Есть ли где то еще жизнь. Где искать братьев по разуму. Есть ли жизнь во Вселенной

Есть ли где то еще жизнь.  Где искать братьев по разуму. Есть ли жизнь во Вселенной
Есть ли где то еще жизнь. Где искать братьев по разуму. Есть ли жизнь во Вселенной

Мы одни в этой Вселенной? До сих пор этот вопрос остается нерешенным. Но наблюдения НЛО и таинственные космические снимки заставляют верить в существование инопланетян. Давайте разберемся, где ещё, кроме нашей планеты, возможно существование жизни.

✰ ✰ ✰
7

Туманность Ориона является одной из самых ярких туманностей на небе, из тех, что видны невооруженным глазом. Находится эта туманность в полутора тысячах световых лет от нас. Ученые обнаружили в туманности множество частиц, из которых возможно формирование жизни в нашем понимании. В туманности есть такие вещества, как метанол, вода, окись углерода и цианистый водород.

✰ ✰ ✰
6

Во вселенной миллиарды экзопланет. И некоторые из них содержат огромное количество органических веществ. Планеты также вращаются вокруг своих звезд, как и наша Земля вокруг Солнца. А если повезет, то некоторые из них вращаются на таком оптимальном расстоянии от своей звезды, при котором они получают тепла достаточно, чтобы присутствующая на планете вода находилась в жидком виде, а не в твердом или газообразном.

Кеплер 62e - экзопланета, которая наиболее широко удовлетворяет условиям для поддержания жизни. Она вращается вокруг звезды Kepler-62 (в созвездии Лиры) и удалена от нас на 1200 световых лет. Предполагают, что планета в полтора раза тяжелее Земли, а её поверхность полностью покрыта 100-киллометровым слоем воды. Кроме того, средняя температура поверхности планеты по расчетам чуть выше земной и составляет 17°С, а ледяные шапки на полюсах могут и вовсе отсутствовать. Ученые говорят о 70-80% вероятности того, что на этой планете возможно существование какой-нибудь формы жизни.

✰ ✰ ✰
5

Энцелад является одним из спутников Сатурна. Он был открыт ещё в 18 веке, но интерес к нему возрос немного позже, после того, как космический аппарат «Вояджер 2» обнаружил, что поверхность спутника имеет сложную структуру. Она полностью покрыта льдом, имеет хребты, области со множеством кратеров, а также совсем молодые области, залитые водой и замерзшие. Это делает Энцелад одним из трех геологически активных объектов во внешней Солнечной Системе.

Межпланетный зонд Кассини в 2005 году изучал поверхность Энцелада и сделал множество интересных открытий. Кассини обнаружил, углерод, водород и кислород на поверхности спутника, а это ключевые компоненты для формирования жизни. Также в некоторых районах Энцелада были найдены метан и органические вещества. Кроме того, зонд выявил наличие жидкой воды под поверхностью спутника.

✰ ✰ ✰
4

Титан

Титан является крупнейшим спутником Сатурна. Его диаметр составляет 5150 км, это на 50% больше диаметра нашей Луны. По своим размерам Титан превосходит даже планету Меркурий, немного уступая ему по массе.

Титан считается единственным спутником планеты в Солнечной Системе, который обладает собственной плотной атмосферой, состоящей в основном из азота. Температура на поверхности спутника составляет минус 170-180°C. И, хотя это считается слишком холодной средой для возникновения жизни, большое количество органических веществ на Титане могут свидетельствовать о другом. Роль воды в построении жизни здесь может играть жидкие метан и этан, которые находятся здесь в нескольких агрегатных состояниях. Поверхность Титана состоит из метан-этановых рек и озер, водяного льда и осадочных органических веществ.

Кроме того, возможно, что под поверхностью Титана находятся более комфортные условия для жизни. Возможно там есть теплые термальные источники, богатые жизнью. Поэтому этот спутник является предметом будущих исследований.

✰ ✰ ✰
3

Каллисто является вторым по величине естественным спутником Юпитера. Его диаметр составляет 4820 км., что составляет 99% от диаметра планеты Меркурий.

Этот спутник, один из наиболее удаленных от Юпитера. Это значит, что убийственная радиация планеты действует на него в меньшей степени. Спутник всегда обращен одной стороной к Юпитеру. Всё это делает его одним из наиболее вероятных кандидатов на создания там в будущем обитаемой базы для исследования системы Юпитера.

И хотя Каллисто не имеет плотной атмосферы, его геологическая активность равно нулю, он является одним из кандидатов на обнаружение живых форм организмов. Всё потому что на спутнике найдены аминокислоты и другая органика, которая необходима для возникновения жизни. Кроме того, под поверхностью планеты может быть подземный океан, который богат минералами и другими органическими соединениями.

✰ ✰ ✰
2

Европа - это один из спутников Юпитера. Имеет диаметр 3120 км, что немного уступает Луне. Поверхность спутника состоит изо льда, под которым находится жидкий океан. Под океаном поверхность состоит из силикатных пород, а в центре спутника находится железное ядро. Европа имеет разреженную кислородную атмосферу. Ледяная поверхность довольно гладкая, что свидетельствует о геологической активности.

Вы спросите, откуда на таком удалении от Солнца может возникнуть жидкий океан? Всему виной приливные взаимодействия Юпитера. Планета обладает огромной массой, её гравитация сильно влияет на поверхности спутников. Подобно тому, как Луна влияет на приливы и отливы на Земле, Юпитер делает тоже самое со своими спутниками, только в куда большей мере.

Поверхность Европы сильно деформируется от гравитации Юпитера, внутри спутника образуется трение, которое подогревает недра, делая этот процесс чем-то похожим на земные движения литосферных плит.

Таким образом, мы видим, что у Европы есть кислород, слабая атмосфера, жидкая вода, а также множество различных минеральных веществ, являющихся строительными блоками жизни.

Европейское космическое агентство планирует посадочную миссию по Европе, которое запланировано на 2022 год. Она может раскрыть множество секретов этого спутника Юпитера.

✰ ✰ ✰
1

Марс

Марс на сегодняшний день - самая доступная планета для того, чтобы найти доказательства существования внеземной жизни. Положение планеты в Солнечной Системе, её размер и состав говорят о возможности существования на ней жизни. И, если сейчас Марс безжизненный, то возможно он имел жизнь ранее.

О существовании жизни на Марсе говорит множество фактов:

Большинство марсианских астероидов, найденных на Земле содержат микро-окаменелости жизни. Вопрос лишь в том, не могли ли эти окаменелости попасть на астероиды после приземления.

Наличие сухих русел рек, вулканов, ледяных шапок и различных минералов свидетельствует о возможности существования жизни на планете.

Документально подтверждены кратковременные увеличения количества метана в атмосфере Марса. В отсутствии геологической активности планеты, такие выбросы могут обуславливаться лишь наличием микроорганизмов на планете.

Исследования показали, что в прошлом Марс имел значительно более комфортные условия, чем сейчас. По поверхности планеты текли бурные потоки рек, Марс имел свои моря и озера. К сожалению, планета не имеет собственного магнитного поля и она гораздо легче Земли (её масса составляет около 10% от земной). Всё это мешает Марсу удерживать плотную атмосферу. Будь планета потяжелее, и возможно, мы бы сейчас видели на ней жизнь, которая была бы также красива и разнообразна, как и на Земле.

✰ ✰ ✰

Заключение

Наука семимильными шагами исследует космос. Всё, что мы знаем сегодня, завтра поможет найти нам ответы на многие вопросы.

Надеемся, что в этом веке человечество найдет внеземную жизнь. Это была статья «ТОП-7 мест во Вселенной, где возможно наличие жизни». Спасибо за внимание.

Гость программы "Космическая среда" - Георгий Манагадзе, заведующий лабораторией активной диагностики Института космических исследований РАН, профессор, действительный член Международной академии астронавтики.

Ведущая программы - Мария Кулаковская.

Поиски жизни в космосе

Кирпичики мироздания находят в Галактике чуть ли не каждый год, от простого метана до сложных органических соединений. За полвека космической эры в межзвездном пространстве и окружающих звезды газовых и пылевых дисках было открыто 140 видов молекул, в том числе, этиловый спирт, формальдегид и муравьиная кислота. Как именно из мельчайших частиц в космосе образовались живые клетки, до последнего времени ученым было не понятно.

Говорит Владимир Сурдин, старший научный сотрудник Астрономического института МГУ имени Штернберга: "Попробуйте понять, как за сто миллионов лет из ничего, из простых инертных веществ, получились такие сложные РНК, ДНК и прочие белки, которые обеспечивают нашу сегодняшнюю жизнь".

Недавно команда российских ученых из Института космических исследований доказала: синтез органических молекул в космосе может происходить при столкновении мельчайших частиц материи на сверхвысоких скоростях, до тысячи километров в секунду. Таким способом могут рождаться аминокислоты, молекулы, из которых состоят белки, основа земной жизни.

Сегодня экспедиции по поиску внеземной жизни готовятся к отправке на спутник Юпитера - Европу. Космические аппараты международного проекта "Лаплас" возьмут пробы реликтового грунта и определят, возможна ли органическая жизнь вне Земли.

Рассказывает Елена Воробьева, старший научный сотрудник МГУ: "Если мы найдем жизнь на каких-то планетных телах, то это действительно может означать, либо жизнь может возникать многократно, либо жизнь имеет какой-то единый источник, но может переноситься в космосе. Какие формы может принимать жизнь? Действительно ли биологическая жизнь, известная нам, на основе углерода? Или же надо искать какие-то подобия, но отличные от земной формы жизни? И такие задачи тоже теоретически прорабатываются".

Спутники планет особенно интересны ученым, поскольку в процессе эволюции они сохранились в первородном состоянии.

Рассказывает Владимир Сурдин, старший научный сотрудник Астрономического института МГУ имени Штернберга: "Европа - второй от Юпитера спутник - весь покрыт толстым слоем льда. Чем-то он напоминает нашу Антарктиду, может быть, даже очень сильно напоминает, потому что под этим ледяным панцирем на Европе целые озера или даже океан жидкой воды".

Именно в воде спутника Юпитера ученые надеются найти жизнь, самые простейшие ее формы. В исходных ядрах жизни, по мнению ученых, есть все эволюционные возможности.

Продолжает Владимир Сурдин: "Океан Европы - это идеальное место для жизни. Под ледяным куполом - вода при нуле градусов. Мы не знаем, правда, какая она, соленая или кислая. Насколько она, так сказать, питьевая на вкус. Это еще надо проверять. Но, так или иначе, на Земле, какая бы ни была вода, мы всегда обнаруживаем в ней жизнь".

Те же эксперименты в антарктическом озере Восток показали: частицы льда все равно населены бактериями, причем живыми бактериями. И если на Фобосе, Европе или Марсе обнаружат жизнь, которая выдерживает суровые космические условия, это будет говорить о том, что космос, еще недавно считавшийся необитаемым, насыщен биологической жизнью.

Интервью

Кулаковская: В нашей студии - заведующий лабораторией активной диагностики Института космических исследований РАН, профессор, действительный член Международной академии астронавтики Георгий Манагадзе. Здравствуйте!

Георгий Георгиевич, меня очень давно интересует вопрос: обитаем ли космос, и есть ли в нем жизнь? К какому выводу вы склоняетесь? О чем говорят исследования вашего института?

Манагадзе: Насколько я понимаю и воспринимаю сегодняшние научные реалии, возможно, микробная жизнь в Солнечной системе, в нашей системе, имеется. А за пределами Солнечной системы у нас нет шансов, чтобы она не имелась. Эксперименты, которые я провел, показывают, что жизнь легко зарождается. Другое дело, достигнет ли она какой-нибудь формы цивилизации, доживет или нет? Это другой вопрос.

Кулаковская: А где ученые надеются обнаружить следы органической жизни?

Манагадзе: Очень любопытная ситуация получается. Допустим, наши американские друзья, я к ним очень хорошо отношусь, толковые, хорошие люди, много денег тратят и проводят хорошие исследования, но бывает, они теряют реалистичность. К примеру, они обнаружат где-то аминокислоту, допустим, в метеоритах. Тут же говорят, что жизнь зародилась в космосе. А это все не так. Для того, чтобы жизнь зародилась в космосе, нужна не только аминокислота, но еще и много других условий. Это должен быть целый каскад. Жизнь может существовать в микробной форме, естественно. На Марсе, почему-то мне кажется, нет сомнений, что есть жизнь, в глубинах планеты, внутри.

Кулаковская: Может быть, мы ее туда занесли?

Манагадзе: Может быть, мы. Может быть, она от нас туда занесена. Это неважно. Она могла родиться сама на таких телах. Во всяком случае, я вижу условия для развития микробной жизни на Европе, на Энцеладе и даже на Титане. Потому что на Титане, по предположению, существует поверхностный океан, вода. Может быть, этим и объясняется огромное количество метана на Титане. А как она могла там зародиться, это вопрос серьезный. Моя основная концепция состоит в том, что органика, и не только органика, а еще и крупные куски, вплоть до гомогенных (как в науке называют, гомохиральных) молекул, живая материя могла зародиться при метеоритном ударе. Потому что метеоритный удар обладает огромной энергией.

Допустим, Юкатанский метеорит, который упал в Мексике 65 миллионов лет тому назад, пробил кратер глубиной 30 километров. На других телах на такой глубине, даже еще выше, уже может находиться вода. Во время удара метеорита происходит образование органической материи. Органическая материя, попадая в эту среду, в воду, при допустимой температуре за счет приливных сил, каких-то других механизмов могла уже зацепиться, развиться и существовать. Мы планируем где-нибудь через шесть-семь лет такой эксперимент - полет на Европу (спутник Юпитера). И мне кажется, есть все основания надеяться, что мы что-то найдем.

Кулаковская: Откуда берутся органические соединения в космосе?

Манагадзе: Органические соединения на Земле из-за того, что мы их с вами производим. А в открытом космосе бывают звезды, которые выбрасывают много углерода. Этот углерод оседает на поверхность пыли (межзвездного газа, пылевой среде). Там мы тоже наблюдаем органику при помощи радиотелескопов. Обнаружено 80 или 110 органических соединений, причем уже довольно сложные. Существует такая гипотеза, что углерод налипает на поверхность пылинки. Там страшный холод - минус четыре градуса по абсолютной шкале - это ниже всего подобного. Очень холодно. Еще налипает кислород, водород, и потом они соединяются. Этот процесс очень трудно себе представить в таких холодных условиях. Несмотря на то, что покойный академик Гольданский придумал механизм туннелирования, как будто их можно соединять.

Тот механизм, который я предлагаю, работает великолепно. Это не фантастика. Мы эти процессы воспроизводим в лаборатории. Допустим, две пылинки могут ускоряться до больших скоростей в разных космических процессах - при переходе через ударную волну, в процессе светового давления от звезд. Могут ускоряться выше 20 километров в секунду и до тысячи километров в секунду. Столкновение этих пылинок - процесс их уничтожения. Так они разрушаются. Пылинки появляются во время умирания звезд, звезда их выбрасывает. Они болтаются, потом ускоряются, сталкиваются и уничтожаются. Но во время этого уничтожения образуется плазменный факел. Он обладает совершенно необычной каталитической активностью, удобной для создания новых веществ. Потому что сама плазма является каталитической средой.

Кулаковская: Но всегда ли это жизнь на основе углерода? Может существовать другая жизнь, помимо биологической формы?

Манагадзе: Очень хороший вопрос. Сегодня трудно представить, какая еще может быть жизнь. Я тоже не могу этого сказать. А когда говорят "силиконовая", "кремневая" и так далее, мои эксперименты не показывают эту возможность. Потому что углерод - это очень хорошее вещество. Активное, наглое вещество. Если его освободить от всего, оно мгновенно захватывает и образует органические соединения в плазменном факеле. Плазменный факел, расширяясь и улетая, остывает. Вначале в нем огромная температура, может до миллиона градусов доходить. А дальше, во время адиабатического расширения (это специальный тип расширения, на принципе которого работают наши холодильники), газы расширяются, и он остывает. В этих процессах органика может усложниться.

Еще очень важная вещь, что в этих процессах, когда углерод расширяется, закрепляется то, что мы получили, а в дальнейшем еще усложняется. Нет обратного хода, не разваливается. Понимаете? В любой химической реакции где-то наступает насыщение, и все идет обратно, развал начинается. А там - нет. Образуется сложная органика. Я считаю, что в таком плазменном факеле может даже зародиться субстанция, которая будет обладать всеми признаками живой материи. Она может воспроизводиться и иметь простейший генетический код.

Кулаковская: Исследования наших ученых в Антарктиде как раз доказывают, что микроорганизмы могут жить и во льду, и в кипятке, и на дне Тихого океана под огромным давлением.

Манагадзе: Где хотите. Я физик, еще раз подчеркиваю. Но если, допустим, произошел удар, и все засыпало, возникают прекрасные условия для дальнейшей эволюции микроорганизма. Почему я говорил вам, что в космосе аминокислота ничего не значит. Нам нужно, чтобы после зарождения или появления живой материи, она попала бы в среду, где могла бы развиваться. А какая это среда? Вы представляете, образовалась самая примитивная живая система, которую даже нельзя назвать бактерией. Это просто нуклеотидная палка, по которой туда-сюда двигается белок и производит себе подобных. У них, может быть, и оболочки нет. Если представить, что сегодняшний микробный организм - примерно величиной с голубого кита (40 тонн), то эта палка - с куриное яйцо. Представляете, настолько она примитивная.

Более того, у этой примитивной живой системы даже нет никаких ферментативных способностей. Она может только размножаться, воспроизводить себе подобных и жить по дарвинскому отбору. Ей нужна не еда, а органические соединения. А во время метеоритного удара синтезируется простая органика, которую она может есть, и жить. Более того, еще один хороший момент. Допустим, упал метеорит диаметром 10 километров. Образуется 100-километровый кратер. В этом кратере в течение десяти миллионов лет, очень легко посчитать, если будет приемлемая температура, лед растает, будет вода. За десять миллионов лет эта простейшая штука может развиться.

Кулаковская: Вы считаете, что жизнь на Земле зародилась вследствие падения метеорита?

Манагадзе: Да. Это очень хороший механизм. Более того, он последователен. В разные времена ученые приходили к разному сценарию. Такой эмпирический поход. Они получали результат и говорили: "А! Это произошло под водой" или "Это произошло в космосе". Потому что в процессе взаимодействия углерод откуда-то должен появиться. В моей концепции этот углерод появляется именно в ядрах комет, углистых хондритах, где действительно наблюдается углерод. Углистые хондриты - это те тела, из которых складывалась Земля. Это первое. Дальше, у этих тел должна быть огромная энергия, чтобы этот материал переработать. То есть, падая, они превращаются в плазму, и в этом плазменном факеле, как в плазмогенераторе промышленной системы, где синтезируются разные вещества, которые вообще в химии не синтезируются, там должны обязательно синтезироваться в органические соединения, при наличии углерода.

Но этого мало. Они должны быть как-то упорядочены, составлять разумную структуру. Без этих процессов зарождение жизни невозможно. Случайные процессы не приведут к зарождению жизни. В этих веществах должна быть нарушена исходная симметрия. Вы, я, все живое, белки состоят из L-аминокислот. До сих пор неизвестно, когда произошло нарушение симметрии. У меня есть соображения на этот счет. Я объясняю вполне доступно. Поля, которые возникают в плазменном факеле отвечают требованиям генерации полей. Они называются хиральдами. "Хиро" - это рука. Левая и правая рука - такая аналогия. Дальше они должны создать очень чистую среду. Макромолекула должна быть только из L-аминокислот. И дальше появляется еле живое существо, после этого оно попадает в кратер, где выживает. Эти последовательности должны быть обязательно. И здесь образуется каскад. Потому что если мы этому каскаду не будем следовать... Допустим, в ранних сценариях, когда говорили "солнышко светит". Плотность энергии Солнца меньше плотности энергии удара. Этого не хватает. Солнце зарождает, к примеру, одну аминокислоту, где вы сидите, другую аминокислоту, где я сижу, и они никогда не могут встретиться. Это раньше называлось концентрационным разрывом.

Кулаковская: Как раз это объяснимо.

Манагадзе: Конечно.

Кулаковская: Георгий Георгиевич, один из самых популярных кошмаров в научной фантастике - это взаимодействие инопланетных организмов с землянами. Насколько эти опасения имеют под собой реальную почву? Если, например, микробы с той же Европы попадут на Землю?

Манагадзе: Если это будут микробы земного типа, я думаю, наши микробы их победят. Если это какие-то другие микробы - это очень сложный вопрос. Я сам интересуюсь этим вопросом. Существуют предпосылки, что на Земле могут существовать микробы, которые неземные. Этого никто не отрицает, я видел много публикаций. Дело в том, что наши организмы, микробы, оказывается, работают на фосфоре. Не доказано еще, но есть предположения, что вместо фосфора, который является очень важным звеном в нуклеиновых кислотах, может быть какой-нибудь другой элемент - заменитель фосфора. Я думаю, наши микробы, земного типа, сильнее.

Кулаковская: Георгий Георгиевич, а если все-таки ученые докажут, что жизнь в Солнечной системе действительно существует, какие будут следующие шаги?

Манагадзе: Я давно и очень плотно работаю с академиком Сагдеевым. По его мнению, если мы где-нибудь найдем микробную жизнь, это будет самое крупное явление следующего тысячелетия - обнаружение жизни. Если мы обнаружим жизнь, это будет свидетельствовать о том, что жизнь обречена на зарождение. Но я не знаю алгоритма, как ожила материя. Честно говорю, что я не знаю. Но, так как мы с вами говорим, значит, природа как-то обошла...

Кулаковская: Как-то получилось.

Манагадзе: А я, как человек, который обладает возможностями экспериментировать, привлекать разные космические условия, зная это, вижу, что условия для этого создать можно. И я думаю, что на многих телах жизнь найдут. Существует такая формула Дрейка. Он в 60-х годах придумал формулу. Там есть коэффициенты. Перемножение коэффициентов дает вероятность существования жизни в нашей Галактике. Не только жизни, но даже цивилизаций. В этих коэффициентах самые спорные вопросы: сколько звезд в нашей Галактике (чем больше, тем лучше), сколько у этих звезд спутниковых систем, какие из них похожи на Землю. Но самые каверзные коэффициенты касаются зарождения жизни. Если мы считаем, что только на Земле (в нашей Галактике) есть жизнь, то формула Дрейка показывает, что это исключительный случай. А если мы покажем, что на Земле жизнь, на Марсе жизнь, где-то еще, то будет совсем хорошо. Мы должны все время на небо глядеть и говорить: "Когда же они прилетят".

Кулаковская: Искать другую цивилизацию?

Манагадзе: Да, когда же эта цивилизация к нам нагрянет. Мне очень жаль, что то, что я делал и сейчас делаю, попало в страшную эпоху, когда никого ничего не интересует, когда люди не слушают друг друга. Когда мы говорим о зарождении цивилизации, очень важно любопытство. На Килиманджаро находят обезьян, наверху, в снегах. Зачем они туда идут, никто не знал. Наконец-то ученые додумались.

Кулаковская: Любопытство?

Манагадзе: Но любопытство исчезает у нас.

Кулаковская: Любопытство сделало из обезьяны человека.

Манагадзе: Абсолютно верно. Особенно когда соприкасаешься с неизвестностью, это так интересно.

Кулаковская: Это очень интересно. Я благодарю вас, Георгий Георгиевич, за то, что вы нам дали такую замечательную и интересную лекцию. Большое вам спасибо.

Манагадзе: Вам тоже спасибо. Я всегда рад сотрудничать с вашим радио, потому что вы стараетесь, и я тоже стараюсь, глядя на вас. Спасибо.

Слушайте полную версию программы

Есть ли жизнь во Вселенной?

Человечество веками всматривалось в небеса в надежде найти собратьев по разуму. В XX столетии ученые перешли от пассивного созерцания к активному поиску жизни на планетах Солнечной системы и посылке радиосообщений в наиболее любопытные участки звездного неба, а некоторые автоматические межпланетные станции, доведя до конца свою исследовательскую миссию внутри Солнечной системы, понесли послания землян во Вселенную.

Для людей невероятно важен поиск себе подобных в бескрайних просторах космоса. Это – одна из первостепенных задач, человечества. На сегодняшний день предпринимаются лишь первые и, вероятно, малоэффективные шаги на долгом пути к инопланетным цивилизациям. Однако, есть еще вопрос о реальности самого объекта поисков. К примеру, известный ученый и мыслитель XX столетия И.С.Шкловский в своей книге «Вселенная, жизнь, разум» весьма аргументированно обосновал гипотезу, по которой человеческий разум, может быть, уникален не только в нашей Галактике, но и во всей Вселенной. Больше того, Шкловский сказал о том, что и сами контакты с иным разумом, возможно, принесут людям мало пользы.

Вероятность достичь далеких галактик продемонстрируем на таком примере: если бы во время зарождения цивилизации с нашей планеты стартовал туда космический корабль со скоростью света, то в наши дни он был бы в самом начале пути. И даже если в ближайшие 100 лет космические технологии достигнут околосветовых скоростей, на полет до ближайшей туманности Андромеды будет необходимо топлива в сотни тысяч раз больше полезной массы космического корабля.

Но даже на таких фантастических скоростях и совершенной медицине, способной ввести человека в состояние анабиоза и благополучно вывести из него, для самого короткого знакомства с одной лишь ветвью нашей Галактики уйдут тысячелетия, а увеличивающиеся темпы научно-технического прогресса попросту ставят под сомнения практическую пользу такого рода экспедиций.

На сегодняшний день астрономы уже открыли миллиарды миллиардов галактик, в которых находятся биллионы звезд, а ведь ученый мир допускают существование иных вселенных с другим набором параметров и законов, в которых может существовать жизнь, абсолютно непохожая на нашу. Интересно, что некоторые из сценариев развития Вселенной как Мультиуниверсума, который состоит из множества миров, предполагают, что их количество стремится к бесконечности. Но в таком случае, вопреки мнению Шкловского, вероятность того что инопланетный разум существует будет стремиться к 100 %!

Вопрос внеземных миров и установления контактов с ними составляет основу многих международных научных проектов. Выясняется, это одна из сложнейших проблем, которые когда-то стояли перед научным миром. Предположим, на каком-то космическом теле появились живые клетки (мы уже знаем, что в общепризнанных теориях такого явления пока еще нет). Для дальнейшего существования и эволюции, превращения такого рода «зерен жизни» в разумные существа понадобятся миллионы лет при условии сохранения некоторых обязательных параметров.

Удивительное и, судя по всему, редчайшее явление жизни, не говоря уже о разуме, может зародиться и развиваться лишь на планетах вполне определенного типа. И не следует забывать, что этим планетам необходимо вращаться вокруг своей звезды по определенным орбитам – в так называемой зоне жизни, благоприятной по температурному и радиационному режиму для живой среды. К сожалению, в наше время поиск планет у соседних звезд является труднейшей астрономической задачей.

Несмотря на стремительное развитие орбитальных астрономических обсерваторий, наблюдательных данных о планетах других звезд пока не хватает для подтверждений тех или других космогонических гипотез. Некоторые из ученых считают, что процесс формирования нового светила из газопылевой межзвездной среды почти неизбежно ведет к образованию планетных систем. Другие полагают образование планет земного типа довольно редким явлением. В этом их поддерживают и имеющиеся астрономические данные, ведь подавляющее количество открытых планет составляют так называемые «горячие юпитеры», газовые гиганты, которые порой в десятки раз превышают по размеру и массе Юпитер и вращаются очень близко к своим звездам на высокой орбитальной скорости.


На данный момент планетные системы открыты уже у сотен звезд, но при этом зачастую приходится использовать только косвенные данные об изменениях движения звезд, без прямого визуального наблюдения планет. И все-же, если принять во внимание очень осторожный прогноз, что планеты земного типа с твердой поверхностью и атмосферой появляются в среднем у одной из ста миллионов звезд, то только в нашей Галактике их количество будет превышать тысячу. Тут возможно добавить и вероятность возникновения экзотических форм жизни на умирающих звездах, когда внутренний ядерный реактор останавливается и поверхность начинает остывать. Такого рода удивительные ситуации уже рассматривались в произведениях классиков научно-фантастического жанра Станислава Лема и Ивана Антоновича Ефремова.

Тут мы подходим к самой сути проблемы внеземной жизни.
У нас в Солнечной системе «зону жизни» занимают лишь три планеты – Венера, Земля, Марс. Причем орбита Венеры проходит около внутренней границы, а орбита Марса – около внешней границы зоны жизни. Планете Земля повезло, на ней нет высокой температуры Венеры и страшного холода Марса. Последние межпланетные полеты роботов-марсоходов показывают, что и на Марсе когда-то было теплей, а также была вода в жидком состоянии. И возможно, что следы марсианской цивилизации, так многократно и красочно созданные фантастами, когда-то удастся обнаружить космическим археологам.

К сожалению, пока ни экспресс-анализы марсианской почвы, ни бурение пород не выявили следов живых организмов. Ученые в надежде, что ситуацию может прояснить готовящаяся международная экспедиция обитаемого космического корабля на Марс. Она может состояться в первой четверти нашего века.

Итак, жизнь может появиться далеко не во всех звездных системах, и одно из обязательных условий это стабильность излучения звезды на отрезках в миллиарды лет и наличие у нее планет в зоне жизни.

А возможно ли достоверно оценить время первого зарождения жизни во Вселенной?
И понять, произошло ли это раньше или позже, чем на Земле?

Что бы ответить на такие вопросы нам необходимо в очередной раз вернуться к истории мироздания, к таинственному моменту Большого взрыва, когда вся материя Вселенной сгруппировалась «в одном атоме». Напомним, что произошло это около 15-ти миллиардов лет назад, когда плотность вещества и его температура стремились к бесконечности. Первичный «атом» не выдержал и разлетелся, образовав сверхплотное и очень горячее расширяющееся облако. Как и при расширении любого газа, его температура и плотность начали падать. Потом из него сформировались и все наблюдаемые космические тела: галактики, звезды, планеты, их спутники.

Осколки Большого взрыва разлетаются и сейчас. Мы живем в постоянно расширяющейся Вселенной, не замечая этого. Галактики разлетаются друг от друга, как цветные точки на надуваемом шарике. Мы даже сможем оценить, до какой степени расширился наш мир после сверхмощного импульса Большого взрыва, – если принять, что самые быстрые «осколки» двигались со скоростью света, то получаем радиус Вселенной порядка 15 миллиардов световых лет.

Световой луч от светящегося объекта на самом краю нашего облака должен миллиарды лет преодолевать расстояние от своего источника до Солнечной системы. И самое любопытное, что он справляется с этой задачей, не растеряв по пути световую энергию. Космические орбитальные телескопы уже позволяют его уловить, измерить, исследовать.

В современной науке принято считать, что Фаза химической и ядерной эволюции Вселенной, подготовившая возможность появления жизни, заняла не менее 5-ти миллиардов лет. Допустим, что время биологической эволюции хотя бы в среднем на других звездах того же порядка, что и на нашей планете, то есть около пяти миллиардов лет. И выходит, что самые ранние внеземные цивилизации могли появиться около пяти миллиардов лет тому назад! Такие оценки попросту ошеломляют! Ведь земная цивилизация, если даже брать отсчет от первых проблесков разума, существует лишь несколько миллионов лет. Если же считать от появления письменности и развитых городов, то ее возраст насчитывает порядка 10 000 лет.

Следовательно, если предположить, что первые из появившихся цивилизаций преодолели все кризисы и благополучно дошли до наших дней, то они впереди нас на миллиарды лет! За это время они могли совершить многое: колонизировать звездные системы и повелевать ими, победить болезни и почти достичь бессмертия.

Но тут же возникают вопросы.
А надо ли человечеству контакт с инопланетным разумом? И если да, то как его установить? Удастся ли понять друг друга, обменяться информацией? Из всего сказанного можно уяснить суть проблемы внеземных цивилизаций. Это запутанный клубок из взаимосвязанных вопросов, на большинство из которых пока удовлетворительного ответа нет.

Рассматривая вопросы о живых инопланетных существах, Айзек Азимов писал, что на Земле существует лишь одна форма живых существ, и в ее основе, от простейшего вируса до огромного кита или красного дерева, лежат белки и нуклеиновые кислоты. Все эти живые существа используют одни и те же витамины, в их организмах происходят одинаковые химические реакции, энергия высвобождается и используется одинаковым способом. Все живое движется одним и тем же путем, как бы ни различались между собой в подробностях разные биологические виды. Жизнь на Земле зародилась в море, и живые существа состоят ровно из тех химических элементов, которые в изобилии представлены (или были представлены) именно в морской воде. Химический состав живых существ не содержит никаких таинственных ингредиентов, никаких редких, «волшебных» первоэлементов, для обретения которых понадобилось бы очень маловероятное совпадение.

На любой планете с массой и температурой как у нашей планеты также следует ожидать наличия океанов из воды с раствором того же типа солей. Соответственно, и зародившаяся там жизнь будет иметь химический состав, сходный с земной живой материей. Может ли из этого следовать, что и в дальнейшем своем развитии эта жизнь будет повторять земную?

Вот тут точно уверенными быть нельзя. Из одних и тех же химических элементов возможно собрать множество разных сочетаний. Не исключено, что в молодости нашей планеты, на самой заре зарождения жизни, в первобытном океане плавали тысячи принципиально самых различных живых Форм. Предположим, что одна из них победила все остальные в конкурентной борьбе, и тут уже нельзя отрицать вероятность того, что это могло произойти по чистой случайности. А теперь единственность ныне существующей жизни может натолкнуть нас на ложный вывод, что именно такое строение живой материи является неизбежным.

Выходит, на любой планете, похожей на Землю, химическая основа жизни, скорей всего, будет такой же, как и на нашей планете. Оснований считать иначе у нас нет. Больше того, весь ход эволюции в целом должен быть таким же. Под давлением естественного отбора все доступные регионы планеты будут заполняться живыми существами, обретающими необходимые способности для адаптации к местным условиям. На нашей планете после зарождения жизни в море постепенно произошла колонизация пресных вод существами, способными сохранять соль, колонизация суши существами, способными сохранять воду, и колонизация воздуха существами, развившими способность к полету.

И на другой планете все должно произойти по такому же сценарию. Ни на одной планете земного типа летающее существо не сможет вырасти больше определенных размеров, так как его должен держать воздух; морское существо должно или иметь обтекаемую Форму, или передвигаться медленно, и т. п.

Так что вполне разумно ожидать от инопланетных живых существ появления у них знакомых нам черт – попросту из соображений рациональности. Двусторонняя симметрия «право-лево» также должна иметь место, как и наличие отдельно вынесенной головы с размещением там мозга и органов чувств. Среди последних обязательно должны быть световые рецепторы, подобные нашим глазам. Более активные живые формы так же должны употреблять в пищу растительные формы, и весьма вероятно, что инопланетяне, также, как мы, дышат кислородом – или поглощать его каким-то другим способом.

Короче говоря, инопланетяне не могут быть абсолютно непохожими на нас. Несомненно, впрочем, что в конкретных подробностях они будут от нас разительно отличаться: кто мог бы предсказать, скажем, облик утконоса до того как была открыта Австралия или внешний вид глубоководных рыб до того, как люди смогли достичь глубин где они обитают?

100 великих загадок астрономии Волков Александр Викторович

Есть ли жизнь во Вселенной?

Есть ли жизнь во Вселенной?

Летом 1950 года в стенах Лос-Аламосской лаборатории впервые прозвучал «парадокс Ферми». Нобелевский лауреат Энрико Ферми, беседуя с коллегой о межзвездных путешествиях, внезапно воскликнул: «Так где они все?» Проделанные позднее расчеты подтвердили, что удивляться было чему. Если бы какая-то внеземная цивилизация достигла того уровня, при котором возможно строительство космических кораблей, то ей потребовалось бы всего несколько миллионов лет, чтобы облететь всю нашу Галактику, побывать везде, где только можно. Если следовать этой логике, то их космонавты посещали Солнечную систему, вели наблюдение за отдельными планетами, и, может быть, даже сейчас на этих планетах находятся оставленные ими средства слежения за «местной фауной» (за нами?). Они знают о нас? Но почему их нет?

Ферми разрешил эту проблему, к вящей радости пессимистов и скептиков. Раз никаких следов внеземной жизни до сих пор не обнаружено, значит, ее просто нет. Иначе Галактика давно уже была бы заселена, а наша Солнечная система стала бы сырьевым придатком Великой Цивилизации Млечного Пути.

«Так где они все?» – впору воскликнуть вслед за Ферми.

В 1960 году американский астроном Фрэнк Дрейк попытался с помощью антенны диаметром 26 метров принять сигналы, которые могли бы исходить от звезд Тау Кита и Эпсилон Эридана (проект «ОЗМА»), но не добился успеха. Эта работа открыла эпоху поиска сигналов внеземных цивилизаций. Начинали ее энтузиасты, считавшие, что жизнь можно встретить во Вселенной повсюду, но своими стараниями они лишь множили число пессимистов. Никаких следов внеземной жизни за минувшие полвека не было обнаружено. Между тем в рамках программ CETI («Связь с внеземным разумом») и SETI («Поиск внеземного разума») предпринималось уже более ста попыток перехватить сигналы, посылаемые другими мирами. Ответом энтузиастам было великое космическое молчание.

Американский астроном Фрэнк Дрейк попытался с помощью радиотелескопа принять сигналы от звезд Тау Кита и Эпсилон Эридана (проект ОЗМА)

Есть, правда, один нюанс. Даже если они радируют во все концы Вселенной, как мы отличим их сигналы от естественного шума? Специалисты признают: если наши предполагаемые собеседники не шлют нам одну радиограмму за другой, то вряд ли им удастся привлечь внимание к себе. А еще им надо направлять сигналы именно в нашу сторону, на нужной частоте и «строго определенного» содержания – сигналы должны казаться разумными.

Возможно, лишь однажды ученым улыбнулась удача. Пятого августа 1977 года радиотелескоп Огайского университета зафиксировал очень мощный, узкополосный сигнал, природа которого до сих пор непонятна. Он получил название «Вау» («Wow») – по той пометке, что оставил восхищенный астроном на полях протокола наблюдений. Его происхождение не удается объяснить естественными причинами. Но этот сигнал так и остался единственным в своем роде. Ничего подобного больше не обнаружено, хотя поиски позывных далеких миров не прекращаются. Так что однажды, в тот летний день, земляне, быть может, подслушали шифрованные переговоры «зеленых человечков» (впрочем, большинство ученых не верит в такое объяснение).

Фрэнк Дрейк даже вывел формулу, с помощью которой можно было бы подсчитать число цивилизаций, существующих в Млечном Пути. Однако большинство коэффициентов в этом уравнении представляют собой неизвестные величины. Вот почему расхождения в подсчетах огромны.

Так, если в популярной немецкой литературе бытует цифра: «В нашей Галактике насчитывается около полумиллиона высокоразвитых цивилизаций», то, по подсчетам В.Г. Сурдина, «всего несколько цивилизаций в Галактике сейчас готовы к контакту с нами». Как признает сам автор космического реестра, это «не очень оптимистичный, но и не безнадежный прогноз». Вот только если он прав, то даже попытки связаться с внеземными цивилизациями методами радиоастрономии будут крайне затруднительны из-за того, что предполагаемые слушатели наших трансляций так малочисленны. Мы не то что «иголку» ищем в звездной дали, но еще и пытаемся точным броском продеть нитку в ее ушко.

Британские исследователи математик Ян Стюарт и биолог Джек Коэн, авторы книги «Эволюция внеземной жизни», считают, что мы изначально ищем не то, что должны найти. Мы принципиально заблуждаемся, подозревая, что инопланетяне – это наши в чем-то карикатурные двойники. На самом деле жизнь на чужих планетах может принять такой облик, что скорее мы заговорим с собственным автомобилем, чем заметим инопланетянина, даже пребывающего по соседству с нами. Ведь возникновение организмов, в основе которых лежат молекулы ДНК, представляет собой, по мнению Стюарта и Коэна, нечто исключительное для Вселенной. Живые организмы в других частях космоса устроены совсем по иному принципу. Быть может, инопланетные гости давно являются нам в триумфальных вспышках молний, знаменующих торжество внеземного разума, а мы не даем себе труда даже задуматься об этом?

Никто не готов также сказать, к каким прозрениям может привести биологическая, культурная и техническая эволюция разумной жизни. Что если наша радиотехника, достижениями которой мы гордимся, сигнализируя об этом всему честному космическому миру, с их точки зрения, нечто такое же примитивное, как и тамтамы в африканской ночи? И, может быть, им и незачем прилетать на Землю, поскольку все происходящее здесь они уже тысячи лет наблюдают?

В 1973 году радиоастроном Джон Болл шокировал научный мир своей гипотезой «космического зоопарка». По его мнению, инопланетяне не стремятся установить с нами контакт лишь потому, что видят в нашей планете нечто вроде зоопарка или заповедника, где могут наблюдать за нами, как мы – за зубрами в Беловежской пуще или варанами с острова Комодо. «Может быть, в реестре галактической жизни мы занимаем далеко не такое почетное место, как нам кажется», – писал Болл.

Его идея получила развитие. В 1986 году британский астрофизик Мартин Фогг полемически заострил эту мысль. Возможно, инопланетяне сознательно избегают контактов с нами. Запрет, наложенный ими, длится вот уже 4,6 миллиарда лет – с тех пор, как сформировалась наша планета, ведь к тому времени колонизация Галактики была уже завершена.

По мнению американских астрономов Карла Сагана и Уильяма Ньюмана, высокоразвитые цивилизации могли даже сформулировать своего рода «Галактический кодекс», который запрещал бы любое вмешательство в эволюцию молодых цивилизаций, в том числе человеческой, – отчасти потому, что те слаборазвиты и агрессивны, отчасти потому, что становление каждой из них представляет собой уникальный феномен, бесценный вклад в копилку галактической культуры.

А может быть, мы ищем тех, кого давно уже нет? Вселенная – ведь опасное место. Астероиды врезаются в планеты, перепахивая их поверхность. Смертоносные вспышки гамма-лучей выжигают все вокруг. Звезды взрываются и гаснут. «Легко представить себе, – признавал Карл Саган, – что имелось множество внеземных цивилизаций, которые не только не додумались до радиоприборов, но и просто не дожили до этого уровня развития, а вымерли в результате естественного отбора».

Нам некого искать в космической дали, нам остается лишь со страхом глядеть в свое будущее, ведь в хаосе Вселенной и мы оказываемся обречены на неизбежное вымирание. Никакие перелеты с одной планеты на другую, из одной звездной системы в другую не спасут земную жизнь. Космос стремится вернуться в то равновесное состояние, в котором всякая жизнь неуместна. Оживший мир космоса неизбежно станет мертвенным миром.

Из книги Энциклопедический словарь крылатых слов и выражений автора Серов Вадим Васильевич

Жизнь есть борьба Впервые встречается еще в античной литературе. Так, в трагедии Еврипида «Просительницы» говорится: «Наша жизнь - борьба». В 96-м «Письме» римского философа-стоика Луция Аннея Сенеки (4 до н. э. - 65 н. э.) сказано: «Жить, мой Луцилий, значит воевать».Выражение

Из книги Все обо всем. Том 3 автора Ликум Аркадий

Книга есть жизнь нашего времени Из рецензии на книгу Владимира Одоевского «Детские сказки дедушки Иринея» (1840) Виссариона Григорьевича Белинского (1811-1848): «Книга есть жизнь нашего времени. В ней все нуждаются - и старые, и молодые, и деловые, и ничего не делающие; дети -

Из книги Управляя мужчиной – управляешь жизнью автора Данилова Екатерина

Прекрасное есть жизнь Формула из диссертации «Эстетические отношения искусства к действительности» (1855) Николая Григорьевича Чернышевского (1828-1889). В ней автор романа «Что делать?» сформулировал основное положение реалистического искусства: «Из определения

Из книги Энциклопедия самых загадочных мест планеты автора Востокова Евгения

Есть ли жизнь в Мертвом море? Мертвое море - один из самых странных водоемов на Земле. Миллионы лет назад уровень воды в нем был примерно на 420 м выше нынешнего и таким образом превышал уровень Средиземного моря. В те времена в нем существовала жизнь. Однако, потом наступил

Из книги 100 великих тайн Вселенной автора Бернацкий Анатолий

Глава 1 Любовь есть жизнь?

Из книги 100 великих загадок астрономии автора Волков Александр Викторович

ЕСТЬ ЛИ ЖИЗНЬ ПОД ЗЕМЛЕЙ? Во многих легендах говорится о существовании разумной жизни в недрах нашей земли. По словам некоторых историков, один из входов в подземный город находится у подножья Гималаев, прямо под монастырем Лаша в Тибете. Другие же считаю, что еще один

Из книги Готовимся к пенсии: осваиваем Интернет автора Ахметзянова Валентина Александровна

Есть ли во Вселенной белые дыры? Тем, кто хотя бы немного знаком с теорией относительности Эйнштейна, известно, что ее уравнения применимы, когда время направлено как вперед, в будущее, так и назад, в прошлое.И хотя в понимании физиков понятие «течение времени» – выражение

Из книги 1001 вопрос будущей мамы. Большая книга ответов на все вопросы автора Сосорева Елена Петровна

Глава 14. Жизнь во Вселенной Панспермия – залетная жизнь Происхождение жизни на Земле – проблема многогранная, интересующая не только специалистов естественных наук, например биологов или химиков, но и гуманитариев.Долгое время считалось, что живые существа могут

Из книги Мир вокруг нас автора Ситников Виталий Павлович

Есть ли жизнь на Марсе? Ни одна другая планета Солнечной системы не вызывает такого интереса, как Марс. Это единственная планета земного типа, на которой люди могут не только побывать, но и поселиться. Но что их там ждет?В XVII веке Красная планета считалась враждебной для

Из книги Кто есть кто в мире природы автора Ситников Виталий Павлович

Во вселенной есть тайные тропы? Многие понятия современной физики прижились и на страницах научно-фантастических книг или даже заимствованы оттуда: телепортация, многомерное пространство, параллельные Вселенные, путешествия во времени… Не стали исключением и

Из книги Простые вопросы. Книга, похожая на энциклопедию автора Антонец Владимир Александрович

Из книги автора

Правильно питаемся: что есть, когда есть, как есть Десять основных принципов питания. Как считать калории. Пирамида питания. Витамины ы микроэлементы. Какие напитки пить, а какие - нет. Все диеты откладываются. Правильный режим питания.Десять принципов

Из книги автора

Есть ли жизнь на других планетах? Этот вопрос волнует человечество уже не одну тысячу лет. И ученые пытаются найти хотя бы какие-то признаки того, что на других планетах есть жизнь. В космос нацелены огромные звукоулавливающие приборы, которые фиксируют каждый сигнал,

Из книги автора

Есть ли жизнь в кипятке? До последнего времени считалось, что в кипящей воде погибают все, даже самые стойкие бактерии, но природа, как всегда, опровергла и это убеждение. На дне Тихого океана обнаружены сверхгорячие источники с температурой воды от 250 до 400 °С,

Из книги автора

Есть ли жизнь в Мертвом море? Мертвое море – вот уж поистине странное и к тому же далеко не единственное название, данное человеком этому одному из самых необычных водоемов на Земле.Впервые это море стали называть «мертвым» древние греки. Жители древней Иудеи звали

Из книги автора

Есть ли жизнь на Марсе? Многие верят, что жизнь на Марсе есть. Но они не отличают фантастику от реальных фактов. Фантасты же тысячу раз написали - есть, есть, есть. Вопрос только в том, кого мы там встретим - Аэлиту или кого-то другого. Даже сейчас, когда американские

Потенциально пригодные для жизни планеты. Нашу Землю вполне можно использовать как эталонный мир для существования жизни. Но все же ученым нужно рассмотреть множество различных условий, которые сильно отличаются от наших. При которых жизнь во Вселенной может поддерживаться в долгосрочной перспективе.

Сколько лет существует жизнь во Вселенной?

Земля образовалась около 4.5 миллиардов лет назад. Однако с момента Большого взрыва прошло более 9 миллиардов лет. Крайне самонадеянно было бы предполагать, что Вселенной потребовалось все это время для создания необходимых условий для жизни. Обитаемые миры могли возникнуть гораздо раньше. Все ингредиенты, необходимые для жизни ученым пока неизвестны. Но некоторые вполне очевидны. Так какие условия необходимо выполнить, чтобы появилась планета, которая может поддерживать жизнь?

Первое, что будет необходимо – это правильный тип звезды. Здесь могут существовать всевозможные сценарии. Планета может существовать на орбите вокруг активной, мощной звезды и оставаться пригодной для жизни, несмотря на ее враждебность. Красные карлики, такие как , могут излучать мощные вспышки и лишать атмосферы потенциально пригодной для жизни планеты. Но очевидно, что магнитное поле, плотная атмосфера и жизнь, которая была достаточно умна, чтобы искать убежища во время таких интенсивных событий, вполне могли бы в совокупности сделать такой мир пригодным для жизни.

Но если срок жизни звезды не слишком большой, то развитие биологии на ее орбите невозможно. Первое поколение звезд, известное как звезды популяции III, с вероятностью 100 процентов не имели обитаемых планет. Нужно чтобы звезды, по крайней мере, содержали некоторые металлы (тяжелые элементы тяжелее гелия). К тому же, первые звезды жили достаточно мало, чтобы на планете успела появиться жизнь.

Требования к планетам

Итак, прошло достаточно времени для появления тяжелых элементов. Возникли звезды, чей срок существования исчисляется миллиардами лет. Следующим ингредиентом, который нам нужен, является правильный тип планеты. Насколько мы понимаем жизнь, это означает, что планета должна обладать следующими характеристиками:

  • способна поддерживать достаточно плотную атмосферу;
  • поддерживает неравномерное распределение энергии на своей поверхности;
  • имеет жидкую воду на поверхности;
  • обладает нужными начальными ингредиентами для возникновения жизни;
  • имеет мощное магнитное поле.

Каменистая планета, имеющая достаточно большие размеры, плотную атмосферу и вращающаяся вокруг своей звезды на правильном расстоянии, имеет все шансы. Учитывая что планетные системы достаточно распространенное явление в космосе, и так же то, что в каждой галактике огромное число звезд, первые три условия достаточно легко выполнить.

Звезда системы вполне может обеспечить энергетический градиент своей планеты. Он может возникать при воздействии ее гравитации. Или таким генератором может быть крупный спутник, вращающийся вокруг планеты. Эти факторы могут вызвать геологическую активность. Поэтому условие неравномерного распределения энергии легко выполнимо. Планета также должна обладать запасами всех необходимых элементов. Ее плотная атмосфера должна позволять жидкости существовать на поверхности.

Планеты с подобными условиями должны были возникнуть к тому времени, когда Вселенной было всего 300 миллионов лет.

Нужно больше

Но есть один нюанс, который нужно учитывать. Он состоит в том, что необходимо иметь достаточное количество тяжелых элементов. И их синтез занимает больше времени, чем требуется для появления скалистых планет с правильными физическими условиями.

Эти элементы должны обеспечить правильные биохимические реакции, которые необходимы для жизни. На окраинах крупных галактик для этого может потребоваться много миллиардов лет и множество поколений звезд. Которые будут жить и умирать, чтобы выработать необходимое количество нужного вещества.

В сердцах звездообразование происходит часто и непрерывно. Из переработанных остатков предыдущих поколений сверхновых звезд и планетарных туманностей рождаются новые звезды. И количество нужных элементов может там быстро расти.

Галактический центр, однако, является не очень удачным местом для возникновения жизни. Вспышки гамма-всплесков, сверхновые, образование черных дыр, квазары и разрушающиеся молекулярные облака создают здесь среду, которая в лучшем случае нестабильна для жизни. Вряд ли она сможет возникнуть и развиваться в таких условиях.

Чтобы получить нужные условия этот процесс должен прекратиться. Необходимо чтобы звездообразование больше не происходило. Именно поэтому самые первые, наиболее подходящие для жизни планеты возникли, вероятно, не в такой галактике, как наша. А скорее в красно-мертвой галактике, которая перестала образовывать звезды миллиарды лет назад.

Когда мы изучаем галактики, мы видим, что 99,9% их состава – это газ и пыль. Это является причиной появления новых поколений звезд и непрерывного процесса звездообразования. Но некоторые из них прекратили формировать новые звезды около 10 миллиардов лет назад или больше. Когда их топливо заканчивается, что может произойти после катастрофического крупного галактического слияния, звездообразование внезапно прекращается. Голубые гиганты просто заканчивают свою жизнь, когда у них заканчивается топливо. А остаются медленно тлеть дальше.

Мертвые галактики

В результате эти галактики сегодня называются «красными мертвыми» галактиками. Все их звезды стабильны, стары и безопасны в отношении тех рисков, которые приносят области активного звездобразования.

Одна из таких, галактика NGC 1277, находится совсем рядом с нами (по космическим меркам).

Поэтому очевидно, что первые планеты, на которых могла возникнуть жизнь, возникли не позже 1 миллиарда лет после рождения Вселенной.

По самым осторожным оценкам существует два триллиона галактик. И поэтому галактики, которые являются космическими странностями и статистическими выбросами, несомненно, существуют. Остается только несколько вопросов: какова распространенность жизни, вероятность ее появления и необходимое для этого время? Жизнь может возникнуть во Вселенной и до достижения миллиардного года. Но устойчивый, постоянно обитаемый мир является гораздо большим достижением, чем жизнь, только что возникшая.


Вам могут понравиться эти статьи: