воздухом. Эта разность объемных весов воздуха и создает разности его давлений с двух сторон ограждения (тепловой напор). Воздух попадает в помещение через нижнюю часть наружных его стен, а уходит из него через верхнюю часть. В случае воздухонепроницаемости верхнего и нижнего ограждений и при закрытых проемах разность давлений воздуха достигает максимальных значений у пола и под потолком, а на середине высоты помещения равна нулю (нейтральная зона).

    Подобные документы

      Тепловой поток, проходящий через ограждение. Сопротивления тепловосприятию и теплоотдаче. Плотность теплового потока. Термическое сопротивление ограждения. Распределение температур по сопротивлениям. Нормирование сопротивления теплопередаче ограждений.

      контрольная работа , добавлен 23.01.2012

      Передача тепла через воздушную прослойку. Малый коэффициент теплопроводности воздуха в порах строительных материалов. Основные принципы проектирования замкнутых воздушных прослоек. Меры по повышению температуры внутренней поверхности ограждения.

      реферат , добавлен 23.01.2012

      Сопротивление от трения в буксах или подшипниках полуосей троллейбусов. Нарушение симметрии распределения деформаций по поверхности колеса и рельса. Сопротивление движению от воздействия воздушной среды. Формулы для определения удельного сопротивления.

      лекция , добавлен 14.08.2013

      Изучение возможных мер по повышению температуры внутренней поверхности ограждения. Определение формулы по расчету сопротивления теплопередаче. Расчетная температура наружного воздуха и теплопередача через ограждение. Координаты "температура-толщина".

      контрольная работа , добавлен 24.01.2012

      Проект релейной защиты линии электропередачи. Расчет параметров ЛЭП. Удельное индуктивное сопротивление. Реактивная и удельная емкостная проводимость воздушной лини. Определение аварийного максимального режима при однофазном токе короткого замыкания.

      курсовая работа , добавлен 04.02.2016

      Дифференциальное уравнение теплопроводности. Условия однозначности. Удельный тепловой поток Термическое сопротивление теплопроводности трехслойной плоской стенки. Графический метод определения температур между слоями. Определение констант интегрирования.

      презентация , добавлен 18.10.2013

      Влияние числа Био на распределение температуры в пластине. Внутреннее, внешнее термическое сопротивление тела. Изменение энергии (энтальпии) пластины за период полного ее нагревания, остывания. Количество теплоты, отданное пластиной в процессе охлаждения.

      презентация , добавлен 15.03.2014

      Потери напора на трение в горизонтальных трубопроводах. Полная потеря напора как сумма сопротивления на трение и местные сопротивления. Потери давления при движении жидкости в аппаратах. Сила сопротивления среды при движении шарообразной частицы.

      презентация , добавлен 29.09.2013

      Проверка теплозащитных свойств наружных ограждений. Проверка на отсутствие конденсации на внутренней поверхности наружных стен. Расчет тепла на нагрев воздуха, поступающего инфильтрацией. Определение диаметров трубопроводов. Термическое сопротивление.

      курсовая работа , добавлен 22.01.2014

      Электрическое сопротивление - основная электрическая характеристика проводника. Рассмотрение измерения сопротивления при постоянном и переменном токе. Изучение метода амперметра-вольтметра. Выбор метода, при котором погрешность будет минимальна.

    Одним из приемов, повышающих теплоизоляционные качества ограждений, является устройство воздушной прослойки. Ее используют в конструкциях наружных стен, перекрытий, окон, витражей. В стенах и перекрытиях ее применяют и для предупреждения переувлажнения конструкций.

    Воздушная прослойка может быть герметичной или вентилируемой.

    Рассмотрим теплопередачу герметичной воздушной прослойки.

    Термическое сопротивление воздушной прослойки R al нельзя определять как сопротивление теплопроводности слоя воздуха, так как перенос тепла через прослойку при разности температур на поверхностях происходит, в основном, путем конвекции и излучения (рис.3.14). Количество тепла,

    передаваемого путем теплопроводности, мало, так как мал коэффициент теплопроводности воздуха (0,026 Вт/(м·ºС)).

    В прослойках, в общем случае, воздух находится в движении. В вертикальных - он перемещается вверх вдоль теплой поверхности и вниз – вдоль холодной. Имеет место конвективный теплообмен, и его интенсивность возрастает с увеличением толщины прослойки, поскольку уменьшается трение воздушных струй о стенки. При передаче тепла конвекцией преодолевается сопротивление пограничных слоев воздуха у двух поверхностей, поэтому для расчета этого количества тепла коэффициент теплоотдачи α к следует уменьшить вдвое.

    Для описания теплопереноса совместно конвекцией и теплопроводностью обычно вводят коэффициент конвективного теплообмена α" к, равный

    α" к = 0,5 α к + λ a /δ al , (3.23)

    где λ a и δ al – коэффициент теплопроводности воздуха и толщина воздушной прослойки, соответственно.

    Этот коэффициент зависит от геометрической формы и размеров воздушных прослоек, направления потока тепла. Путем обобщения большого количества экспериментальных данных на основе теории подобия М.А.Михеев установил определенные закономерности для α" к. В таблице 3.5 в качестве примера приведены значения коэффициентов α" к, рассчитанные им при средней температуре воздуха в вертикальной прослойке t = + 10º С.

    Таблица 3.5

    Коэффициенты конвективного теплообмена в вертикальной воздушной прослойке

    Коэффициент конвективного теплообмена в горизонтальных воздушных прослойках зависит от направления теплового потока. Если верхняя поверхность нагрета больше, чем нижняя, движения воздуха почти не будет, так как теплый воздух сосредоточен вверху, а холодный – внизу. Поэтому достаточно точно будет выполняться равенство

    α" к = λ a /δ al .

    Следовательно, конвективный теплообмен существенно уменьшается, а термическое сопротивление прослойки увеличивается. Горизонтальные воздушные прослойки эффективны, например, при их использовании в утепленных цокольных перекрытиях над холодными подпольями, где тепловой поток направлен сверху вниз.

    Если поток тепла направлен снизу вверх, то возникают восходящие и нисходящие потоки воздуха. Передача тепла конвекцией играет существенную роль, и значение α" к возрастает.

    Для учета действия теплового излучения вводится коэффициент лучистого теплообмена α л (Глава 2, п.2.5).

    Пользуясь формулами (2.13), (2.17), (2.18) определим коэффициент теплообмена излучением α л в воздушной прослойке между конструктивными слоями кирпичной кладки. Температуры поверхностей: t 1 = + 15 ºС, t 2 = + 5 ºС; степень черноты кирпича: ε 1 = ε 2 = 0,9.

    По формуле (2.13) найдем, что ε = 0,82. Температурный коэффициент θ = 0,91. Тогда α л = 0,82∙5,7∙0,91 = 4,25 Вт/(м 2 ·ºС).

    Величина α л намного больше α" к (см табл.3.5), следовательно, основное количество тепла через прослойку переносится излучением. Для того, чтобы уменьшить этот тепловой поток и увеличить сопротивление теплопередаче воздушной прослойки, рекомендуют использовать отражательную изоляцию, то есть покрытие одной или обеих поверхностей, например, алюминиевой фольгой (так называемое «армирование»). Такое покрытие обычно устраивают на теплой поверхности, чтобы избежать конденсации влаги, ухудшающей отражательные свойства фольги. «Армирование» поверхности уменьшает лучистый поток примерно в 10 раз.

    Термическое сопротивление герметичной воздушной прослойки при постоянной разности температур на ее поверхностях определяется по формуле

    Таблица 3.6

    Термическое сопротивление замкнутых воздушных прослоек

    Толщина воздушной прослойки, м R al , м 2 ·ºС/Вт
    для горизонтальных прослоек при потоке тепла снизу вверх и для вертикальных прослоек для горизонтальных прослоек при потоке тепла сверху вниз
    лето зима лето зима
    0,01 0,13 0,15 0,14 0,15
    0,02 0,14 0,15 0,15 0,19
    0,03 0,14 0,16 0,16 0,21
    0,05 0,14 0,17 0,17 0,22
    0,1 0,15 0,18 0,18 0,23
    0,15 0,15 0,18 0,19 0,24
    0,2-0.3 0,15 0,19 0,19 0,24

    Значения R al для замкнутых плоских воздушных прослоек приведены в таблице 3.6. К ним можно отнести, например, прослойки между слоями из плотного бетона, который практически не пропускает воздух. Экспериментально показано, что в кирпичной кладке при недостаточном заполнении швов между кирпичами раствором имеет место нарушение герметичности, то есть проникновение наружного воздуха в прослойку и резкое снижение ее сопротивления теплопередаче.

    При покрытии одной или обеих поверхностей прослойки алюминиевой фольгой ее термическое сопротивление следует увеличивать в два раза.

    В настоящее время широкое распространение получили стены с вентилируемой воздушной прослойкой (стены с вентилируемым фасадом). Навесной вентилируемый фасад – это конструкция, состоящая из материалов облицовки и подоблицовочной конструкции, которая крепится к стене таким образом, чтобы между защитно-декоративной облицовкой и стеной оставался воздушный промежуток. Для дополнительного утепления наружных конструкций между стеной и облицовкой устанавливается теплоизоляционный слой, так что вентиляционный зазор оставляется между облицовкой и теплоизоляцией.

    Схема конструкции вентилируемого фасада показана на рис.3.15. Согласно СП 23-101 толщина воздушной прослойки должна быть в пределах от 60 до 150 мм.

    Слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в теплотехническом расчете не учитываются. Следовательно, термическое сопротивление наружной облицовки не входит в сопротивление теплопередаче стены, определяемое по формуле (3.6). Как отмечалось в п.2.5, коэффициент теплоотдачи наружной поверхности ограждающей конструкции с вентилируемыми воздушными прослойками α ext для холодного периода составляет 10,8 Вт/(м 2 · ºС).

    Конструкция вентилируемого фасада обладает рядом существенных преимуществ. В п.3.2 сравнивались распределения температур в холодный период в двухслойных стенах с внутренним и наружным расположением утеплителя (рис.3.4). Стена с наружным утеплением является более

    «теплой», так как основной перепад температур происходит в теплоизоляционном слое. Не происходит образования конденсата внутри стены, не ухудшаются ее теплозащитные свойства, не требуется дополнительной пароизоляции (глава 5).

    Воздушный поток, возникающей в прослойке из-за перепада давления, способствует испарению влаги с поверхности утеплителя. Следует отметить, что значительной ошибкой является применение пароизоляции на наружной поверхности теплоизоляционного слоя, так как она препятствует свободному отводу водяного пара наружу.

    За счет низкого значения теплопроводности воздуха воздушные прослойки часто используются в качестве теплоизоляции. Воздушная прослойка может быть герметичной или вентилируемой, в последнем случае ее называют воздушным продухом. Если бы воздух был в состоянии покоя, то термическое сопротивление было бы очень высоким, Однако за счет теплопередачи конвекцией и излучением сопротивление воздушных прослоек падает.


    Конвекция в воздушной прослойке. При передаче тепла преодолевается сопротивление двух пограничных слоев (см. рис. 4.2), поэтому коэффициент теплоотдаче уменьшается вдвое. В вертикальных воздушных прослойках, если толщина соизмерима с высотой, вертикальные токи воздуха двигаются без помех. В тонких воздушных прослойках они взаимно тормозятся и образуют внутренние циркуляционные контуры, высота которых зависит от ширины.

    Рис. 4.2 – Схема теплопередачи в замкнутой воздушной прослойке: 1 – конвекцией; 2 – излучением; 3 – теплопроводностью

    В тонких прослойках или при небольшой разности температур на поверхностях () имеет место параллельно-струйное движение воздуха без перемешивания. Количество тепла, передаваемое через воздушную прослойку равно

    . (4.12)

    Экспериментально установлена критическая толщина прослойки, δ кр , мм, для которой сохраняется (при средней температуре воздуха в прослойке 0 о С) ламинарный режим течения:

    При этом теплопередача осуществляется теплопроводностью и

    Для других толщин величина коэффициента теплоотдачи равна

    . (4.15)

    С увеличением толщины вертикальной прослойки происходит увеличение α к :

    при δ = 10 мм – на 20 %; δ = 50 мм – на 45 % (максимальное значение, далее идет уменьшение); δ = 100 мм – на 25 % и δ = 200 мм – на 5 %.

    В горизонтальных воздушных прослойках (при верхней более нагретой поверхности) перемешивание воздуха почти не будет, поэтому применима формула (4.14). При более нагретой нижней поверхности (образуются шестигранные циркуляционные зоны) значение α к находится по формуле (4.15).

    Лучистая теплопередача в воздушной прослойке

    Лучистая составляющая потока тепла определяется по формуле

    . (4,16)

    Коэффициент лучистого теплообмена принимается равным α л = 3,97 Вт/(м 2 ∙ о С), его величина больше α к , поэтому основная теплопередача происходит излучением. В общем виде количество передаваемого через прослойку тепла кратно

    .

    Уменьшить поток тепла можно покрытием теплой поверхности (для избежания конденсата) фольгой, применив т.н. “армирование”.Лучистый поток уменьшается примерно в 10 раз, а сопротивление увеличивается вдвое. Иногда в воздушную прослойку вводятся сотовые ячейки из фольги, которые уменьшают и конвективный теплообмен, однако такое решение не долговечно.

    Толщина воздушной прослойки, м Термическое сопротивление замкнутой воздушной прослойкиR вп , м 2 · °С/Вт
    горизонтальной при потоке теплоты снизу вверх и вертикальной горизонтальной при потоке теплоты сверху вниз
    при температуре воздуха в прослойке
    положительной отрицательной положительной отрицательной
    0,01 0,13 0,15 0,14 0,15
    0,02 0,14 0,15 0,15 0,19
    0,03 0,14 0,16 0,16 0,21
    0,05 0,14 0,17 0,17 0,22
    0,10 0,15 0,18 0,18 0,23
    0,15 0,15 0,18 0,19 0,24
    0,20-0,30 0,15 0,19 0,19 0,24

    Исходные данные для слоев ограждающих конструкций;
    - деревянного пола (шпунтованная доска); δ 1 = 0,04 м; λ 1 = 0,18 Вт/м °С;
    - пароизоляция ; несущественно.
    - воздушной прослойки : Rпр = 0,16 м2 °С/Вт; δ 2 = 0,04 м λ 2 = 0,18 Вт/м °С; (Термическое сопротивление замкнутой воздушной прослойки >>>.)
    - утеплителя (стиропор); δ ут = ? м; λ ут = 0,05 Вт/м °С;
    - черновой пол (доска); δ 3 = 0,025 м; λ 3 = 0,18 Вт/м °С;

    Деревянное перекрытие в каменном доме.

    Как мы уже отмечали для упрощения теплотехнического расчета введен повышающий коэффициент (k ), который приближает величину расчетного теплосопротивления к рекомендуемым теплосопротивлениям ограждающих конструкций; для надподвальных и цокольных перекрытий этот коэффициент равен 2,0. Требуемое теплосопротивление рассчитываем исходя из того, что температура наружного воздуха (в подполе) равна; - 10°С. (впрочем, каждый может поставить ту температуру, которую посчитает нужной для своего конкретного случая).

    Считаем:

    Где Rтр - требуемое теплосопротивление,
    - расчетная температура внутреннего воздуха, °С. Она принимается по СНиПу и равняется 18 °С, но, поскольку все мы любим тепло, то предлагаем температуру внутреннего воздуха поднять до 21°С.
    - расчетная температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки в заданном районе строительстве. Предлагаем температуру в подполе принять "-10°С", это конечно же для Московской области большой запас, но здесь по нашему мнению лучше перезаложиться чем не досчитать. Ну а если следовать правилам, то температура наружного воздуха tн принимается согласно СНиПу "Строительная климатология". Также необходимую нормативную величину можно выяснить в местных строительных организациях, либо районных отделах архитектуры.
    δt н · α в - произведение, находящиеся в знаменателе дроби, равно: 34,8 Вт/м2 - для наружный стен, 26,1 Вт/м2 - для покрытий и чердачных перекрытий, 17,4 Вт/м2 (в нашем случае ) - для надподвальных перекрытий.

    Теперь рассчитываем толщину утеплителя из экструдированного пенополистирола (стиропора) .

    Где δ ут - толщина утепляющего слоя , м;
    δ 1 …… δ 3 - толщина отдельных слоев ограждающих конструкций , м;
    λ 1 …… λ 3 - коэффициенты теплопроводности отдельных слоев , Вт/м °С (см. Справочник строителя);
    Rпр - тепловое сопротивление воздушной прослойки , м2 °С/Вт. Если в ограждающей конструкции воздушный продух не предусмотрен, то эту величину исключают из формулы;
    α в, α н - коэффициенты теплопередачи внутренней и наружной поверхности перекрытия , равные соответственно 8,7 и 23 Вт/м2 °С;
    λ ут - коэффициент теплопроводности утепляющего слоя (в нашем случае стиропор - экструдированный пенополистирол), Вт/м °С.

    Вывод; Для того чтобы удовлетворять предъявленным требованиям по температурному режиму эксплуатации дома, толщина утепляющего слоя из пенополистирольных плит, расположенного в цокольном перекрытие пола по деревянным балкам (толщина балок 200 мм) должна быть не менее 11 см . Так как мы изначально задали завышенные параметры, то варианты могут быть следующие; это либо пирог из двух слоев 50 мм плит стиропора (минимум), либо пирог из четырех слоев 30 мм плит стиропора (максимум).

    Строительство домов в Московской области:
    - Строительство дома из пеноблока в Московской области. Толщина стен дома из пеноблоков >>>
    - Расчет толщины кирпичных стен при строительстве дома в Московской области. >>>
    - Строительство деревянного брусового дома в Московской области. Толщина стены брусового дома. >>>