Принцип даламбера для материальной точки. Аналитическая механика материальной точки и динамика твердого тела эйлера. Принцип даламбера для механическойй системы. Главный вектор и главный момент сил инерции

Принцип даламбера для материальной точки. Аналитическая механика материальной точки и динамика твердого тела эйлера. Принцип даламбера для механическойй системы. Главный вектор и главный момент сил инерции
Принцип даламбера для материальной точки. Аналитическая механика материальной точки и динамика твердого тела эйлера. Принцип даламбера для механическойй системы. Главный вектор и главный момент сил инерции

Определение 1

Принцип Даламбера является в теоретической механике одним из главных принципов динамики. Согласно этому принципу, при условии присоединения силы инерции к активно действующим на точки механической системы силам и реакциям наложенных связей, получается уравновешенная система.

Данный принцип получил название в честь французского ученого Ж. Даламбера, впервые предложившего его формулировку в своем сочинении «Динамика».

Определение принципа Даламбера

Замечание 1

Принцип Даламбера звучит следующим образом: если к воздействующей на тело активной силе прикладывается дополнительная сила инерции, тело будет пребывать в равновесном состоянии. При этом суммарное значение всех действующих в системе сил, дополненное вектором инерции, получит нулевое значение.

Согласно указанному принципу, в отношении каждой i-той точки системы, становится верным равенство:

$F_i+N_i+J_i=0$, где:

  • $F_i$ -активно воздействующая на эту точку сила,
  • $N_i$ - реакция связи, наложенной на точку;
  • $J_i$ - сила инерции, определяемая формулой $J_i=-m_ia_i$ (она направлена противоположно этому ускорению).

Фактически, отдельно для каждой рассматриваемой материальной точки $ma$ переносится справа налево (второй закон Ньютона):

$F=ma$, $F-ma=0$.

$ma$ при этом называется силой инерции Даламбера.

Такое понятие, как сила инерции, было введено еще Ньютоном. Согласно рассуждениям ученого, при условии движения точки под воздействием силы $F=ma$, тело (или система) – становится источником этой силы. При этом, согласно закону о равенстве действия и противодействия, ускоряемая точка будет влиять на ускоряющее ее тело с силой $Ф=-ma$. Такой силе Ньютон дал название системы инерции точки.

Силы $F$ и $Ф$ будут равными и противоположными, но приложенными к разным телам, что исключает их сложение. Непосредственно на точку сила инерции воздействия не оказывает, поскольку для нее она представляет фиктивную силу. При этом точка оставалась бы в состоянии покоя, если бы, помимо силы $F$, на точку оказывала воздействие еще и сила $Ф$.

Замечание 2

Принцип Даламбера позволяет применять при решении задач динамики более упрощенные методы статики, что объясняет его широкое применение в инженерной практике. На этом принципе основывается метод кинетостатики. Особенно он удобен в применении с целью установления реакций связей в ситуации, когда известен закон происходящего движения или он получен при решении соответствующих уравнений.

Разновидностью принципа Даламбера выступает принцип Германа-Эйлера, фактически представлявшего собой форму данного принципа, но обнаруженную до появления публикации сочинения ученого в 1743 году. При этом принцип Эйлера не рассматривался его автором (в отличие от принципа Даламбера) в качестве основы для общего метода решения задач движения механических систем со связями. Принцип Даламбера считается более целесообразным в применении в случае необходимости определения неизвестных сил (для решения первой задачи динамики).

Принцип Даламбера для материальной точки

Многообразие типов решаемых в механике задач нуждается в разработке эффективных методик составления уравнений движения для механических систем. Одним из подобных методов, позволяющих посредством уравнений описать движение произвольных систем, считается в теоретической механике принцип Даламбера.

Опираясь на второй закон динамики, для несвободной материальной точки запишем формулу:

$m\bar{a}=\bar{F}+\bar{R}$,

где $R$ представляет реакцию связи.

Принимая значение:

$\bar{Ф}=-m\bar{a}$, где $Ф$- сила инерции, получаем:

$\bar{F}+\bar{R}+\bar{Ф}=0$

Эта формула является выражением принципа Даламбера для материальной точки, согласно которому, для движущейся в любой момент времени точки геометрическая сумма воздействующих на нее активных сил и силы инерции получает нулевое значение. Этот принцип позволяет записывать уравнения статики для движущейся точки.

Принцип Даламбера для механической системы

Для состоящей из $n$-точек механической системы, можно записать $n$-уравнений вида:

$\bar{F_i}+ \bar{R_i}+\bar{Ф_i}=0$

При суммировании всех этих уравнений и введении следующих обозначений:

которые являются главными векторами внешних сил, реакции связей и сил инерции соответственно, получаем:

$\sum{F_i}+\sum{R_i}+\sum{Ф_i}=0$, т. е.

$FE + R + Ф = 0$

Условием для равновесного состояния твердого тела является нулевое значение главных вектора и момента действующих сил. Учитывая это положение и теорему Вариньона о моменте равнодействующей в результате запишем такое соотношение:

$\sum{riF_i}+\sum{riR_i}+\sum{riФ_i} = 0$

примем следующие обозначения:

$\sum{riF_i}=MOF$

$\sum{riR_i}=MOR$

$\sum{riФ_i}=MOФ$

главные моменты внешних сил, реакции связей и сил инерции соответственно.

В итоге получаем:

$\bar{F^E}+\bar{R}+\bar{Ф}=0$

$\bar{M_0^F}+\bar{M_0^R}+\bar{M_0^Ф}=0$

Эти две формулы являются выражением принципа Даламбера для механической системы. В любой момент времени для движущейся механической системы геометрическая сумма главного вектора реакций связей, внешних сил, и сил инерции получает нулевое значение. Также нулевой будет и геометрическая сумма главных моментов от сил инерции, внешних сил и реакций связей.

Полученные формулы являются дифференциальными уравнениями второго порядка из-за присутствия в каждом из них ускорения в силах инерции (второй производной закона движения точки).

Принцип Даламбера позволяет решать методами статики задачи динамики. Для механической системы можно записывать уравнения движения в виде уравнений равновесия. Из таких уравнений можно определить неизвестные силы, в частности, реакции связей (первая задача динамики).

Принцип Даламбера устанавливает единый подход к исследованию движения материального объекта вне зависимости от характера налагаемых на это движение условий. При этом динамическим уравнениям движения придается вид уравнений равновесия. Отсюда второе название принципа Даламбера – метод кинетостатики.

Для материальной точки в любой момент движения геометрическая сумма приложенных активных сил, реакций связей и условно присоединенной силы инерции равна нулю (рис. 48).

Где Ф-сила инерции материальной точки, равная:

. (15.2)

Рисунок 48

Рисунок 49

Сила инерции приложена не к движущемуся объекта, а к связям, определяющим его движение. Человек сообщает ускорение вагонетке (рис. 49), толкая ее силой.Сила инерции представляет собой противодействие действию человека на вагонетку, т.е. по модулю равна силе и направлена в противоположную сторону.

Если точка движется по криволинейной траектории, то силу инерции можно спроецировать на естественные оси координат.

Рисунок 50

; (15.3)

, (15.4) где -- радиус кривизны траектории.

При решении задач с помощью метода кинетостатики необходимо:

1. выбрать систему координат;

2. показать все активные силы, приложенные к каждой точке;

3. отбросить связи, заменив их соответствующими реакциями;

4. добавить к активным силам и реакциям связей силу инерции;

5. составить уравнения кинетостатики, из которых определить искомые величины.

ПРИМЕР 21.

О

РЕШЕНИЕ.

1. Рассмотрим автомобиль, находящийся в верхней точке выпуклого моста. Рассмотрим автомобиль как материальную точку, на которую заданная сила и реакцию связи.

2. Так как автомобиль движется с постоянной скоростью, запишем принцип Даламбера для материальной точки в проекции на нормаль
. (1) Выразим силу инерции:
; нормальное давление автомобиля определим из уравнения (1):Н.

пределить давление автомобиля весомG=10000H, находящегося в верхней точке выпуклого моста радиусом =20м и движущегося с постоянной скоростьюV=36км/ч (рис. 51).

16. Принцип даламбера для механическойй системы. Главный вектор и главный момент сил инерции.

Если к каждой точке механической системы в любой момент движения условно приложить соответствующую силы инерции, то в любой момент движения геометрическая сумма действующих на точку активных сил, реакций связей и силы инерции равна нулю.

Уравнение, выражающее принцип Даламбера для механической системы, имеет вид
. (16.1) Сумма моментов этих уравновешенных сил относительно любого центра также равна нулю
. (16.2) При применении принципа Даламбера уравнения движения системы составляются в форме уравнений равновесия. С помощью уравнений (16.1) и (16.2) можно определить динамические реакции.

ПРИМЕР 22.

Вертикальный вал АК, вращающийся с постоянной угловой скоростью =10с -1 , закреплен подпятником в точке А и цилиндрическим подшипником в точке К (рис. 52). К валу в точке Е прикреплены тонкий однородный ломаный стержень массой m=10кг и длиной 10b, состоящий из частей 1 и 2, где b=0,1м, а их массы m 1 и m 2 пропорциональны длинам. Стержень прикреплен к валу шарниром в точке Е и невесомым стержнем 4 жестко закрепленным в точке В. Определить реакцию шарнира Е и стержня 4.

РЕШЕНИЕ.

1. Длина ломаного стержня равна 10b. Выразим массы частей стержня, пропорциональные длинам: m 1 =0,4m; m 2 =0,3m; m 3 =0,3m.

Рисунок 42

2. Для определения искомых реакций рассмотрим движение ломаного стержня и применим принцип Даламбера. Расположим стержень в плоскости ху, изобразим действующие на него внешние силы: ,,, реакции шарнираии реакцию
стержня 4. Присоединяем к этим силам силы инерции частей стержня:
;
;
,

где
;
;
.

Тогда Н.Н.Н.

Линия действия равнодействующих сил инерции ,
и
проходит на расстоянияхh 1 , h 2 и h 3 от оси х: м;

3. Согласно принципу Даламбера приложенные активные силы, реакции связей и силы инерции образуют уравновешенную систему сил. Составим для плоской системы сил три уравнения равновесия:

; ; (1)
;; (2)
;.(3)

Решая систему уравнений (1)+(3), подставляя заданные значения соответствующих величин, найдем искомые реакции:

N= y E = x E =

Если все силы, действующие на точки механической системы, подразделить на внешние и внутренние, (рис. 53), то для произвольной точки механической системы можно записать два векторных равенства:

; (16.3)
.

Рисунок 53

Учитывая свойства внутренних сил, получим принцип Даламбера для механической системы в следующем виде:
; (16.4)
, (16.5) где,-- соответственно главные векторы внешних сил и сил инерции;

,
-- соответственно главные моменты внешних сил и сил инерции относительно произвольного центра О.

Главный вектор и главный момент
заменяют силы инерции всех точек системы, так как к каждой точке системы необходимо приложить свою силу инерции, зависящую от ускорения точки. Используя теорему о движении центра масс и об изменении кинетического момента системы относительно произвольного центра, получаем:
, (16.6)

. (16.7) Для твердого тела, вращающегося вокруг неподвижной оси z, главный момент сил инерции относительно этой оси равен
, (16.8) где-- угловое ускорение тела.

При поступательном движении тела силы инерции всех его точек приводятся к равнодействующей, равной главному вектору сил инерции, т.е.
.

П

Рисунок 54

ри вращении тела вокруг неподвижной осиz, проходящей через центр масс, силы инерции всех точек тела приводятся к паре сил, лежащей в плоскости, перпендикулярной к оси вращения, и имеющей момент
, (16.9) где-- момент инерции тела относительно оси вращения.

Если тело имеет плоскость симметрии и вращается вокруг неподвижной оси z, перпендикулярной плоскости симметрии и не проходящей через центр масс тела, сила инерции всех точек тела приводится к равнодействующей, равной главному вектору сил инерции системы, но приложенной к некоторой точке К (рис. 54). Линия действия равнодействующей отстоит от точки О на расстоянии
. (16.10)

При плоском движении тела, имеющего плоскость симметрии, тело движется вдоль этой плоскости (рис.55). Главный вектор и главный момент сил инерции также лежат в этой плоскости и определяются по формулам:

Рисунок 55


;

.

Знак минус показывает, что направление момента
противоположно направлению углового ускорения тела.

ПРИМЕР 23.

Определить силу, стремящуюся разорвать равномерно вращающийся маховик массой m, считая его массу распределенной по ободу. Радиус маховика r, угловая скорость (рис. 56).

РЕШЕНИЕ.

1. Искомая сила является внутренней.-- равнодействующая сил инерции элементов обода.
. Выразим координату х с центра масс дуги обода с центральным углом
:
, тогда
.

2. Для определения силы применим принцип Даламбера в проекции на ось х:
;
, откуда
.

3. Если маховик – сплошной однородный диск, то
, тогда
.

При движении материальной точки её ускорение в каждый момент времени таково, что приложенные к точке заданные (активные) силы, реакции связей и фиктивная Даламберова сила Ф = - та образуют уравновешенную систему сил.

Доказательство. Рассмотрим движение несвободной материальной точки массой т в инерциальной системе отсчета. Согласно основному закону динамики и принципу освобождения от связей имеем:

где F - равнодействующая заданных (активных) сил; N - равнодействующая реакций всех наложенных на точку связей.

Нетрудно преобразовать (13.1) к виду:

Вектор Ф = - та называют Даламберовой силой инерции, силой инерции или просто Даламберовой силой. Далее будем использовать только последний термин.

Уравнение (13.3), выражающее принцип Даламбера в символьной форме, называют уравнением кинетостатики материальной точки.

Легко получить обобщение принципа Даламбера для механической системы (системы п материальных точек).

Для любой к -й точки механической системы выполняется равенство (13.3):

где ? к - равнодействующая заданных (активных) сил, действующих на к -ю точку; N к - равнодействующая реакций связей, наложенных на к-ю точку; Ф к = - та к - Даламберова сила к -й точки.

Очевидно, что если условия уравновешенности (13.4) выполняются для каждой тройки сил F*, N* : , Ф* = 1,. .., п ), то и вся система 3п сил

является уравновешенной.

Следовательно, при движении механической системы в каждый момент времени приложенные к ней активные силы, реакции связей и Даламберовы силы точек системы образуют уравновешенную систему сил.

Силы системы (13.5) уже не являются сходящимися, поэтому, как известно из статики (п. 3.4), необходимые и достаточные условия её уравновешенности имеют следующий вид:

Уравнения (13.6) называют уравнениями кинетостатики механической системы. Для расчетов используют проекции этих векторных уравнений на оси, проходящие через моментную точку О.

Замечание 1. Поскольку сумма всех внутренних сил системы, а также сумма их моментов относительно любой точки равны нулю, то в уравнениях (13.6) достаточно учитывать лишь реакции внешних связей.

Уравнения кинетостатики (13.6) обычно используют для определения реакций связей механической системы, когда движение системы задано, а поэтому ускорения точек системы и зависящие от них Далам- беровы силы известны.

Пример 1. Найти реакции опор А и В вала при его равномерном вращении с частотой 5000 об/мин.

С валом жестко связаны точечные массы гп = 0,1 кг, т 2 = 0,2 кг. Известны размеры АС - CD - DB = 0,4 м, h = 0,01 м. Массу вала считать пренебрежимо малой.

Решение. Чтобы воспользоваться принципом Даламбера для механической системы, состоящей из двух точечных масс, укажем на схеме (рис. 13.2) заданные силы (силы тяжести) Gi, G 2 , реакции связей N4, N# и Даламберовы силы Ф|, Ф 2 .

Направления Даламбсровых сил противоположны ускорениям точечных масс т ь т 2у которые равномерно описывают окружности радиуса h вокруг оси АВ вала.

Находим величины сил тяжести и Даламбсровых сил:

Здесь угловая скорость вала со- 5000* л/30 = 523,6 с Проецируя уравнения кинетостатики (13.6) на декартовы оси Ах, Ay , Az , получим условия уравновешенности плоской системы параллельных сил Gi, G 2 , 1Чд, N tf , Ф ь Ф 2:


Из уравнения моментов находим N в = - + - 1 - - - 2 --- =

(0,98 + 274) 0,4 - (548 -1,96) 0,8 w „

272 Н, а из уравнения проекции на

ось Ay: N a = -N B +G,+G 2 +Ф,-Ф 2 = 272 + 0,98 +1,96 + 274-548 =0,06 Н.

Уравнения кинетостатики (13.6) можно использовать и для получения дифференциальных уравнений движения системы, если составить их так, что реакции связей исключаются и в результате появляется возможность получить зависимости ускорений от заданных сил.

Если рассматривать систему, которая состоит из нескольких материальных точек, выделяя одну определенную точку с известной массой, то под действием приложенных к ней внешних и внутренних сил она получает некоторое ускорение по отношению к инерциальной системе отсчета. Среди таких сил могут быть как активные силы, так и реакции связи.

Сила инерции точки - это векторная величина, которая равна по модулю произведению массы точки на ее ускорение. Данную величину иногда упоминают как даламберовскую силу инерции, она направлена противоположно ускорению. В этом случае обнаруживается следующее свойство движущейся точки: если в каждый момент времени прибавить силу инерции к фактически действующим на точку силам, то полученная система сил будет уравновешена. Так можно сформулировать принцип Даламбера для одной материальной точки. Данное утверждение полностью соответствует второму закону Ньютона.

Принципы Даламбера для системы

Если повторить все рассуждения для каждой точки в системе, они приводят к следующему выводу, который выражает принцип Даламбера, сформулированный для системы: если в любой момент времени приложить к каждой из точек в системе, помимо фактически действующих внешних и внутренних сил, то данная система будет находиться в равновесии, поэтому к ней можно применять все уравнения, которые используются в статике.

Если применять принцип Даламбера для решения задач динамики, то уравнения движения системы можно составить в форме известных нам уравнений равновесия. Данный принцип значительно упрощает расчеты и делает подход к решению задач единым.

Применение принципа Даламбера

Следует учитывать, что на движущуюся точку в механической системе действуют только внешние и внутренние силы, которые возникают как результат взаимодействия точек между собой, а также с телами, не входящими в данную систему. Точки движутся с определенными ускорениями под действием всех этих сил. Силы инерции не действуют на движущиеся точки, в противном случае они бы двигались без ускорения или были в покое.

Силы инерции вводятся лишь для того, чтобы составить уравнения динамики при помощи более простых и удобных методов статики. Учитывается также, что геометрическая сумма внутренних сил и сумма их моментов равна нулю. Использование уравнений, которые вытекают из принципа Даламбера, делает процесс решения задач проще, так как данные уравнения уже не содержат внутренних сил.

Просмотр: эта статья прочитана 44027 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Общие принципы динамики

Принцип Германа - Эйлера - Даламбера

Сила инерции

Принцип Даламбера (принцип кинетостатики) является одним из общих принципов механики, с помощью которого уравнениям динамики по форме придается вид уравнений статики. Принцип был предложен Германом в 1716 году, обобщен Эйлером в 1737 году.

Материальная точка М движется с ускорением под действием приложенных сил. Третий закон динамики отображает двусторонность механических процессов природы. При взаимодействии двух тел приложенные к каждому из них силы равны по модулю и направлены противоположно. Так как эти силы приложены к разным телам, они не уравновешиваются. Например, при взаимодействия некоторого тела А и точки М , которая имеет массу m , точка получает ускорение. Тело А действует на точку М с силой F=-ma . По закону действия и противодействия материальное точка М действует на тело А с силой Ф=-F=-ma , которая называется силой инерции.

Сила инерции или сила Даламбера - векторная величина, имеющая размерность силы, по модулю равна произведению массы точки на ее ускорение, и направлена противоположно этому ускорению.

Принцип Даламбера для материальной точки

Если в любой момент времени к фактически действующим на материальную точку силам добавить силу инерции, то полученная система сил будет уравновешенной.

Это означает, что для решения задачи динамики по принципу Германа - Эйлера - Даламбера следует, помимо приложенных к точке сил, условно приложить к этой точке силу инерции. приложение силы инерции к точке является условным приемом, сводящим задачу динамики лишь по форме решения к задаче статики.

Принцип Даламбера для системы материальных точек

Если в любой момент времени к каждой из точек системы, кроме фактически действующих на нее внешних и внутренних сил, приложить соответствующие силы инерции, то полученная система сил будет находиться в равновесии и для нее можно будет применить все уравнения статики.

Принцип Даламбера для несвободной механической системы

В любой момент времени для каждой точки несвободной механической системы, кроме фактически действующих на нее сил, добавить соответствующие силы инерции, то полученная система сил будет уравновешенной и для нее можно будет применить все уравнения статики.

То есть, в любой момент времени для каждой точки несвободной механической системы геометрическая сумма главных векторов заданных сил, реакций опор и сил инерции материальных точек системы равна нулю.

В любой момент времени для любой точки несвободной механической системы геометрическая сумма главных моментов заданных сил, реакций опор и сил инерции материальных точек системы относительно любого неподвижного центра равна нулю.

Обобщенная форма уравнений равновесия по принципу Даламбера

Приведение сил инерции точек твердого тела к простейшему виду.

Случаи приведения системы сил инерции твердого тела простейшему виду.

Поступательное движение

При поступательном движении силы инерции твердого тела приводятся до одной равнодействующей, проходящей через центр масс тела, и равной по модулю произведению массы тела на модуль ускорения его центра масс и направленной противоположно этому ускорению.

Вращения вокруг центра масс нет, поэтому момент силы инерции равен нулю.

Вращательное движение тела вокруг оси, проходящей через центр масс тела.

Если тело вращается вокруг неподвижной оси проходящей через центр масс тела, то силы инерции приводятся к одной паре сил, лежащей в плоскости перпендикулярной оси вращения.

Поскольку центр масс не движется главный вектор сил инерции равен нулю.

Плоскопаралельний движение

При плоском движении тела система сил инерции приводится к силе, приложенной в центре масс тела и паре сил. Направление момента силы инерции противоположен угловому ускорению тела.

Принцип возможных перемещений

Принцип возможных перемещений в общем виде определяет условия равновесия любой механической системы, то есть позволяет решать задачи статики, как задачи динамики.

Перемещение точек несвободной механической системы ограничено имеющимися связями. Положение точек системы определяется заданием независимых координат.

Независимые величины, заданием которых можно однозначно определяется положение всех точек механической системы, называются обобщенными координатами этой системы. Как правило, число обобщенных координат механической системы равно числу степеней свободы этой системы. Например, положение всех точек кривошипно-шатунного механизма определяется заданием угла поворота кривошипа.

Возможные или виртуальные перемещения

Возможные или виртуальные перемещения системы - это воображаемые бесконечно малые перемещения точек системы, допускаемые в данный момент наложенными на систему связями.

Криволинейные перемещения точек заменяют прямолинейными отрезками, отложенными по касательной к траекториям точек.

Число независимых между собой возможных перемещений системы называется числом степеней свободы этой системы.

Возможная или виртуальная работа

Возможная (или виртуальная) работа − это элементарная работа, которую действующая на материальную точку сила могла бы совершить на перемещении, совпадающем с возможным перемещением этой точки.

Принцип возможных перемещений для механической системы

Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма робот всех активных сил при любом возможном перемещении системы равнялась нулю.

Уравнение возможных работ − математическое выражение необходимого и достаточного условий равновесия любой механической системы.

Общее уравнение динамики

Общее уравнение динамики (принцип Даламбера - Лагранжа)

Принцип возможных перемещений, дающий общий метод решения задач статики, можно применить и к решению задач динамики. На основании принципа Германа—Эйлера—Даламбера для несвободной механической системы в любой момент времени геометрическая сумма равнодействующей задаваемых сил, равнодействующей реакций связей и силы инерции для каждой точки Mn механической системы равна нулю.

Если система получает возможное перемещение, при котором каждая точка имеет возможное перемещение, то сумма работ этих сил на перемещении должна быть равна нулю.

Общее уравнение динамики для системы с идеальными связями

Положим, что все связи в рассматриваемой механической системе двусторонние и идеальные (силы трения, если они имеются, отнесены к числу задаваемых сил). Тогда сумма работ реакций связей на возможных перемещениях системы равна нулю.

При движении механической системы с идеальными связями в любой данный момент времени сумма элементарных робот всех активных (заданных) сил и всех сил инерции на любом возможном перемещении системы равняется нулю.

Общие уравнения динамики позволяют составить дифференциальные уравнения движения любой механической системы. Если механическая система состоит из отдельных твердых тел, то силы инерции точек каждого тела можно привести к силе, приложенной в некоторой точке тела, и паре сил. Сила равна главному вектору сил инерции точек этого тела, а момент пары равен главному моменту этих сил относительно центра приведения. Чтобы воспользоваться принципом возможных перемещений, к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силу и пару, составленные силами инерции точек тела. Затем системе сообщают возможное перемещение и для всей совокупности задаваемых сил и приведенных сил инерции составляют общее уравнение динамики

Формат: pdf

Размер: 600КВ

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы