Какая характеристика является основной для механических волн. Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных

Какая характеристика является основной для механических волн. Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных
Какая характеристика является основной для механических волн. Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных

Волновой процесс - процесс переноса энергии без переноса вещества.

Механическая волна - возмущение, распространяющееся в упругой среде.

Наличие упругой среды - необходимое условие распространения механических волн.

Перенос энергии и импульса в среде происходит в результате взаимодействия между соседними частицами среды.

Волны бывают продольные и поперечные.

Продольная механическая волна - волна, в которой движение частиц среды происходит в направлении распространения волны. Поперечная механическая волна - волна, в которой частицы среды перемещаются перпендикулярно направлению распространения волны.

Продольные волны могут распространяться в любой среде. Поперечные волны в газах и жидкостях не возникают, так как в них

отсутствуют фиксированные положения частиц.

Периодическое внешнее воздействие вызывает периодические волны.

Гармоническая волна - волна, порождаемая гармоническими колебаниями частиц среды.

Длина волны - расстояние, на которое распространяется волна за период колебаний ее источника:

Скорость механической волны - скорость распространения возмущения в среде. Поляризация - упорядоченность направлений колебаний частиц в среде.

Плоскость поляризации - плоскость, в которой колеблются частицы среды в волне. Линейно-поляризованная механическая волна - волна, частицы которой колеблются вдоль определенного направления (линии).

Поляризатор - устройство, выделяющее волну определенной поляризации.

Стоячая волна - волна, образующаяся в результате наложения двух гармонических волн, распространяющихся навстречу друг другу и имеющих одинаковый период, амплитуду и поляризацию.

Пучности стоячей волны - положение точек, имеющих максимальную амплитуду колебаний.

Узлы стоячей волны - неперемещающиеся точки волны, амплитуда колебаний которых равна нулю.

На длине l струны, закрепленной на концах, укладывается целое число п полуволн поперечных стоячих волн:


Такие волны называются модами колебаний.

Мода колебаний для произвольного целого числа n > 1 называется n-й гармоникой или n-м обертоном. Мода колебаний для n = 1 называется первой гармоникой или основной модой колебаний. Звуковые волны - упругие волны в среде, вызывающие у человека слуховые ощущения.

Частота колебаний, соответствующих звуковых волнам, лежит в пределах от 16 Гц до 20 кГц.

Скорость распространения звуковых волн определяется скоростью передачи взаимодействия между частицами. Скорость звука в твердом теле v п, как правило, больше скорости звука в жидкости v ж, которая, в свою очередь, превышает скорость звука в газе v г.


Звуковые сигналы классифицируют по высоте, тембру и громкости. Высота звука определяется частотой источника звуковых колебаний. Чем больше частота колебаний, тем выше звук; колебаниям малых частот соответствуют низкие звуки. Тембр звука определяется формой звуковых колебаний. Различие формы колебаний, имеющих одинаковый период, связано с разными относительными амплитудами основной моды и обертоном. Громкость звука характеризуется уровнем интенсивности звука. Интенсивность звука - энергия звуковых волн, падающая на площадь 1 м 2 за 1 с.

Лекция – 14. Механические волны.

2. Механическая волна.

3. Источник механических волн.

4. Точечный источник волн.

5. Поперечная волна.

6. Продольная волна.

7. Фронт волны.

9. Периодические волны.

10. Гармоническая волна.

11. Длина волны.

12. Скорость распространения.

13. Зависимость скорости волны от свойств среды.

14. Принцип Гюйгенса.

15. Отражение и преломление волн.

16. Закон отражения волн.

17. Закон преломления волн.

18. Уравнение плоской волны.

19. Энергия и интенсивность волны.

20. Принцип суперпозиции.

21. Когерентные колебания.

22. Когерентные волны.

23. Интерференция волн. а) условие интерференционного максимума, б) условие интерференционного минимума.

24. Интерференция и закон сохранения энергии.

25. Дифракция волн.

26. Принцип Гюйгенса – Френеля.

27. Поляризованная волна.

29. Громкость звука.

30. Высота тона звука.

31. Тембр звука.

32. Ультразвук.

33. Инфразвук.

34. Эффект Доплера.

1.Волна – это процесс распространения колебаний какой-либо физической величины в пространстве. Например, звуковые волны в газах или в жидкостях представляют собой распространение колебаний давления и плотности в этих средах. Электромагнитная волна – это процесс распространения в пространстве колебаний напряженности электрического магнитного полей.

Энергию и импульс можно переносить в пространстве путём переноса вещества. Любое движущееся тело обладает кинетической энергией. Следовательно оно переносит кинетическую энергию, перенося вещество. Это же тело будучи нагретым, перемещаясь в пространстве переносит энергию тепловую, перенося вещество.

Частицы упругой среды связаны между собой. Возмущения, т.е. отклонения от положения равновесия одной частицы передаются соседним частицам, т.е. энергия и импульс передаются от одной частицы соседним частицам, при этом каждая частица остаётся около своего положения равновесия. Таким образом, энергия и импульс передаются по цепочке от одной частице к другой и переноса вещества при этом не происходит.

Итак, волновой процесс есть процесс переноса энергии и импульса в пространстве без переноса вещества.

2. Механическая волна или упругая волна – возмущение (колебание), распространяющееся в упругой среде. Упругой средой, в которой распространяются механические волны, является воздух, вода, дерево металлы и другие упругие вещества. Упругие волны называют звуковыми волнами.

3. Источник механических волн – тело, совершающее колебательное движение, находясь в упругой среде, например колеблющиеся камертоны, струны, голосовые связки.

4. Точечный источник волн – источник волны, размерами которого можно пренебречь по сравнению с расстоянием, на которое распространяется волна.

5. Поперечная волна – волна, в которой частицы среды колеблются в направлении перпендикулярном к направлению распространения волны. Например, волны на поверхности воды – поперечные волны, т.к. колебания частиц воды происходят в направлении перпендикулярном направлению к поверхности воды, а волна распространяется по поверхности воды. Поперечная волна распространяется вдоль шнура, один конец которого закреплён, другой совершает колебания в вертикальной плоскости.

Поперечная волна может распространяться лишь по границе раздела дух разных сред.

6. Продольная волна – волна, в которой колебания происходят в направлении распространения волны. Продольная волна возникает в длинной спиральной пружине, если один её конец подвергается периодическим возмущениям, направленным вдоль пружины. Упругая волна, бегущая вдоль пружины представляет собой распространяющиеся последовательности сжатия и растяжения (Рис. 88)

Продольная волна может распространяться только внутри упругой среды например, в воздухе, в воде. В твёрдых телах и в жидкостях могут распространяться одновременно как поперечные, так и продольные волны, т.к. твёрдое тело и жидкость всегда ограничены поверхностью – поверхностью раздела двух сред. Например, если стальной стержень ударить в торец молотком, то в нём начнёт распространяться упругая деформация. По поверхности стержня побежит поперечная волна, а внутри него будет распространяться волна продольная (сжатия и разрежения среды) (Рис.89).

7. Фронт волны (волновая поверхность) – геометрическое место точек, колеблющихся в одинаковых фазах. На волновой поверхности фазы колеблющихся точек в рассматриваемый момент времени имеют одно и тоже значение. Если в спокойное озеро бросить камень, то по поверхности озера от места его падения начнут распространяться поперечные волны в виде окружности, с центром в месте падения камня. В этом примере фронт волны представляет собой окружность.

В сферической волне фронт волны есть сфера. Такие волны порождаются точечными источниками.

На очень больших расстояниях от источника можно пренебречь кривизной фронта и считать фронт волны плоским. В этом случае волна называется плоской.

8. Луч – прямая линиянормальная к волновой поверхности. В сферической волне лучи направлены вдоль радиусов сфер от центра, где расположен источник волн (Рис.90).

В плоской волне лучи направлены перпендикулярно к поверхности фронта (Рис. 91).

9. Периодические волны. Рассуждая о волнах мы подразумевали однократное возмущение, распространяющееся в пространстве.

Если же источник волн совершает непрерывные колебания, то в среде возникают бегущие одна за одной упругие волны. Такие волны называют периодическими.

10. Гармоническая волна – волна, порождаемая гармоническими колебаниями. Если источник волн совершает гармонические колебания, то он порождает гармонические волны – волны в которых частицы колеблются по гармоническому закону.

11. Длина волны. Пусть гармоническая волна распространяется вдоль оси OX, а колебания в ней происходят в направлении оси OY. Эта волна поперечная и её можно изобразить в виде синусоиды (Рис.92).

Такую волну можно получить, вызывая колебания в вертикальной плоскости свободного конца шнура.

Длиной волны называют расстояние между двумя ближайшими точками А и В, колеблющимися в одинаковых фазах (Рис. 92).

12. Скорость распространения волны – физическая величина численно равная скорости распространения колебаний в пространстве. Из Рис. 92 следует, что время за которое колебание распространяется от точки до точки А до точки В , т.е. на расстояние длины волны равно периоду колебаний. Поэтому скорость распространения волны равна



13. Зависимость скорости распространения волны от свойств среды . Частота колебаний при возникновении волны зависит только от свойств источника волны и не зависит от свойств среды. От свойств среды зависит скорость распространения волны. Поэтому длина волны изменяется при переходе границы раздела двух разных сред. Скорость волны зависит от связи между атомами и молекулами среды. Связь между атомами и молекулами в жидкостях и твёрдых телах значительно более жесткая, чем в газах. Поэтому скорости звуковых волн в жидкостях и твёрдых телах значительно больше, чем в газах. В воздухе скорость звука при нормальных условиях равна 340 , в воде 1500 , а в стали 6000 .

Средняя скорость теплового движения молекул в газах с понижением температуры уменьшается и как следствие скорость распространения волны в газах уменьшается. В среде более плотной, а следовательно более инертной, скорость волны меньше. Если звук распространяется в воздухе то его скорость зависит от плотности воздуха. Там, где плотность воздуха больше, там скорость звука меньше. И наоборот там, где плотность воздуха меньше там скорость звука больше. Вследствие этого при распространении звука фронт волны искажается. Над болотом или над озером особенно в вечернее время плотность воздуха вблизи поверхности из- за водяных паров больше чем на некоторой высоте. Поэтому скорость звука вблизи поверхности воды меньше, чем на некоторой высоте. Вследствие этого фронт волны разворачивается таким образом, что верхняя часть фронта всё больше изгибается в направлении к поверхности озера. Получается так, что энергия волны идущей вдоль поверхности озера и энергия волны идущей под углом к поверхности озера складываются. Поэтому в вечернее время звук хорошо распространяется на озером. Даже тихий раговор можно услышать, стоя на противоположном берегу.

14. Принцип Гюйгенса – каждая точка поверхности, которой достигла в данный момент волна является источником вторичных волн. Проведя поверхность касательную к фронтам всех вторичных волн, получим фронт волны в следующий момент времени.

Рассмотрим для примера волну, распространяющуюся по поверхности воды из точки О (Рис.93) Пусть в момент времени t фронт имел форму окружности радиуса R с центром в точке О . В следующий момент времени каждая вторичная волна будет иметь фронт в форме окружности радиуса , где V – скорость распространения волны. Проведя поверхность касательную к фронтам вторичных волн, получим фронт волны в момент времени (Рис. 93)

Если волна распространяется в сплошной среде, то фронт волны представляет собой сферу.

15. Отражение и преломление волн. При падении волны на поверхность раздела двух различных сред каждая точка этой поверхности согласно принципу Гюйгенса становится источником вторичных волн, распространяющихся по обе стороны от поверхности радела. Поэтому при переходе границы раздела двух сред волна частично отражается и частично проходит через эту поверхность. Т.к. среды различные, то и скорость волн в них различна. Поэтому при переходе границы раздела двух сред направление распространения волы изменяется, т.е. происходит преломление волны. Рассмотрим на основе принципа Гюйгенса процесс и законы отражения и преломления полн.

16. Закон отражения волн . Пусть на плоскую поверхность раздела двух различных сред падает плоская волна. Выделим в ней участок между двумя лучами и (Рис.94)

Угол падения – угол - между лучом падающим и перпендикуляром к поверхности раздела в точке падения.

Угол отражения – угол между лучом отраженным и перпендикуляром к поверхности раздела в точке падения.

В момент когда, луч достигнет поверхности раздела в точке , эта точка станет источником вторичных волн. Фронт волны в этот момент отмечен отрезком прямой АС (Рис.94). Следовательно, лучу еще предстоит в этот момент пройти до поверхности раздела путь СВ . Пусть луч проходит этот путь за время . Падающий и отраженный лучи распространяются по одну сторону о поверхности раздела поэтому их скорости одинаковы и равны V. Тогда .

За время вторичная волна из точки А пройдёт путь . Следовательно . Прямоугольные треугольники и равны, т.к. - общая гипотенуза и катеты . Из равенства треугольников и следует равенство углов . Но и , т.е. .

Теперь сформулируем закон отражения волн: луч падающий, луч отраженный , перпендикуляр к границе раздела двух сред, восставленный в точке падения лежат в одной плоскости; угол падения равен углу отражения .

17. Закон преломления волн . Пусть через плоскую границу раздела двух сред проходит плоская волна. Причём угол падения отличен от нуля (Рис.95).

Угол преломления – угол между лучом преломлённым и перпендикуляром к границе раздела, восставленным в точке падения.

Обозначим и скорости распространения волн в средах 1 и 2. В тот момент, когда луч достигнет границы раздела в точке А , эта точка станет источником волн, распространяющихся во второй среде – луч , а лучу ещё предстоит пройти путь до поверхности радела. Пусть - время, за которое луч проходит путь СВ, тогда . За это же время во второй среде луч пройдёт путь . Т.к. , то и .

Треугольники и прямоугольные с общей гипотенузой , и = , как углы с взаимно перпендикулярными сторонами. Для углов и запишем следующие равенства

.

Учитывая, что , , получим

Теперь сформулируем закон преломления волн: Луч падающий, луч преломлённый и перпендикуляр к границе раздела двух сред, восставленный в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и называется относительным показателем преломления для двух данных сред.

18. Уравнение плоской волны. Частицы среды, находящиеся на расстоянии S от источника волн начинают колебаться только тогда, когда до неё дойдет волна. Если V есть скорость распространения волны, то колебания начнутся с опозданием на время

Если источник волн колеблется по гармоническому закону то для частицы, находящейся на расстоянии S от источника, закон колебаний запишем в виде

.

Введём величину , называемую волновым числом. Оно показывает, сколько длин волн укладывается на расстоянии равном единиц длины. Теперь закон колебаний частицы среды находящейся на расстоянии S от источника запишем в виде

.

Это уравнение определяет смещение колеблющейся точки, как функции времени и расстояния от источника волн и называется уравнением плоской волны.

19. Энергия и интенсивность волны . Каждая частица, до которой дошла волна колеблется и следовательно обладает энергией. Пусть в некотором объёме упругой среды распространяется волна с амплитудой А и циклической частотой . Это значит, что средняя энергия колебаний в этом объёме равна

Где m – масса выделенного объёма среды.

Средняя плотность энергии (средняя по объёму) есть энергия волны в единице объёма среды

, где плотность среды.

Интенсивность волны – физическая величина, численно равная энергии, которую переносит волна за единицу времени через единицу площади плоскости перпендикулярной к направлению распространения волны (через единицу площади фронта волны), т.е.

.

Средняя мощность волны есть средняя полная энергия, переносимая волной за единицу времени через поверхность с площадью S . Среднюю мощность волны получим, умножив интенсивность волны на площадь S

20.Принцип суперпозиции (наложения). Если в упругой среде распространяются волны от двух и более источников, то как показывают наблюдения, волны проходят одна через другую совершенно не влияя друг на друга. Иными словами волны не взаимодействуют друг с другом. Это объясняется тем что в пределах в пределах упругой деформации сжатия и растяжения в одном направлении никоим образом не влияют на упругие свойства по другим направлениям.

Таким образом, каждая точка среды куда приходят две и более волны принимает участие в колебаниях, вызванных каждой волной. При этом результирующее смещение частицы среды в любой момент времени равно геометрической суммой смещений, вызываемых каждым из складывающихся колебательных процессов. В этом и состоит суть принципа суперпозиции или наложения колебаний.

Результат сложения колебаний зависит от амплитуды, частоты и разности фаз складывающихся колебательных процессов.

21. Когерентные колебания – колебания с одинаковой частотой и постоянной в времени разностью фаз.

22.Когерентные волны – волны одинаковой частоты или одинаковой длины волны, разность фаз которых в данной точке пространства остаётся постоянной во времени.

23.Интерференция волн – явление увеличения или уменьшения амплитуды результирующей волны при наложении двух и более когерентных волн.

а) .Условия интерференционного максимума. Пусть волны от двух когерентных источников и встречаются в точке А (Рис.96).

Смещения частиц среды в точке А , вызванные каждой волной в отдельности запишем согласно уравнению волны в виде

где и , , - амплитуды и фазы колебаний, вызванных волнами в точке А , и - расстояния точки, - разность эти расстояний или разность хода волн.

Из-за разности хода волн вторая волна запаздывает по сравнению с первой. Это значит, что фаза колебаний в первой волне опережает фазу колебаний во второй волне, т.е. . Их разность фаз остается постоянной во времени.

Для того, чтобы в точке А частицы совершали колебания с максимальной амплитудой, гребни обеих волн или их впадины должны достигнуть точки А одновременно в одинаковых фазах или с разностью фаз равной , где n – целое число, а - есть период функций синуса и косинуса,

Здесь , поэтому условие интерференционного максимума запишем в виде

Где - целое число .

Итак, при наложении когерентных волн амплитуда результирующего колебания максимальна, если разность хода волн равна целому числу длин волн.

б) Условие интерференционного минимума . Амплитуда результирующего колебания в точке А минимальна, если в эту точку одновременно придут гребень и впадина двух когерентных волн. Это значит, сто волны придут в эту точку в противофазе, т.е. разность их фаз равна или , где целое число.

Условие интерференционного минимума получим, проведя алгебраические преобразования:

Таким образом, амплитуда колебаний при наложении двух когерентных волн минимальна, если разность хода волн равна нечетному числу полуволн.

24. Интерференция и закон сохранения энергии. При интерференции волн в местах интерференционных минимумов энергия результирующих колебаний меньше, чем энергия интерферирующих волн. Но в местах интерференционных максимумов энергия результирующих колебаний превышает сумму энергий интерферирующих волн настолько, насколько уменьшилась энергия в местах интерференционных минимумов.

При интерференции волн энергия колебаний перераспределяется в пространстве, но закон сохранения строго выполняется.

25.Дифракция волн – явление огибания волной препядствия, т.е. отклонение от прямолинейного распространения волн.

Дифракция особенно хорошо заметна в случае, когда размеры препядствия меньше длины волны или сравнимы с ней. Пусть на пути распространения плоской волны расположен экран с отверстием, диаметр которого сравним с длиной волны (Рис. 97).

По принципу Гюйгенса каждая точка отверстия становится источником таких же волн. Размер отверстия настолько мал, что все источники вторичных волн расположены так близко друг к другу, что их все можно считать одной точкой – одним источником вторичных волн.

Если на пути волны поставить препядствие, размер которого сравним с длиной волны, то края по принципу Гюйгенса становятся источником вторичных волн. Но размеры препядствия настолько малы, что края его можно считать совпадающими, т.е. само препядствие является точечным источником вторичных волн (Рис.97).

Явление дифракции легко наблюдается при распространении волн по поверхности воды. Когда волна достигает тонкой, неподвижной палочки, она становится источником волн (Рис. 99).

25. Принцип Гюйгенса-Френеля. Если же размеры отвепстия значительно превышают длину волны, то волна, проходя отверстие распространяется прямолинейно (Рис.100).

Если размеры препядствия значительно превышают длину волны, то за препядствием образуется зона тени (Рис.101). Эти опыты противоречат принципу Гюйгенса. Французский физик Френель дополнил принцип Гюйгенса представлением о когерентости вторичных волн. Каждая точка, в которую пришла волна становится источником таких же волн, т.е. вторичных когерентных волн. Поэтому волны отсутствуют только в тех местах, в которых для вторичных волн выполняются условия интерференционного минимума.

26. Поляризованная волна – поперечная волна, в которой колебания всех частиц происходят в одной плоскости. Если свободный конец шнура совершает колебания в одной плоскости, то по шнуру распространяется плоскополяризованная волна. Если свободный конец шнура совершает колебания в различных направлениях, то волна распрстраняющаяся по шнуру не пеоляризована. Если на пути неполяризованной волны поставить препядствие в виде узкой щели, то после прохождении щели волна становится поляризованной, т.к. щель пропускает колебания шнура, происходящие вдоль неё.

Если на пути поляризованной волны поставить вторую щель параллельную первой, то волна свободно пройдет через неё (Рис.102).

Если же вторую щель расположить под прямым углом по отношению к первой, то распространение волы прекратится. Устройство, которое выделяет колебания, происходящие в одной определённой плоскости называется поляризатором (первая щель). Устройство, которое определяет плоскость поляризации называется анализатором.

27.Звук – это процесс распространения сжатий и разрежений в упругой среде например, в газе, жидкости или в металлах. Распространение сжатий и разрежений происходит в результате столкновения молекул.

28. Громкость звука это сила воздействия звуковой волны на барабанную перепонку человеческого уха, которая от звукового давления.

Звуковое давлениеэто дополнительное давление, возникающее в газе или жидкости при распространении звуковой волны. Звуковое давление зависит от амплитуды колебании источника звука. Если заставить звучать камертон лёгким ударом, то мы получим одну громкость. Но, если камертон ударить сильнее, то амплитуда его колебаний увеличится и он зазвучит громче. Таким образом громкость звука определяется амплитудой колебании источника звука, т.е. амплитудой колебаний звукового давления.

29. Высота тона звука определяется частотой колебаний. Чем больше частота звука, тем выше тон.

Звуковые колебания происходящие по гармоническому закону воспринимаются как музыкальный тон. Обычно звук это сложный звук, который представляет собой совокупность колебаний с близкими частотами.

Основной тон сложного звука – это тон соответствующий наименьшей частоте в наборе частот данного звука. Тоны соответствующие остальным частотам сложного звука называются обертонами.

30. Тембр звука . Звуки одним и тем же основным тоном различаются тембром, который определяется набором обертонов.

У каждого человека свой только ему присущий тембр. Поэтому мы всегда можем отличить голос одного человека от голоса другого человека, даже в том случае, когда их основные тоны одинаковы.

31.Ультразвук . Человеческое ухо воспринимает звуки, частоты которых заключены в пределах от 20Гц до 20000Гц.

Звуки с частотами более 20000Гц называются ультразвуками. Ультразвуки распространяются в виде узких пучков и используются в гидролокации и дефектоскопии. С помощью ультразвука можно определить глубину морского дна и обнаружить дефекты в различных деталях.

Например, если рельс не имеет трещин, то ультразвук испущенный из одного конца рельса, отразившись от другого его конца даст только одно эхо. Если же есть трещины, то ультразвук будет отражаться от трещин и приборы будут фиксировать несколько эхо. С помощью ультразвука обнаруживают подводные лодки, косяки рыб. Летучая мышь ориентируется в пространстве с помощью ультразвука.

32. Инфразвук – звук с частотой ниже 20Гц. Эти звуки воспринимаются некоторыми животными. Их источником часто бывают колебания земной коры при землетрясениях.

33. Эффект Доплера – это зависимость частоты воспринимаемой волны от движения источника или приёмника волн.

Пусть на поверхности озера покоится лодка и волны бьются о её борт с некоторой частотой . Если лодка начнёт движение против направления распространения волн, то частота ударов волн о борт лодки станет больше. Причём, чем больше скорость лодки, тем больше частота ударов волн о борт. И наоборот при движении лодки в направлении распространения волн частота ударов станет меньше. Эти рассуждения легко понять из Рис. 103.

Чем больше скорость встречного движения, тем меньшее время затрачивается на прохождение расстояния между двумя ближайшими гребнями, т.е. тем меньше период волны и тем больше частота волны относительно лодки.

Если же наблюдатель неподвижен, но движется источник волн, то частота волны воспринимаемая наблюдателем зависит от движения источника.

Пусть по неглубокому озеру по направлению к наблюдателю идет цапля. Каждый раз, когда она опускает ногу в воду от этого места кругами расходятся волны. И каждый раз расстояние между первой и последней волнами уменьшается, т.е. на меньшем расстоянии укладывается большее число гребней и впадин. Поэтому для неподвижного наблюдателя по направлению к которому идет цапля частота увеличивается. И наоборот для неподвижного наблюдателя, находящегося в диаметрально противоположной точке на большем расстоянии столько же гребней и впадин. Поэтому для этого наблюдателя частота уменьшается (Рис.104).

Механическая или упругая волна - это процесс распространения колебаний в упругой среде. Например, вокруг колеблющейся струны или диффузора динамика начинает колебаться воздух - струна или динамик стали источниками звуковой волны.

Для возникновения механической волны необходимо выполнение двух условий - наличие источника волны (им может быть любое колеблющееся тело) и упругой среды (газа, жидкости, твердого вещества).

Выясним причину возникновения волны. Почему частицы среды, окружающие любое колеблющееся тело, тоже приходят в колебательное движение?

Простейшей моделью одномерной упругой среды является цепочка шариков, соединенных пружинками. Шарики - модели молекул, соединяющие их пружины моделируют силы взаимодействия между молекулами.

Допустим, первый шарик совершает колебания с частотой ω. Пружина 1-2 деформируется, в ней возникает сила упругости, меняющаяся с частотой ω. Под действием внешней периодически меняющейся силы второй шарик начинает совершать вынужденные колебания. Поскольку вынужденные колебания всегда происходят с частотой внешней вынуждающей силы, частота колебаний второго шарика будет совпадать с частотой колебаний первого. Однако вынужденные колебания второго шарика будут происходить с некоторым запаздыванием по фазе относительно внешней вынуждающей силы. Другими словами, второй шарик придет в колебательное движение несколько позже, чем первый шарик.

Колебания второго шарика вызовут периодически меняющуюся деформацию пружины 2-3, которая заставит колебаться третий шарик и т.д. Таким образом, все шарики в цепочке будут поочередно вовлекаться в колебательное движение с частотой колебаний первого шарика.

Очевидно, причиной распространения волны в упругой среде является наличие взаимодействия между молекулами. Частота колебания всех частиц в волне одинакова и совпадает с частотой колебаний источника волны.

По характеру колебаний частиц в волне волны делят на поперечные, продольные и поверхностные.

В продольной волне колебание частиц происходит вдоль направления распространения волны.

Распространение продольной волны связано с возникновением в среде деформации растяжения-сжатия. В растянутых участках среды наблюдается уменьшение плотности вещества - разрежение. В сжатых участках среды, наоборот, происходит увеличение плотности вещества -так называемое сгущение. По этой причине продольная волна представляет собой перемещение в пространстве областей сгущения и разрежения.

Деформация растяжения - сжатия может возникать в любой упругой среде, поэтому продольные волны могут распространяться в газах, жидкостях и твердых телах. Примером продольной волны является звук.


В поперечной волне частицы совершают колебания перпендикулярно направлению распространения волны.

Распространение поперечной волны связано с возникновением в среде деформации сдвига. Этот вид деформации может существовать только в твердых веществах, поэтому поперечные волны могут распространяться исключительно в твердых телах. Примером поперечной волны является сейсмическая S-волна.

Поверхностные волны возникают на границе раздела двух сред. Колеблющиеся частицы среды имеют как поперечную, перпендикулярную поверхности, так и продольную составляющие вектора смещения. Частицы среды описывают при своих колебаниях эллиптические траектории в плоскости, перпендикулярной поверхности и проходящей через направление распространения волны. Примером поверхностных волн являются волны на поверхности воды и сейсмические L - волны.

Волновым фронтом называют геометрическое место точек, до которых дошел волновой процесс. Форма волнового фронта может быть разной. Наиболее распространенными являются плоские, сферические и цилиндрические волны.

Обратите внимание - волновой фронт всегда располагается перпендикулярно направлению распространения волны! Все точки волнового фронта начнут колебаться в одной фазе .

Для характеристики волнового процесса вводят следующие величины:

1. Частота волны ν - это частота колебания всех частиц в волне.

2. Амплитуда волны А - это амплитуда колебания частиц в волне.

3. Скорость волны υ - это расстояние, на которое распространяется волновой процесс (возмущение) в единицу времени.

Обратите внимание - скорость волны и скорость колебания частиц в волне - это разные понятия! Скорость волны зависит от двух факторов: вида волны и среды, в которой волна распространяется.

Общая закономерность такова: скорость продольной волны в твердом веществе больше, чем в жидкостях, а скорость в жидкостях, в свою очередь, больше скорости волны в газах.

Понять физическую причину этой закономерности несложно. Причина распространения волны - взаимодействие молекул. Естественно, возмущение быстрее распространяется в той среде, где взаимодействие молекул более сильное.

В одной и той же среде закономерность другая - скорость продольной волны больше скорости поперечной волны.

Например, скорость продольной волны в твердом теле , где Е - модуль упругости (модуль Юнга) вещества, ρ - плотность вещества.

Скорость поперечной волны в твердом теле , где N - модуль сдвига. Поскольку для всех веществ , то . На отличии скоростей продольных и поперечных сейсмических волн основан один из методов определения расстояния до очага землетрясения.

Скорость поперечной волны в натянутом шнуре или струне определяется силой натяжения F и массой единицы длины μ:

4. Длина волны λ - минимальное расстояние между точками, которые колеблются одинаково.

Для волн, бегущих по поверхности воды, длина волны легко определяется как расстояние между двумя соседними горбами или соседними впадинами.

Для продольной волны длина волны может быть найдена как расстояние между двумя соседними сгущениями или разрежениями.

5. В процессе распространения волны участки среды вовлекаются в колебательный процесс. Колеблющаяся среда, во-первых, двигается, следовательно, обладает кинетической энергией. Во-вторых, среда, по которой бежит волна, деформирована, следовательно, обладает потенциальной энергией. Нетрудно видеть, что распространение волны связано с переносом энергии к невозбужденным участкам среды. Для характеристики процесса переноса энергии вводят интенсивность волны I .

1. Механические волны, частота волны. Продольные и поперечные волны.

2. Волновой фронт. Скорость и длина волны.

3. Уравнение плоской волны.

4. Энергетические характеристики волны.

5. Некоторые специальные разновидности волн.

6. Эффект Доплера и его использование в медицине.

7. Анизотропия при распространении поверхностных волн. Действие ударных волн на биологические ткани.

8. Основные понятия и формулы.

9. Задачи.

2.1. Механические волны, частота волны. Продольные и поперечные волны

Если в каком-либо месте упругой среды (твердой, жидкой или газообразной) возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание начнет распространяться в среде от частицы к частице с некоторой скоростью v.

Например, если в жидкую или газообразную среду поместить колеблющееся тело, то колебательное движение тела будет передаваться прилегающим к нему частицам среды. Они, в свою очередь, вовлекают в колебательное движение соседние частицы и так далее. При этом все точки среды совершают колебания с одинаковой частотой, равной частоте колебания тела. Эта частота называется частотой волны.

Волной называется процесс распространения механических колебаний в упругой среде.

Частотой волны называется частота колебаний точек среды, в которой распространяется волна.

С волной связан перенос энергии колебаний от источника колебаний к периферийным участкам среды. При этом в среде возникают

периодические деформации, которые переносятся волной из одной точки среды в другую. Сами частицы среды не перемещаются вместе с волной, а колеблются около своих положений равновесия. Поэтому распространение волны не сопровождается переносом вещества.

В соответствии с частотой механические волны делятся на различные диапазоны, которые указаны в табл. 2.1.

Таблица 2.1. Шкала механических волн

В зависимости от направления колебаний частиц по отношению к направлению распространения волны, различают продольные и поперечные волны.

Продольные волны - волны, при распространении которых частицы среды колеблются вдоль той же прямой, по которой распространяется волна. При этом в среде чередуются области сжатия и разряжения.

Продольные механические волны могут возникать во всех средах (твердых, жидких и газообразных).

Поперечные волны - волны, при распространении которых частицы колеблются перпендикулярно направлению распространения волны. При этом в среде возникают периодические деформации сдвига.

В жидкостях и газах упругие силы возникают только при сжатии и не возникают при сдвиге, поэтому поперечные волны в этих средах не образуются. Исключение составляют волны на поверхности жидкости.

2.2. Волновой фронт. Скорость и длина волны

В природе не существует процессов, распространяющихся с бесконечно большой скоростью, поэтому возмущение, созданное внешним воздействием в одной точке среды, достигнет другой точки не мгновенно, а спустя некоторое время. При этом среда делится на две области: область, точки которой уже вовлечены в колебательное движение, и область, точки которой еще находятся в равновесии. Поверхность, разделяющая эти области, называется фронтом волны.

Фронт волны - геометрическое место точек, до которых к данному моменту дошло колебание (возмущение среды).

При распространении волны ее фронт перемещается, двигаясь с некоторой скоростью, которую называют скоростью волны.

Скоростью волны (v) называется скорость перемещения ее фронта.

Скорость волны зависит от свойств среды и типа волны: поперечные и продольные волны в твердом теле распространяются с различными скоростями.

Скорость распространения всех типов волн определяется при условии слабого затухания волны следующим выражением:

где G - эффективный модуль упругости, ρ - плотность среды.

Скорость волны в среде не следует путать со скоростью движения частиц среды, вовлеченных в волновой процесс. Например, при распространении звуковой волны в воздухе средняя скорость колебаний его молекул порядка 10 см/с, а скорость звуковой волны при нормальных условиях около 330 м/с.

Форма волнового фронта определяет геометрический тип волны. Простейшие типы волн по этому признаку - плоские и сферические.

Плоской называется волна, у которой фронтом является плоскость, перпендикулярная направлению распространения.

Плоские волны возникают, например, в закрытом поршнем цилиндре с газом, когда поршень совершает колебания.

Амплитуда плоской волны остается практически неизменной. Ее слабое уменьшение по мере удаления от источника волны связано с вязкостью жидкой или газообразной среды.

Сферической называется волна, у которой фронт имеет форму сферы.

Такой, например, является волна, вызываемая в жидкой или газообразной среде пульсирующим сферическим источником.

Амплитуда сферической волны при удалении от источника убывает обратно пропорционально квадрату расстояния.

Для описания ряда волновых явлений, например интерференции и дифракции, используют специальную характеристику, называемую длиной волны.

Длиной волны называется расстояние, на которое перемещается ее фронт за время, равное периоду колебаний частиц среды:

Здесь v - скорость волны, Т - период колебаний, ν - частота колебаний точек среды, ω - циклическая частота.

Так как скорость распространения волны зависит от свойств среды, то длина волны λ при переходе из одной среды в другую изменяется, в то время как частота ν остается прежней.

Данное определение длины волны имеет важную геометрическую интерпретацию. Рассмотрим рис. 2.1 а, на котором показаны смещения точек среды в некоторый момент времени. Положение фронта волны отмечено точками А и В.

Через время Т, равное одному периоду колебаний, фронт волны переместится. Его положения показаны на рис. 2.1, б точками А 1 и В 1 . Из рисунка видно, что длина волны λ равна расстоянию между соседними точками, колеблющимися в одинаковой фазе, например расстоянию между двумя соседними максимумами или минимумами возмущения.

Рис. 2.1. Геометрическая интерпретация длины волны

2.3. Уравнение плоской волны

Волна возникает в результате периодических внешних воздействий на среду. Рассмотрим распространение плоской волны, созданной гармоническими колебаниями источника:

где х и - смещение источника, А - амплитуда колебаний, ω - круговая частота колебаний.

Если некоторая точка среды удалена от источника на расстояние s, а скорость волны равна v, то возмущение, созданное источником, достигнет этой точки через время τ = s/v. Поэтому фаза колебаний в рассматриваемой точке в момент времени t будет такой же, как фаза колебаний источника в момент времени (t - s/v), а амплитуда колебаний останется практически неизменной. В результате колебания данной точки будут определяться уравнением

Здесь мы использовали формулы для круговой частоты = 2π/Т) и длины волны = v T).

Подставив это выражение в исходную формулу, получим

Уравнение (2.2), определяющее смещение любой точки среды в любой момент времени, называется уравнением плоской волны. Аргумент при косинусе - величина φ = ωt - 2π s- называется фазой волны.

2.4. Энергетические характеристики волны

Среда, в которой распространяется волна, обладает механической энергией, складывающейся из энергий колебательного движения всех ее частиц. Энергия одной частицы с массой m 0 находится по формуле (1.21): Е 0 = m 0 Α 2 ω 2 /2. В единице объема среды содержится n = p /m 0 частиц - плотность среды). Поэтому единица объема среды обладает энергией w р = nЕ 0 = ρ Α 2 ω 2 /2.

Объемная плотность энергии (\¥ р) - энергия колебательного движения частиц среды, содержащихся в единице ее объема:

где ρ - плотность среды, А - амплитуда колебаний частиц, ω - частота волны.

При распространении волны энергия, сообщаемая источником, переносится в удаленные области.

Для количественного описания переноса энергии вводят следующие величины.

Поток энергии (Ф) - величина, равная энергии, переносимой волной через данную поверхность за единицу времени:

Интенсивность волны или плотность потока энергии (I) - величина, равная потоку энергии, переносимой волной через единичную площадку, перпендикулярную направлению распространения волны:

Можно показать, что интенсивность волны равна произведению скорости ее распространения на объемную плотность энергии

2.5. Некоторые специальные разновидности

волн

1. Ударные волны. При распространении звуковых волн скорость колебания частиц не превышает нескольких см/с, т.е. она в сотни раз меньше скорости волны. При сильных возмущениях (взрыв, движение тел со сверхзвуковой скоростью, мощный электрических разряд) скорость колеблющихся частиц среды может стать сравнимой со скоростью звука. При этом возникает эффект, называемый ударной волной.

При взрыве нагретые до высоких температур продукты, обладающие большой плотностью, расширяются и сжимают тонкий слой окружающего воздуха.

Ударная волна - распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в которой происходит скачкообразное возрастание давления, плотности и скорости движения вещества.

Ударная волна может обладать значительной энергией. Так, при ядерном взрыве на образование ударной волны в окружающей среде затрачивается около 50 % всей энергии взрыва. Ударная волна, достигая объектов, способна вызвать разрушения.

2. Поверхностные волны. Наряду с объемными волнами в сплошных средах при наличии протяженных границ могут существовать волны, локализованные вблизи границ, которые играют роль волноводов. Таковы, в частности, поверхностные волны в жидкости и упругой среде, открытые английским физиком В. Стреттом (лордом Релеем) в 90-х годах 19 века. В идеальном случае волны Релея распространяются вдоль границы полупространства, экспоненциально затухая в поперечном направлении. В результате поверхностные волны локализуют энергию возмущений, созданных на поверхности, в сравнительно узком приповерхностном слое.

Поверхностные волны - волны, которые распространяются вдоль свободной поверхности тела или вдоль границы тела с другими средами и быстро затухают при удалении от границы.

Примером таких волн могут служить волны в земной коре (сейсмические волны). Глубина проникновения поверхностных волн составляет несколько длин волн. На глубине, равной длине волны λ, объемная плотность энергии волны составляет приблизительно 0,05 ее объемной плотности на поверхности. Амплитуда смещения быстро убывает при удалении от поверхности и на глубине нескольких длин волн практически исчезает.

3. Волны возбуждения в активных средах.

Активно возбудимая, или активная, среда - непрерывная среда, состоящая из большого числа элементов, каждый из которых обладает запасом энергии.

При этом каждый элемент может находиться в одном из трех состояний: 1 - возбуждение, 2 - рефрактерность (невозбудимость в течение определенного времени после возбуждения), 3 - покой. В возбуждение могут перейти элементы только из состояния покоя. Волны возбуждения в активных средах называют автоволнами. Автоволны - это самоподдерживающиеся волны в активной среде, сохраняющие свои характеристики постоянными за счет распределенных в среде источников энергии.

Характеристики автоволны - период, длина волны, скорость распространения, амплитуда и форма - в установившемся режиме зависят только от локальных свойств среды и не зависят от начальных условий. В табл. 2.2 представлено сходство и различие автоволн и обычных механических волн.

Автоволны можно сопоставить с распространением пожара в степи. Пламя распространяется по области с распределенными запасами энергии (по сухой траве). Каждый последующий элемент (сухая травинка) зажигается от предыдущего. И таким образом распространяется фронт волны возбуждения (пламя) по активной среде (сухой траве). При встрече двух очагов пожара пламя исчезает, так как исчерпаны запасы энергии - вся трава выгорела.

Описание процессов распространения автоволн в активных средах используется при изучении распространения потенциалов действия по нервным и мышечным волокнам.

Таблица 2.2. Сравнение автоволн и обычных механических волн

2.6. Эффект Доплера и его использование в медицине

Христиан Доплер (1803-1853) - австрийский физик, математик, астроном, директор первого в мире физического института.

Эффект Доплера состоит в изменении частоты колебаний, воспринимаемой наблюдателем, вследствие относительного движения источника колебаний и наблюдателя.

Эффект наблюдается в акустике и оптике.

Получим формулу, описывающую эффект Доплера, для случая, когда источник и приемник волны движутся относительно среды вдоль одной прямой со скоростями v И и v П соответственно. Источник совершает гармонические колебания с частотой ν 0 относительно своего равновесного положения. Волна, созданная этими колебаниями, распространяется в среде со скоростью v. Выясним, какую частоту колебаний зафиксирует в этом случае приемник.

Возмущения, создаваемые колебаниями источника, распространяются в среде и достигают приемника. Рассмотрим одно полное колебание источника, которое начинается в момент времени t 1 = 0

и заканчивается в момент t 2 = T 0 (T 0 - период колебаний источника). Возмущения среды, созданные в эти моменты времени, достигают приемника в моменты t" 1 и t" 2 соответственно. При этом приемник фиксирует колебания с периодом и частотой:

Найдем моменты t" 1 и t" 2 для случая, когда источник и приемник движутся навстречу друг другу, а начальное расстояние между ними равно S. В момент t 2 = T 0 это расстояние станет равным S - (v И + v П)T 0 , (рис. 2.2).

Рис. 2.2. Взаимное расположение источника и приемника в моменты t 1 и t 2

Эта формула справедлива для случая, когда скорости v и и v п направлены навстречу друг другу. В общем случае при движении

источника и приемника вдоль одной прямой формула для эффекта Доплера принимает вид

Для источника скорость v И берется со знаком «+», если он движется в направлении приемника, и со знаком «-» в противном случае. Для приемника - аналогично (рис. 2.3).

Рис. 2.3. Выбор знаков для скоростей источника и приемника волн

Рассмотрим один частный случай использования эффекта Доплера в медицине. Пусть генератор ультразвука совмещен с приемником в виде некоторой технической системы, которая неподвижна относительно среды. Генератор излучает ультразвук, имеющий частоту ν 0 , который распространяется в среде со скоростью v. Навстречу системе со скоростью v т движется некоторое тело. Сначала система выполняет роль источника (v И = 0), а тело - роль приемника (v Tl = v Т). Затем волна отражается от объекта и фиксируется неподвижным приемным устройством. В этом случае v И = v Т, а v п = 0.

Применив формулу (2.7) дважды, получим формулу для частоты, фиксируемой системой после отражения испущенного сигнала:

При приближении объекта к датчику частота отраженного сигнала увеличивается, а при удалении - уменьшается.

Измерив доплеровский сдвиг частоты, из формулы (2.8) можно найти скорость движения отражающего тела:

Знак «+» соответствует движению тела навстречу излучателю.

Эффект Доплера используется для определения скорости кровотока, скорости движения клапанов и стенок сердца (доплеровская эхокардиография) и других органов. Схема соответствующей установки для измерения скорости крови показана на рис. 2.4.

Рис. 2.4. Схема установки для измерения скорости крови: 1 - источник ультразвука, 2 - приемник ультразвука

Установка состоит из двух пьезокристаллов, один из которых служит для генерации ультразвуковых колебаний (обратный пьезоэффект), а второй - для приема ультразвука (прямой пьезоэффект), рассеянного кровью.

Пример . Определить скорость кровотока в артерии, если при встречном отражении ультразвука (ν 0 = 100 кГц = 100 000 Гц, v = 1500 м/с) от эритроцитов возникает доплеровский сдвиг частоты ν Д = 40 Гц.

Решение. По формуле (2.9) найдем:

v 0 = v Д v /2v 0 = 40x 1500/(2x 100 000) = 0,3 м/с.

2.7. Анизотропия при распространении поверхностных волн. Действие ударных волн на биологические ткани

1. Анизотропия распространения поверхностных волн. При исследовании механических свойств кожи с помощью поверхностных волн на частоте 5-6 кГц (не путать с УЗ) проявляется акустическая анизотропия кожи. Это выражается в том, что скорости распространения поверхностной волны во взаимно перпендикулярных направлениях - вдоль вертикальной (Y) и горизонтальной (Х) осей тела - различаются.

Для количественной оценки степени выраженности акустической анизотропии используется коэффициент механической анизотропии, который вычисляется по формуле:

где v у - скорость вдоль вертикальной оси, v x - вдоль горизонтальной оси.

Коэффициент анизотропии принимается за положительный (К+), если v y > v x при v y < v x коэффициент принимается за отрицательный (К -). Численные значения скорости поверхностных волн в коже и степени выраженности анизотропии являются объективными критериями для оценки различных воздействий, в том числе и на кожу.

2. Действие ударных волн на биологические ткани. Во многих случаях воздействия на биологические ткани (органы) необходимо учитывать возникающие при этом ударные волны.

Так, например, ударная волна возникает при ударе тупым предметом по голове. Поэтому при проектировании защитных касок заботятся о том, чтобы погасить ударную волну и предохранить затылок при лобовом ударе. Этой цели и служит внутренняя лента в каске, которая на первый взгляд кажется необходимой лишь для вентиляции.

Ударные волны возникают в тканях при воздействии на них высокоинтенсивного лазерного излучения. Часто после этого в коже начинают развиваться рубцовые (или иные) изменения. Это, например, имеет место в косметологических процедурах. Поэтому, для того чтобы снизить вредное воздействие ударных волн, необходимо заранее рассчитывать дозирование воздействия с учетом физических свойств как излучения, так и самой кожи.

Рис. 2.5. Распространение радиальных ударных волн

Ударные волны используются в радиальной ударно-волновой терапии. На рис. 2.5 показано распространение радиальных ударных волн от аппликатора.

Такие волны создаются в приборах, снабженных специальным компрессором. Радиальная ударная волна генерируется пневматическим методом. Поршень, находящийся в манипуляторе, двигается с большой скоростью под воздействием управляемого импульса сжатого воздуха. Когда поршень ударяет по аппликатору, установленному в манипуляторе, его кинетическая энергия превращается в механическую энергию области тела, на которую оказывалось воздействие. При этом для снижения потерь при передаче волн в воздушной прослойке, находящейся между аппликатором и кожей, и для обеспечения хорошей проводимости ударных волн используется контактный гель. Обычный режим работы: частота 6-10 Гц, рабочее давление 250 кПа, число импульсов за сеанс - до 2000.

1. На корабле включают сирену, подающую сигналы в тумане, и спустя t = 6,6 с слышно эхо. Как далеко находится отражающая поверхность? Скорость звука в воздухе v = 330 м/с.

Решение

За время t звук проходит путь 2S: 2S = vt →S = vt/2 = 1090 м. Ответ: S = 1090 м.

2. Каков минимальный размер предметов, положение которых могут определить летучие мыши с помощью своего сенсора, имеющего частоту 100 000 Гц? Каков минимальный размер предметов, которые могут обнаружить дельфины с использованием частоты 100 000 Гц?

Решение

Минимальные размеры предмета равны длине волны:

λ 1 = 330 м/с / 10 5 Гц = 3,3 мм. Таков примерно размер насекомых, которыми питаются летучие мыши;

λ 2 = 1500 м/с / 10 5 Гц = 1,5 см. Дельфин может обнаружить небольшую рыбку.

Ответ: λ 1 = 3,3 мм; λ 2 = 1,5 см.

3. Сначала человек видит вспышку молнии, а через 8 с после этого слышит удар грома. На каком расстоянии от него сверкнула молния?

Решение

S = v зв t = 330x 8 = 2640 м. Ответ: 2640 м.

4. Две звуковые волны имеют одинаковые характеристики, за исключением того, что длина волны одной в два раза больше, чем у другой. Которая из них переносит большую энергию? Во сколько раз?

Решение

Интенсивность волны прямо пропорциональна квадрату частоты (2.6) и обратно пропорциональна квадрату длины волны = 2πv/λ). Ответ: та, у которой длина волны меньше; в 4 раза.

5. Звуковая волна, имеющая частоту 262 Гц, распространяется в воздухе со скоростью 345 м/с. а) Чему равна ее длина волны? б) За какое время фаза в данной точке пространства меняется на 90°? в) Чему равна разность фаз (в градусах) между точками, отстоящими друг от друга на 6,4 см?

Решение

а) λ = v= 345/262 = 1,32 м;

в) Δφ = 360°s/λ= 360x 0,064/1,32 = 17,5°. Ответ: а) λ = 1,32 м; б) t = T/4; в) Δφ = 17,5°.

6. Оценить верхнюю границу (частоту) ультразвука в воздухе, если известна скорость его распространения v = 330 м/с. Считать, что молекулы воздуха имеют размер порядка d = 10 -10 м.

Решение

В воздухе механическая волна является продольной и длина волны соответствует расстоянию между двумя ближайшими сгущениями (или разряжениями) молекул. Так как расстояние между сгущениями никак не может быть меньше размеров молекул, то заведомо предельным случаем следует считать d = λ. Из этих соображений имеем ν = v= 3,3x 10 12 Гц. Ответ: ν = 3,3x 10 12 Гц.

7. Две машины движутся навстречу друг другу со скоростями v 1 = 20 м/с и v 2 = 10 м/с. Первая машина подает сигнал с частотой ν 0 = 800 Гц. Скорость звука v = 340 м/с. Какой частоты сигнал услышит водитель второй машины: а) до встречи машин; б) после встречи машин?

8. Когда поезд проходит мимо, Вы слышите, как частота его свистка изменяется от ν 1 = 1000 Гц (при приближении) до ν 2 = 800 Гц (когда поезд удаляется). Чему равна скорость поезда?

Решение

Эта задача отличается от предыдущих тем, что нам неизвестна скорость источника звука - поезда - и неизвестна частота его сигнала ν 0 . Поэтому получается система уравнений с двумя неизвестными:

Решение

Пусть v - скорость ветра, и он дует от человека (приемник) к источнику звука. Относительно земли они неподвижны, а относительно воздушной среды оба движутся вправо со скоростью u.

По формуле (2.7) получим частоту звука. воспринимаемую человеком. Она неизменна:

Ответ: частота не изменится.

ОПРЕДЕЛЕНИЕ

Продольная волна – это волна, при распространении которой смещение частиц среды происходит в направлении распространения волны (рис.1, а).

Причиной возникновения продольной волны является сжатия/растяжения, т.е. сопротивление среды изменению ее объема. В жидкостях или газах такая деформация сопровождается разрежением или уплотнением частиц среды. Продольные волны могут распространяться в любых средах – твердых, жидких и газообразных.

Примерами продольных волн являются волны в упругом стержне или звуковые волны в газах.

Поперечные волны

ОПРЕДЕЛЕНИЕ

Поперечная волна – это волна, при распространении которой смещение частиц среды происходит в направлении, перпендикулярном распространению волны (рис.1,б).

Причиной поперечной волны является деформация сдвига одного слоя среды относительно другого. При распространении поперечной волны в среде образуются гребни и впадины. Жидкости и газы, в отличие от твердых тел, не обладают упругостью по отношению к сдвигу слоев, т.е. не оказывают сопротивления изменению формы. Поэтому поперечные волны могут распространяться только в твердых телах.

Примерами поперечных волн могут служить волны, бегущие по натянутой веревке или по струне.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Если бросить на поверхность воды поплавок, то можно увидеть, что он движется, покачиваясь на волнах, по круговой . Таким образом, волна на поверхности жидкости имеет как поперечную, так и продольную компоненты. На поверхности жидкости также могут возникать волны особого типа – так называемые поверхностные волны . Они возникают в результате действия и силы поверхностного натяжения.

Примеры решения задач

ПРИМЕР 1

Задание Определить направление распространения поперечной волны, если поплавок в некоторый момент времени имеет направление скорости, указанное на рисунке.

Решение Сделаем рисунок.

Начертим поверхность волны вблизи поплавка через некоторый промежуток времени , учитывая, что за это время поплавок опустился вниз, так как его в момент времени была направлена вниз. Продолжив линию вправо и влево, покажем положение волны в момент времени . Сравнив положение волны в начальный момент времени (сплошная линия) и в момент времени (пунктирная линия), делаем вывод о том, что волна распространяется влево.