1 механические волны. Конспект урока "механические волны и их основные характеристики"

1 механические волны. Конспект урока
1 механические волны. Конспект урока "механические волны и их основные характеристики"

Механическая волна в физике - это явление распространения возмущений, сопровождающееся передачей энергии колеблющегося тела от одной точки к другой без транспортировки вещества, в некоторой упругой среде.

Среда, в которой между молекулами существует упругое взаимодействие (жидкость, газ или твёрдое вещество) - обязательное условие для возникновения механических возмущений. Они возможны только тогда, когда молекулы вещества сталкиваются друг с другом, передавая энергию. Одним из примеров таких возмущений является звук (акустическая волна). Звук может распространяться в воздухе, в воде или в твёрдом теле, но не в вакууме.

Для создания механической волны необходима некоторая начальная энергия, которая выведет среду из положения равновесия. Эта энергия затем и будет передаваться волной. Например, камень, брошенный в небольшое количество воды, создаёт волну на поверхности. Громкий крик создаёт акустическую волну.

Основные виды механических волн:

  • Звуковые;
  • На поверхности воды;
  • Землетрясения;
  • Сейсмические волны.

Механические волны имеют пики и впадины как все колебательные движения. Их основными характеристиками служат:

  • Частота. Это количество колебаний, совершающихся за секунду. Единицы измерения в СИ: [ν] = [Гц] = [с -1 ].
  • Длина волны. Расстояние между соседними пиками или впадинами. [λ] = [м].
  • Амплитуда. Наибольшее отклонение точки среды от положения равновесия. [Х max ] = [м].
  • Скорость. Это расстояние, которое преодолевает волна за секунду. [V] = [м/с].

Длина волны

Длиной волны называют расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах.

Волны распространяются в пространстве. Направление их распространения называют лучом и обозначают линией, перпендикулярной волновой поверхности. А их скорость вычисляют по формуле:

Граница волновой поверхности, отделяющая часть среды, в которой уже происходят колебания, от части среды, в которой колебания ещё не начались, - волновой фронт .

Продольные и поперечные волны

Одним из способов классификации механического типа волн является определение направления движения отдельных частиц среды в волне по отношению к направлению её распространения.

В зависимости от направления движения частиц в волнах, выделяют:

  1. Поперечные волны. Частицы среды в таком типе волн колеблются под прямым углом к волновому лучу. Рябь на пруду или вибрирующие струны гитары помогут представить поперечные волны. Такой тип колебания не может распространяться в жидкости или газовой среде, потому что частицы этих сред движутся хаотично и невозможно организовать их движение перпендикулярно направлению распространения волны. Поперечный тип волн движется намного медленнее, чем продольный.
  2. Продольные волны. Частицы среды колеблются в том же направлении, в котором распространяется волна. Некоторые волны такого типа называют компрессионными или волнами сжатия. Продольные колебания пружины - периодичные сжатия и растяжения - представляют хорошую визуализацию таких волн. Продольные волны являются самыми быстрыми волнами механического типа. Звуковые волны в воздухе, цунами и ультразвук - продольные. К ним можно отнести и определённый тип сейсмических волн, распространяющихся под землёй и в воде.

Когда в каком-нибудь месте твердой, жидкой или газообразной среды происходит возбуждение колебаний частиц, результатом взаимодействия атомов и молекул среды становится передача колебаний от одной точки к другой с конечной скоростью.

Определение 1

Волна – это процесс распространения колебаний в среде.

Различают следующие виды механических волн:

Определение 2

Поперечная волна : частицы среды смещаются в направлении, перпендикулярном направлению распространения механической волны.

Пример: волны, распространяющиеся по струне или резиновому жгуту в натяжении (рисунок 2 . 6 . 1);

Определение 3

Продольная волна : частицы среды смещаются в направлении распространения механической волны.

Пример: волны, распространяющиеся в газе или упругом стержне (рисунок 2 . 6 . 2).

Интересно, что волны на поверхности жидкости включают в себя и поперечную, и продольную компоненты.

Замечание 1

Укажем важное уточнение: когда механические волны распространяются, они переносят энергию, форму, но не переносят массу, т.е. в обоих видах волн переноса вещества в направлении распространения волны не происходит. Распространяясь, частицы среды совершают колебания около положений равновесия. При этом, как мы уже сказали, волны переносят энергию, а именно энергию колебаний от одной точки среды к другой.

Рисунок 2 . 6 . 1 . Распространение поперечной волны по резиновому жгуту в натяжении.

Рисунок 2 . 6 . 2 . Распространение продольной волны по упругому стержню.

Характерная черта механических волн – их распространение в материальных средах в отличие, например, от световых волн, способных распространяться и в пустоте. Для возникновения механического волнового импульса необходима среда, имеющая возможность запасать кинетическую и потенциальную энергии: т.е. среда должна иметь инертные и упругие свойства. В реальных средах эти свойства получают распределение по всему объему. К примеру, каждому небольшому элементу твердого тела присуща масса и упругость. Самая простая одномерная модель такого тела представляет из себя совокупность шариков и пружинок (рисунок 2 . 6 . 3).

Рисунок 2 . 6 . 3 . Простейшая одномерная модель твердого тела.

В этой модели инертные и упругие свойства разделены. Шарики имеют массу m , а пружинки – жесткость k . Такая простая модель дает возможность описать распространение продольных и поперечных механических волн в твердом теле. При распространении продольной волны шарики смещаются вдоль цепочки, а пружинки растягиваются или сжимаются, что есть деформация растяжения или сжатия. Если подобная деформация происходит в жидкой или газообразной среде, ее сопровождает уплотнение или разрежение.

Замечание 2

Отличительная особенность продольных волн заключается в том, что они способны распространяться в любых средах: твердых, жидких и газообразных.

Если в указанной модели твердого тела один или несколько шариков получают смещение перпендикулярно всей цепочке, можно говорить о возникновении деформации сдвига. Пружины, получившие деформацию в результате смещения, будут стремиться вернуть смещенные частицы в положение равновесия, а на ближайшие несмещенные частицы начнет оказываться влияние упругих сил, стремящихся отклонить эти частицы от положения равновесия. Итогом станет возникновение поперечной волны в направлении вдоль цепочки.

В жидкой или газообразной среде упругая деформация сдвига не возникает. Смещение одного слоя жидкости или газа на некоторое расстояние относительно соседнего слоя не приведет к появлению касательных сил на границе между слоями. Силы, которые оказывают воздействие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. Аналогично можно сказать и о газообразной среде.

Замечание 3

Таким образом, появление поперечных волн невозможно в жидкой или газообразной средах.

В плане практического применения особый интерес представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ . Синусоидальные волны получают распространение в однородных средах с некоторой постоянной скоростью υ .

Запишем выражение, показывающее зависимость смещения y (x , t) частиц среды из положения равновесия в синусоидальной волне от координаты x на оси O X , вдоль которой распространяется волна, и от времени t:

y (x , t) = A cos ω t - x υ = A cos ω t - k x .

В приведенном выражении k = ω υ – так называемое волновое число, а ω = 2 π f является круговой частотой.

Рисунок 2 . 6 . 4 демонстрирует «моментальные фотографии» поперечной волны в момент времени t и t + Δ t . За промежуток времени Δ t волна перемещается вдоль оси O X на расстояние υ Δ t . Подобные волны носят название бегущих волн.

Рисунок 2 . 6 . 4 . «Моментальные фотографии» бегущей синусоидальной волны в момент времени t и t + Δ t .

Определение 4

Длина волны λ – это расстояние между двумя соседними точками на оси O X , испытывающими колебание в одинаковых фазах.

Расстояние, величина которого есть длина волны λ , волна проходит за период Т. Таким образом, формула длины волны имеет вид: λ = υ T , где υ является скоростью распространения волны.

С течением времени t происходит изменение координаты x любой точки на графике, отображающем волновой процесс (к примеру, точка А на рисунке 2 . 6 . 4), при этом значение выражения ω t – k x остается неизменным. Спустя время Δ t точка А переместится по оси O X на некоторое расстояние Δ x = υ Δ t . Таким образом:

ω t - k x = ω (t + ∆ t) - k (x + ∆ x) = c o n s t или ω ∆ t = k ∆ x .

Из указанного выражения следует:

υ = ∆ x ∆ t = ω k или k = 2 π λ = ω υ .

Становится очевидно, что бегущая синусоидальная волна имеет двойную периодичность – во времени и пространстве. Временной период является равным периоду колебаний T частиц среды, а пространственный период равен длине волны λ .

Определение 5

Волновое число k = 2 π λ – это пространственный аналог круговой частоты ω = - 2 π T .

Сделаем акцент на том, что уравнение y (x , t) = A cos ω t + k x является описанием синусоидальной волны, получающей распространение в направлении, противоположном направлению оси O X , со скоростью υ = - ω k .

Когда бегущая волна получает распространение, все частицы среды гармонически колеблются с некоторой частотой ω . Это означает, что как и при простом колебательном процессе, средняя потенциальная энергия, являющаяся запасом некоторого объема среды, есть средняя кинетическая энергия в том же объеме, пропорциональная квадрату амплитуды колебаний.

Замечание 4

Из вышесказанного можно сделать вывод, что, когда бегущая волна получает распространение, появляетсяпоток энергии, пропорциональный скорости волны и квадрату ее амплитуды.

Бегущие волны движутся в среде с определенными скоростями, находящимися в зависимости от типа волны, инертных и упругих свойств среды.

Скорость, с которой поперечные волны распространяются в натянутой струне или резиновом жгуте, имеет зависимость от погонной массы μ (или массы единицы длины) и силы натяжения T :

Скорость, с которой продольные волны распространяются в безграничной среде, рассчитывается при участии таких величин как плотность среды ρ (или масса единицы объема) и модульвсестороннего сжатия B (равен коэффициенту пропорциональности между изменением давления Δ p и относительным изменением объема Δ V V , взятому с обратным знаком):

∆ p = - B ∆ V V .

Таким образом, скорость распространения продольных волн в безграничной среде, определяется по формуле:

Пример 1

При температуре 20 ° С скорость распространения продольных волн в воде υ ≈ 1480 м / с, в различных сортах стали υ ≈ 5 – 6 к м / с.

Если речь идет о продольных волнах, получающих распространение в упругих стержнях, запись формулы для скорости волны содержит не модуль всестороннего сжатия, а модуль Юнга:

Для стали отличие E от B незначительно, а вот для прочих материалов оно может составлять 20 – 30 % и больше.

Рисунок 2 . 6 . 5 . Модель продольных и поперечных волн.

Предположим, что механическая волна, получившая распространение в некоторой среде, встретила на пути некое препятствие: в этом случае характер ее поведения резко изменится. К примеру, на границе раздела двух сред с различающимися механическими свойствами волна частично отразится, а частично проникнет во вторую среду. Волна, пробегающая по резиновому жгуту или струне, отразится от зафиксированного конца, и возникнет встречная волна. Если у струны зафиксированы оба конца, появятся сложные колебания, являющиеся итогом наложения (суперпозиции) двух волн, получающих распространение в противоположных направлениях и испытывающих отражения и переотражения на концах. Так «работают» струны всех струнных музыкальных инструментов, зафиксированные с обоих концов. Схожий процесс возникает при звучании духовых инструментов, в частности, органных труб.

Если волны, распространяющиеся по струне во встречных направлениях, обладают синусоидальной формой, то при определенных условиях они образуют стоячую волну.

Допустим, струна длины l зафиксирована таким образом, что один из ее концов расположен в точке x = 0 , а другой – в точке x 1 = L (рисунок 2 . 6 . 6). В струне имеется натяжение T .

Рисунок 2 . 6 . 6 . Возникновение стоячей волны в струне, зафиксированной на обоих концах.

По струне одновременно пробегают в противоположных направлениях две волны с одинаковой частотой:

  • y 1 (x , t) = A cos (ω t + k x) – волна, распространяющаяся справа налево;
  • y 2 (x , t) = A cos (ω t - k x) – волна, распространяющаяся слева направо.

Точка x = 0 - один из зафиксированных концов струны: в этой точке падающая волна y 1 в результате отражения создает волну y 2 . Отражаясь от зафиксированного конца, отраженная волна входит в противофазу с падающей. В соответствии с принципом суперпозиции (что есть экспериментальный факт) колебания, созданные встречными волнами во всех точках струны, суммируются. Из сказанного следует, что итоговое колебание в каждой точке определяется как сумма колебаний, вызванных волнами y 1 и y 2 в отдельности. Таким образом:

y = y 1 (x , t) + y 2 (x , t) = (- 2 A sin ω t) sin k x .

Приведенное выражение является описанием стоячей волны. Введем некоторые понятия, применимые к такому явлению как стоячая волна.

Определение 6

Узлы – точки неподвижности в стоячей волне.

Пучности – точки, расположенные между узлами и колеблющиеся с максимальной амплитудой.

Если следовать данным определениям, для возникновения стоячей волны оба зафиксированных конца струны должны являться узлами. Указанная ранее формула отвечает этому условию на левом конце (x = 0) . Чтобы условие было выполнено и на правом конце (x = L) , необходимо чтобы k L = n π , где n является любым целым числом. Из сказанного можно сделать вывод, что стоячая волна в струне появляется не всегда, а только тогда, когда длина L струны равна целому числу длин полуволн:

l = n λ n 2 или λ n = 2 l n (n = 1 , 2 , 3 , . . .) .

Набору значений λ n длин волн соответствует набор возможных частот f

f n = υ λ n = n υ 2 l = n f 1 .

В этой записи υ = T μ есть скорость, с которой распространяются поперечные волны по струне.

Определение 7

Каждая из частот f n и связанный с ней тип колебания струны называется нормальной модой. Наименьшая частота f 1 носит название основной частоты, все прочие (f 2 , f 3 , …) называются гармониками.

Рисунок 2 . 6 . 6 иллюстрирует нормальную моду для n = 2 .

Стоячая волна не обладает потоком энергии. Энергия колебаний, «запертая» в отрезке струны между двумя соседними узлами, не переносится в остальные части струны. В каждом таком отрезке происходит периодическое (дважды за период T ) преобразование кинетической энергии в потенциальную и обратно, подобно обычной колебательной системе. Однако, здесь имеется различие: если груз на пружине или маятник имеют единственную собственную частоту f 0 = ω 0 2 π , то струна характеризуется наличием бесконечного числа собственных (резонансных) частот f n . На рисунке 2 . 6 . 7 показано несколько вариантов стоячих волн в струне, зафиксированной на обоих концах.

Рисунок 2 . 6 . 7 . Первые пять нормальных мод колебаний струны, зафиксированной на обоих концах.

Согласно принципу суперпозиции стоячие волны различных видов (с разными значениями n ) способны одновременно присутствовать в колебаниях струны.

Рисунок 2 . 6 . 8 . Модель нормальных мод струны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Представить, что такое механические волны, можно, бросив в воду камень. Круги, возникающие на ней и являющиеся чередующимися впадинами и гребнями, - это пример механических волн. В чем их сущность? Механические волны - это процесс распространения колебаний в упругих средах.

Волны на поверхностях жидкостей

Такие механические волны существуют благодаря воздействию на частицы жидкости сил межмолекулярного взаимодействия и тяжести. Люди уже давно изучают это явление. Наиболее примечательными являются океанские и морские волны. По мере увеличения скорости ветра они изменяются, а их высота растет. Также усложняется и форма самих волн. В океане они могут достигать устрашающих масштабов. Одним из самых наглядных примеров силы являются цунами, сметающие все на своем пути.

Энергия морских и океанских волн

Достигая берега, морские волны при резком изменении глубины возрастают. Они иногда достигают высоты в несколько метров. В такие моменты колоссальной массы воды передается береговым препятствиям, которые под ее воздействием быстро разрушаются. Сила прибоя иногда достигает грандиозных значений.

Упругие волны

В механике изучают не только колебания на поверхности жидкости, но и так называемые упругие волны. Это возмущения, которые распространяются в разных средах под действием в них сил упругости. Такое возмущение представляет собой любое отклонение частичек данной среды от положения равновесия. Наглядным примером упругих волн является длинная веревка или резиновая трубка, прикрепленная одним из концов к чему-нибудь. Если ее туго натянуть, а затем боковым резким движением создать на втором (незакрепленном) ее конце возмущение, то можно увидеть, как оно по всей длине веревки «пробежит» до опоры и отразится назад.

Начальное возмущение приводит к возникновению в среде волны. Оно вызывается действием какого-то инородного тела, которое в физике называется источником волны. Им может быть рука человека, качнувшего веревку, или камешек, брошенный в воду. В том случае, когда действие источника имеет кратковременный характер, в среде часто возникает одиночная волна. Когда же «возмутитель» совершает длительные волны начинают возникать одна за другой.

Условия возникновения механических волн

Такого рода колебания образуются не всегда. Необходимым условием для их появления является возникновение в момент возмущения среды препятствующих ему сил, в частности, упругости. Они стремятся сблизить соседние частицы, когда они расходятся, и оттолкнуть их друг от друга в момент сближения. Силы упругости, действуя на удаленные от источника возмущения частицы, начинают выводить их из равновесия. Со временем все частички среды вовлекаются в одно колебательное движение. Распространение таких колебаний и является волной.

Механические волны в упругой среде

В упругой волне существуют 2 вида движения одновременно: колебания частиц и распространение возмущения. Продольной называется механическая волна, частицы которой колеблются вдоль направления ее распространения. Поперечной называется волна, частицы среды которой колеблются поперек направления ее распространения.

Свойства механических волн

Возмущения в продольной волне представляют собой разрежения и сжатия, а в поперечной - сдвиги (смещения) одних слоев среды по отношению к другим. Деформация сжатия сопровождается появлением сил упругости. При этом связана с появлением сил упругости исключительно в твердых телах. В газообразных и жидких средах сдвиг слоев этих сред не сопровождается возникновением упомянутой силы. Благодаря своим свойствам продольные волны способны распространяться в любых средах, а поперечные - исключительно в твердых.

Особенности волн на поверхности жидкостей

Волны на поверхности жидкости не продольные и не поперечные. Они имеют более сложный, так называемый продольно-поперечный характер. В этом случае частицы жидкости двигаются по окружности или по вытянутым эллипсам. частичек на поверхности жидкости, и особенно при больших колебаниях, сопровождаются их медленным, но непрерывным перемещением по направлению распространения волны. Именно эти свойства механических волн в воде обуславливают появление на берегу различных даров моря.

Частота механических волн

Если в упругой среде (жидкой, твердой, газообразной) возбудить колебание ее частиц, то вследствие взаимодействия между ними оно будет распространяться со скоростью u. Так, если в газообразной или жидкой среде будет находиться колеблющееся тело, то его движение начнет передаваться всем прилегающим к нему частичкам. Они будут вовлекать в процесс следующие и так далее. При этом абсолютно все точки среды станут совершать колебания одинаковой частоты, равной частоте колеблющегося тела. Она и является частотой волны. Другими словами, эту величину можно охарактеризовать как точек в среде, где распространяется волна.

Сразу может быть непонятно, каким образом происходит этот процесс. С механическими волнами связывают перенос энергии колебательного движения от его источника к периферии среды. В ходе чего возникают так называемые периодические деформации, переносимые волной из одной точки в другую. При этом сами частички среды вместе с волной не перемещаются. Они колеблются рядом со своим положением равновесия. Именно поэтому распространение механической волны не сопровождается перенесением вещества из одного места в другое. У механических волн различная частота. Поэтому их поделили на диапазоны и создали специальную шкалу. Частота измеряется в герцах (Гц).

Основные формулы

Механические волны, формулы вычисления которых довольно просты, являются интересным объектом для изучения. Скорость волны (υ) - это скорость перемещения ее фронта (геометрическое место всех точек, к которым дошло колебание среды в данный момент):

где ρ - плотность среды, G - модуль упругости.

При расчете не стоит путать скорость механической волны в среде со скоростью движения частичек среды, которые вовлечены в Так, к примеру, звуковая волна в воздухе распространяется со средней скоростью колебания его молекул в 10 м/с, в то время как скорость звуковой волны в нормальных условиях составляет 330 м/с.

Волновой фронт бывает разных видов, простейшими из которых являются:

Сферический - вызывается колебаниями в газообразной или жидкой среде. Амплитуда волны при этом убывает при удалении от источника обратно пропорционально квадрату расстояния.

Плоский - представляет собой плоскость, которая перпендикулярна направлению распространения волны. Он возникает, например, в закрытом поршневом цилиндре, когда тот совершает колебательные движения. Плоская волна характеризуется практически неизменной амплитудой. Ее незначительное уменьшение при удалении от источника возмущения связано со степенью вязкости газообразной или жидкой среды.

Длина волны

Под понимают расстояние, на которое будет перемещен ее фронт за время, которое равняется периоду колебания частичек среды:

λ = υT = υ/v = 2πυ/ ω,

где Т - период колебания, υ - скорость волны, ω - циклическая частота, ν - частота колебания точек среды.

Поскольку скорость распространения механической волны находится в полной зависимости от свойств среды, то ее длина λ во время перехода из одной среды в иную изменяется. При этом частота колебания ν всегда остается прежней. Механические и схожи тем, что при их распространении осуществляется передача энергии, но не происходит перенос вещества.

В курсе физики 7 класса вы изучали механические колебания. Часто бывает так, что, возникнув в одном месте, колебания распространяются в соседние области пространства. Вспомните, например, распространение колебаний от брошенного в воду камешка или колебания земной коры, распространяющиеся от эпицентра землетрясения. В таких случаях говорят о волновом движении — волнах (рис. 17.1). Из этого параграфа вы узнаете об особенностях волнового движения.

Создаем механические волны

Возьмем довольно длинную веревку, один конец которой прикрепим к вертикальной поверхности, а второй будем двигать вниз-вверх (колебать). Колебания от руки распространятся по веревке, постепенно вовлекая в колебательное движение все более удаленные точки, — по веревке побежит механическая волна (рис. 17.2).

Механической волной называют распространение колебаний в упругой среде*.

Теперь закрепим горизонтально длинную мягкую пружину и нанесем по ее свободному концу серию последовательных ударов — в пружине побежит волна, состоящая из сгущений и разрежений витков пружины (рис. 17.3).

Описанные выше волны можно увидеть, однако большинство механических волн невидимы, например звуковые волны (рис. 17.4).

На первый взгляд, все механические волны абсолютно разные, но причины их возникновения и распространения одинаковы.

Выясняем, как и почему в среде распространяется механическая волна

Любая механическая волна создается колеблющимся телом — источником волны. Осуществляя колебательное движение, источник волны деформирует ближайшие к нему слои среды (сжимает и растягивает их либо смещает). В результате возникают силы упругости, которые действуют на соседние слои среды и заставляют их осуществлять вынужденные колебания. Эти слои, в свою очередь, деформируют следующие слои и заставляют их колебаться. Постепенно, один за другим, все слои среды вовлекаются в колебательное движение — в среде распространяется механическая волна.

Рис. 17.6. В продольной волне слои среды колеблются вдоль направления распространения волны

Различаем поперечные и продольные механические волны

Сравним распространение волны вдоль веревки (см. рис. 17.2) и в пружине (см. рис. 17.3).

Отдельные части веревки движутся (колеблются) перпендикулярно направлению распространения волны (на рис. 17.2 волна распространяется справа налево, а части веревки движутся вниз-вверх). Такие волны называют поперечными (рис. 17.5). При распространении поперечных волн происходит смещение одних слоев среды относительно других. Деформация смещения сопровождается возникновением сил упругости только в твердых телах, поэтому поперечные волны не могут распространяться в жидкостях и газах. Итак, поперечные волны распространяются только в твердых телах.

При распространении волны в пружине витки пружины движутся (колеблются) вдоль направления распространения волны. Такие волны называют продольными (рис. 17.6). Когда распространяется продольная волна, в среде происходят деформации сжатия и растяжения (вдоль направления распространения волны плотность среды то увеличивается, то уменьшается). Такие деформации в любой среде сопровождаются возникновением сил упругости. Поэтому продольные волны распространяются и в твердых телах, и в жидкостях, и в газах.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Они имеют сложный продольно-поперечный характер, при этом частицы жидкости движутся по эллипсам. В этом легко убедиться, если бросить в море легкую щепку и понаблюдать за ее движением на поверхности воды.

Выясняем основные свойства волн

1. Колебательное движение от одной точки среды к другой передается не мгновенно, а с некоторым опозданием, поэтому волны распространяются в среде с конечной скоростью.

2. Источник механических волн — колеблющееся тело. При распространении волны колебания частей среды — вынужденные, поэтому частота колебаний каждой части среды равна частоте колебаний источника волны.

3. Механические волны не могут распространяться в вакууме.

4. Волновое движение не сопровождается переносом вещества — части среды всего лишь колеблются относительно положений равновесия.

5. С приходом волны части среды приходят в движение (приобретают кинетическую энергию). Это означает, что при распространении волны происходит перенос энергии.


Перенос энергии без переноса вещества — важнейшее свойство любой волны.

Вспомните распространение волн по поверхности воды (рис. 17.7). Какие наблюдения подтверждают основные свойства волнового движения?

Вспоминаем физические величины, характеризующие колебания

Волна — это распространение колебаний, поэтому физические величины, характеризующие колебания (частота, период, амплитуда), также характеризуют и волну. Итак, вспомним материал 7 класса:

Физические величины, характеризующие колебания

Частота колебаний ν

Период колебаний T

Амплитуда колебаний A

Определе

количество колебаний за единицу времени

время одного колебания

максимальное расстояние, на которое отклоняется точка от положения равновесия

Формула для определения

N — количество колебаний за интервал времени t

Единица в СИ

секунда (с)

Обратите внимание! При распространении механической волны все части среды, в которой распространяется волна, колеблются с одинаковой частотой (ν), которая равна частоте колебаний источника волны, поэтому период

колебаний (T) для всех точек среды тоже одинаков, ведь

А вот амплитуда колебаний постепенно уменьшается с отдалением от источника волны.

Выясняем длину и скорость распространения волны

Вспомните распространение волны вдоль веревки. Пусть конец веревки осуществил одно полное колебание, то есть время распространения волны равно одному периоду (t = T). За это время волна распространилась на некоторое расстояние λ (рис. 17.8, а). Это расстояние называют длиной волны.

Длина волны λ — расстояние, на которое распространяется волна за время, равное периоду T:

где v — скорость распространения волны. Единица длины волны в СИ — метр:

Нетрудно заметить, что точки веревки, расположенные друг от друга на расстоянии одной длины волны, колеблются синхронно — имеют одинаковую фазу колебаний (рис. 17.8, б, в). Например, точки A и B веревки одновременно движутся вверх, одновременно достигают гребня волны, затем одновременно начинают двигаться вниз и т. д.

Рис. 17.8. Длина волны равна расстоянию, на которое распространяется волна за время одного колебания (это также расстояние между двумя ближайшими гребнями или двумя ближайшими впадинами)

Воспользовавшись формулой λ = vT, можно определить скорость распространения

получим формулу взаимосвязи длины, частоты и скорости распространения волны — формулу волны:

Если волна переходит из одной среды в другую, скорость ее распространения изменяется, а частота остается неизменной, поскольку частота определяется источником волны. Таким образом, согласно формуле v = λν при переходе волны из одной среды в другую длина волны изменяется.

Формула волны

Учимся решать задачи

Задача. Поперечная волна распространяется вдоль шнура со скоростью 3 м/с. На рис. 1 показано положение шнура в некоторый момент времени и направление распространения волны. Считая, что сторона клетки равна 15 см, определите:

1) амплитуду, период, частоту и длину волны;


Анализ физической проблемы, решение

Волна поперечная, поэтому точки шнура колеблются перпендикулярно направлению распространения волны (смещаются вниз-вверх относительно некоторых положений равновесия).

1) Из рис. 1 видим, что максимальное отклонение от положения равновесия (амплитуда A волны) равно 2 клеткам. Значит, A = 2 15 см = 30см.

Расстояние между гребнем и впадиной — 60 см (4 клетки), соответственно расстояние между двумя ближайшими гребнями (длина волны) вдвое больше. Значит, λ = 2 · 60 см = 120 см = 1,2м.

Частоту ν и период T волны найдем, воспользовавшись формулой волны:

2) Чтобы выяснить направление движения точек шнура, выполним дополнительное построение. Пусть за небольшой интервал времени Δt волна сместилась на некоторое небольшое расстояние. Поскольку волна смещается вправо, а ее форма со временем не изменяется, точки шнура займут положение, показанное на рис. 2 пунктиром.

Волна поперечная, то есть точки шнура движутся перпендикулярно направлению распространения волны. Из рис. 2 видим, что точка K через интервал времени Δt окажется ниже своего начального положения, следовательно, скорость ее движения направлена вниз; точка В переместится выше, следовательно, скорость ее движения направлена вверх; точка С переместится ниже, следовательно, скорость ее движения направлена вниз.

Ответ: A = 30 см; T = 0,4 с; ν = 2,5 Гц; λ = 1,2 м; K и С — вниз, В — вверх.

Подводим итоги

Распространение колебаний в упругой среде называют механической волной. Механическую волну, в которой части среды колеблются перпендикулярно направлению распространения волны, называют поперечной; волну, в которой части среды колеблются вдоль направления распространения волны, называют продольной.

Волна распространяется в пространстве не мгновенно, а с некоторой скоростью. При распространении волны происходит перенос энергии без переноса вещества. Расстояние, на которое распространяется волна за время, равное периоду, называют длиной волны — это расстояние между двумя ближайшими точками, которые колеблются синхронно (имеют одинаковую фазу колебаний). Длина λ, частота ν и скорость v распространения волны связаны формулой волны: v = λν.

Контрольные вопросы

1. Дайте определение механической волны. 2. Опишите механизм образования и распространения механической волны. 3. Назовите основные свойства волнового движения. 4. Какие волны называют продольными? поперечными? В каких средах они распространяются? 5. Что такое длина волны? Как ее определяют? 6. Как связаны длина, частота и скорость распространения волны?

Упражнение № 17

1. Определите длину каждой волны на рис. 1.

2. В океане длина волны достигает 270 м, а ее период равен 13,5 с. Определите скорость распространения такой волны.

3. Совпадают ли скорость распространения волны и скорость движения точек среды, в которой распространяется волна?

4. Почему механическая волна не распространяется в вакууме?

5. В результате взрыва, произведенного геологами, в земной коре распространилась волна со скоростью 4,5 км/с. Отраженная от глубоких слоев Земли, волна была зафиксирована на поверхности Земли через 20 с после взрыва. На какой глубине залегает порода, плотность которой резко отличается от плотности земной коры?

6. На рис. 2 изображены две веревки, вдоль которых распространяется поперечная волна. На каждой веревке показано направление колебаний одной из ее точек. Определите направления распространения волн.

7. На рис. 3 изображено положение двух шнуров, вдоль которых распространяется волна, показано направление распространения каждой волны. Для каждого случая а и б определите: 1) амплитуду, период, длину волны; 2) направление, в котором в данный момент времени движутся точки А, В и С шнура; 3) количество колебаний, которые совершает любая точка шнура за 30 с. Считайте, что сторона клетки равна 20 см.

8. Человек, стоящий на берегу моря, определил, что расстояние между соседними гребнями волн равно 15 м. Кроме того, он подсчитал, что за 75 с до берега доходит 16 волновых гребней. Определите скорость распространения волн.

Это материал учебника