Равномерным движением тела по окружности. Движение тела по окружности с постоянной по модулю скоростью

Равномерным движением тела по окружности. Движение тела по окружности с постоянной по модулю скоростью
  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Вы сейчас здесь: Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • Движение тела по окружности с постоянной по модулю скоростью - это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.

    Положение тела на окружности определяется радиусом-вектором \(~\vec r\), проведенным из центра окружности. Модуль радиуса-вектора равен радиусу окружности R (рис. 1).

    За время Δt тело, двигаясь из точки А в точку В , совершает перемещение \(~\Delta \vec r\), равное хорде АВ , и проходит путь, равный длине дуги l .

    Радиус-вектор поворачивается на угол Δφ . Угол выражают в радианах.

    Скорость \(~\vec \upsilon\) движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью . Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени Δt за который эта дуга пройдена:

    \(~\upsilon = \frac{l}{\Delta t}.\)

    Скалярная физическая величина, численно равная отношению угла поворота радиуса-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью :

    \(~\omega = \frac{\Delta \varphi}{\Delta t}.\)

    В СИ единицей угловой скорости является радиан в секунду (рад/с).

    При равномерном движении по окружности угловая скорость и модуль линейной скорости - величины постоянные: ω = const; υ = const.

    Положение тела можно определить, если известен модуль радиуса-вектора \(~\vec r\) и угол φ , который он составляет с осью Ox (угловая координата). Если в начальный момент времени t 0 = 0 угловая координата равна φ 0 , а в момент времени t она равна φ , то угол поворота Δφ радиуса-вектора за время \(~\Delta t = t - t_0 = t\) равен \(~\Delta \varphi = \varphi - \varphi_0\). Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности :

    \(~\varphi = \varphi_0 + \omega t.\)

    Оно позволяет определить положение тела в любой момент времени t . Учитывая, что \(~\Delta \varphi = \frac{l}{R}\), получаем\[~\omega = \frac{l}{R \Delta t} = \frac{\upsilon}{R} \Rightarrow\]

    \(~\upsilon = \omega R\) - формула связи между линейной и угловой скоростью.

    Промежуток времени Τ , в течение которого тело совершает один полный оборот, называется периодом вращения :

    \(~T = \frac{\Delta t}{N},\)

    где N - число оборотов, совершенных телом за время Δt .

    За время Δt = Τ тело проходит путь \(~l = 2 \pi R\). Следовательно,

    \(~\upsilon = \frac{2 \pi R}{T}; \ \omega = \frac{2 \pi}{T} .\)

    Величина ν , обратная периоду, показывающая, сколько оборотов совершает тело за единицу времени, называется частотой вращения :

    \(~\nu = \frac{1}{T} = \frac{N}{\Delta t}.\)

    Следовательно,

    \(~\upsilon = 2 \pi \nu R; \ \omega = 2 \pi \nu .\)

    Литература

    Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 18-19.

    Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назватьравномерным , оно являетсяравноускоренным .

    Угловая скорость

    Выберем на окружности точку1 . Построим радиус. За единицу времени точка переместится в пункт2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

    Период и частота

    Период вращенияT - это время, за которое тело совершает один оборот.

    Частота вращение - это количество оборотов за одну секунду.

    Частота и период взаимосвязаны соотношением

    Связь с угловой скоростью

    Линейная скорость

    Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной.Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


    Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть периодT .Путь , который преодолевает точка - это есть длина окружности.

    Центростремительное ускорение

    При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

    Используя предыдущие формулы, можно вывести следующие соотношения


    Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

    Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

    Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

    Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

    Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

    Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна

    Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А - уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

    Движение по окружности.

    1.Равномерное движение по окружности

    2.Угловая скорость вращательного движения.

    3.Период вращения.

    4.Частота вращения.

    5.Связь линейной скорости с угловой.

    6.Центростремительное ускорение.

    7.Равнопеременное движение по окружности.

    8.Угловое ускорение в равнопеременном движении по окружности.

    9.Тангенциальное ускорение.

    10.Закон равноускоренного движения по окружности.

    11. Средняя угловая скорость в равноускоренном движении по окружности.

    12.Формулы, устанавливающие связь между угловой скоростью, угловым ускорением и углом поворота в равноускоренном движении по окружности.

    1.Равномерное движение по окружности – движение, при котором материальная точка за равные интервалы времени проходит равные отрезки дуги окружности, т.е. точка движется по окружности с постоянной по модулю скоростью. В этом случае скорость равна отношению дуги окружности, пройденной точкой ко времени движения, т.е.

    и называется линейной скоростью движения по окружности.

    Как и в криволинейном движении вектор скорости направлен по касательной к окружности в направлении движения (Рис.25).

    2. Угловая скорость в равномерном движении по окружности – отношение угла поворота радиуса ко времени поворота:

    В равномерном движении по окружности угловая скорость постоянна. В системе СИ угловая скорость измеряется в(рад/c). Один радиан – рад это центральный угол, стягивающий дугу окружности длиной равной радиусу. Полный угол содержит радиан, т.е. за один оборот радиус поворачивается на угол радиан.

    3. Период вращения – интервал времени Т, в течении которого материальная точка совершает один полный оборот. В системе СИ период измеряется в секундах.

    4. Частота вращения – число оборотов , совершаемых за одну секунду. В системе СИ частота измеряется в герцах (1Гц = 1 ) . Один герц – частота, при которой за одну секунду совершается один оборот. Легко сообразить, что

    Если за время t точка совершает n оборотов по окружности то .

    Зная период и частоту вращения, угловую скорость можно вычислять по формуле:

    5 Связь линейной скорости с угловой . Длина дуги окружности равна где центральный угол, выраженный в радианах, стягивающий дугу радиус окружности. Теперь линейную скорость запишем в виде

    Часто бывает удобно использовать формулы: или Угловую скорость часто называют циклической частотой, а частоту линейной частотой.

    6. Центростремительное ускорение . В равномерном движении по окружности модуль скорости остаётся неизменным , а направление её непрерывно меняется (Рис.26). Это значит, что тело, движущееся равномерно по окружности, испытывает ускорение, которое направлено к центру и называется центростремительным ускорением.

    Пусть за промежуток времени прошло путь равный дуге окружности . Перенесём вектор , оставляя его параллельным самому себе, так чтобы его начало совпало с началом вектора в точке В. Модуль изменения скорости равен , а модуль центростремительного ускорения равен

    На Рис.26 треугольники АОВ и ДВС равнобедренные и углы при вершинах О и В равны, как углы с взаимно перпендикулярными сторонами АО и ОВ Это значит, что треугольники АОВ и ДВС подобные. Следовательно Если то есть интервал времени принимает сколь угодно малые значения, то дугу можно приближенно считать равной хорде АВ, т.е. . Поэтому можем записать Учитывая, что ВД= , ОА=R получим Умножая обе части последнего равенства на , получим и далее выражение для модуля центростремительного ускорения в равномерном движении по окружности: . Учитывая, что получим две часто применяемые формулы:

    Итак, в равномерном движении по окружности центростремительное ускорение постоянно по модулю.

    Легко сообразить, что в пределе при , угол . Это значит, что углы при основании ДС треугольника ДВС стремятся значению , а вектор изменения скорости становится перпендикулярным к вектору скорости , т.е. направлен по радиусу к центру окружности.

    7. Равнопеременное движение по окружности – движение по окружности, при котором за равные интервалы времени угловая скорость изменяется на одну и ту же величину.

    8. Угловое ускорение в равнопеременном движении по окружности – отношение изменения угловой скорости к интервалу времени , в течении которого это изменение произошло, т.е.

    где начальное значение угловой скорости, конечное значение угловой скорости, угловое ускорение, в системе СИ измеряется в . Из последнего равенства получим формулы для вычисления угловой скорости

    И , если .

    Умножая обе части этих равенств на и учитывая, что , - тангенциальное ускорение, т.е. ускорение, направленное по касательной к окружности, получим формулы для вычисления линейной скорости:

    И , если .

    9. Тангенциальное ускорение численно равно изменению скорости в единицу времени и направлено вдоль касательной к окружности. Если >0, >0, то движение равноускоренное. Если <0 и <0 – движение.

    10. Закон равноускоренного движения по окружности . Путь, пройденный по окружности за время в равноускоренном движении, вычисляется по формуле:

    Подставляя сюда , , сокращая на , получим закон равноускоренного движения по окружности:

    Или , если .

    Если же движение равнозамедленное, т.е. <0, то

    11.Полное ускорение в равноускоренном движении по окружности . В равноускоренном движении по окружности центростремительное ускорение с течением времени возрастает, т.к. благодаря тангенциальному ускорению возрастает линейная скорость. Очень часто центростремительное ускорение называют нормальным и обозначают как . Так как полное ускорение в данный момент определяют по теореме Пифагора (Рис.27).

    12. Средняя угловая скорость в равноускоренном движении по окружности . Средняя линейная скорость в равноускоренном движении по окружности равна . Подставляя сюда и и сокращая на получим

    Если , то .

    12. Формулы, устанавливающие связь между угловой скоростью, угловым ускорением и углом поворота в равноускоренном движении по окружности .

    Подставляя в формулу величины , , , ,

    и сокращая на , получим

    Лекция- 4. Динамика.

    1. Динамика

    2. Взаимодействие тел.

    3. Инерция. Принцип инерции.

    4. Первый закон Ньютона.

    5. Свободная материальная точка.

    6. Инерциальная система отсчета.



    7. Неинерциальная система отсчета.

    8. Принцип относительности Галилея.

    9. Преобразования Галилея.

    11. Сложение сил.

    13. Плотность веществ.

    14. Центр масс.

    15. Второй закон Ньютона.

    16. Единица измерения силы.

    17. Третий закон Ньютона

    1. Динамика есть раздел механики, изучающий механическое движение, в зависимости от сил, вызывающих изменение этого движения.

    2.Взаимодействия тел . Тела могут взаимодествовать, как при непосредственном соприкосновенном соприкосновении, так и на расстоянии посредством особого вида материи, называемого физическим полем.

    Например, все тела притягиваются друг к другу и это притяжение осуществляется посредством гравитационного поля, а силы притяжения называются гравитационными.

    Тела, несущие в себе электрический заряд, взаимодействуют посредством электрического поля. Электрические токи взаимодействуют посредством магнитного поля. Эти силы называют электромагнитными.

    Элементарные частицы взаимодействуют посредсвом ядерных полей и эти силы называют ядерными.

    3.Инерция . В IV в. до н. э. греческий философ Аристотель утверждал, что причиной движения тела является сила, действующая со стороны другого тела или тел. При этом, по движения мнению Аристотеля постоянная сила сообщает телу постоянную скорость и с прекращением действия силы прекращается движение.

    В 16 в. итальянский физик Галилео Галилей, проводя опыты с телами, скатывающимися по наклонной плоскости и с падающими телами показал, что постоянная сила (в данном случае вес тела) сообщает телу ускорение.

    Итак, на основе экспериментов Галилей показал, что сила причина ускорения тел. Приведем рассуждения Галилея. Пусть очень гладкий шар катится по гладкой горизонтальной плоскости. Если шару ничего не мешает, то он может катиться сколь угодно долго. Если же на пути шара насыпать тонкий слой песка, то он очень скоро остановится, т.к. на него подействовала сила трения песка.

    Так Галилей пришел к формулировке принципа инерции, согласно которому материальное тело сохраняет состояние покоя или равномерного прямолинейного движения, если на не действуют внешние силы. Часто это свойство материи называют инерцией, а движение тела без внешних воздействий- движением по инерции.

    4. Первый закон Ньютона . В 1687 году на основе принципа инерции Галилея Ньютон сформулировал первый закон динамики – первый закон Ньютона:

    Материальная точка (тело) находится в состоянии покоя или равномерного прямолинейного движения, если на неё не действуют другие тела, либо силы, действующие со стороны других тел, уравновешены, т.е. скомпенсированы.

    5.Свободная материальная точка – материальная точка, на которую не действуют другие тела. Иногда говорят – изолированная материальная точка.

    6. Инерциальная система отсчета (ИСО) – система отсчёта, относительно которой изолированная материальная точка движется прямолинейно и равномерно, либо находится в состоянии покоя.

    Любая система отсчёта, которая движется равномерно и прямолинейно относительно ИСО является инерциальной,

    Приведём ещё одну формулировку первого закона Ньютона: Существуют системы отсчёта, относительно которых свободная материальная точка движется прямолинейно и равномерно, либо находится в состоянии покоя. Такие системы отсчёта называются инерциальными. Часто первый закон Ньютона называют законом инерции.

    Первому закону Ньютона можно дать ещё и такую формулировку: всякое материальное тело сопротивляется изменению его скорости. Это свойство материи называется инертностью.

    С проявлением этого закона мы сталкиваемся ежедневно в городском транспорте. Когда автобус резко набирает скорость, нас прижимает к спинке сидения. Когда же автобус тормозит, то наше тело заносит по ходу движения автобуса.

    7. Неинерциальная система отсчёта – система отсчёта, которая движется неравномерно относительно ИСО.

    Тело, которое относительно ИСО находится в состоянии покоя или равномерного прямолинейного движения. Относительно неинерциальной системы отсчёта движется неравномерно.

    Любая вращающаяся система отсчёта есть неинерциальная система отсчёта, т.к. в этой системе тело испытывает центростремительное ускорение.

    В природе и технике нет тел, которые могли бы служить в качестве ИСО. Например, Земля вращается вокруг своей оси и любое тело на её поверхности испытывает центростремительное ускорение. Однако в течение достаточно коротких промежутков времени систему отсчёта, связанную с поверхностью Земли в некотором приближении можно считать ИСО.

    8.Принцип относительности Галилея. ИСО может быть соль угодно много. Поэтому возникает вопрос: как выглядят одни и те же механические явления в разных ИСО? Можно ли используя механические явления, обнаружить движение ИСО, в которой они наблюдаются.

    Ответ на эти вопросы дает принцип относительности классической механики, открытый Галилеем.

    Смысл принципа относительности классической механики заключается в утверждении: все механические явления протекают совершенно одинаково во всех инерциальных системах отсчёта.

    Этот принцип можно сформулировать и так: все законы классической механики выражаются одинаковыми математическими формулами. Иными словами никакие механические опыты не помогут нам обнаружить движение ИСО. Это значит, что попытка обнаружить движение ИСО лишена смысла.

    С проявлением принципа относительности мы сталкивались, путишествуя в поездах. В момент, когда наш поезд стоит на станции, а поезд, стоявший на соседнем пути, медленно начинает движение, то в первые мгновения нам кажется, движется наш поезд. Но бывает и наоборот, когда наш поезд плавно набирает ход, нам кажется, что движение начал соседний поезд.

    В приведённом примере принцип относительности проявляется в течение малых интервалов времени. С увеличением скорости мы начинаем ощущать толчки раскачивание вагона, т. е. наша система отсчёта становится неинерциальной.

    Итак, попытка обнаружить движение ИСО лишена смысла. Следовательно, абсолютно безразлично, какую ИСО считать неподвижной, а какую – движущейся.

    9. Преобразования Галилея . Пусть две ИСО и движутся друг относительно друга со скоростью . Согласно с принципом относительности мы можем положить, что ИСО К неподвижна, а ИСО движется относительно со скоростью . Для простоты положим, что соответствующие оси координат систем и параллельны, а оси и совпадают. Пусть в момент начала систем совпадают и движение происходит вдоль осей и , т.е. (Рис.28)

    Равномерное движение по окружности – это простейший пример . Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость .

    При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v = const, а изменяется только направление вектора скорости в этом случае отсутствует (a r = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение () a n или а ЦС. В каждой точке вектор центростремительного ускорения направлен к центру окружности по радиусу.

    Модуль центростремительного ускорения равен

    a ЦС =v 2 / R

    Где v – линейная скорость, R – радиус окружности

    Рис. 1.22. Движение тела по окружности.

    Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус, проведённый из центра окружности до точки, в которой в этот момент находится движущееся тело. Угол поворота измеряется в радианах. равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу окружности (рис. 1.23). То есть если l = R, то

    1 радиан= l / R

    Так как длина окружности равна

    l = 2πR

    360 о = 2πR / R = 2π рад.

    Следовательно

    1 рад. = 57,2958 о = 57 о 18’

    Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:

    ω = φ / t

    Единица измерения угловой скорости – радиан в секунду [рад/с]. Модуль линейной скорости определяется отношением длины пройденного пути l к промежутку времени t:

    v= l / t

    Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности. При движении точки длина l дуги окружности, пройденной точкой, связана с углом поворота φ выражением

    l = Rφ

    где R – радиус окружности.

    Тогда в случае равномерного движения точки линейная и угловая скорости связаны соотношением:

    v = l / t = Rφ / t = Rω или v = Rω

    Рис. 1.23. Радиан.

    Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности.Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду). Частота обращения обозначается буквой n.

    n = 1 / T

    За один период угол поворота φ точки равен 2π рад, поэтому 2π = ωT, откуда

    T = 2π / ω

    То есть угловая скорость равна

    ω = 2π / T = 2πn

    Центростремительное ускорение можно выразить через период Т и частоту обращения n:

    a ЦС = (4π 2 R) / T 2 = 4π 2 Rn 2