Принцип даламбера для материальной точки гласит. Принцип даламбера теоретической механики. Принцип Даламбера для механической системы

Принцип даламбера для материальной точки гласит. Принцип даламбера теоретической механики. Принцип Даламбера для механической системы
Принцип даламбера для материальной точки гласит. Принцип даламбера теоретической механики. Принцип Даламбера для механической системы

Принцип Даламбера применяется при решении первой основной задачи динамики несвободной точки, когда известны движение точки и действующие на неё активные силы, а отыскивается возникающая реакция связи.

Запишем основное уравнение динамики несвободной точки в инерциальной системе отсчёта:

Перепишем уравнение в виде:

.

Обозначив , получим

, (11.27)

где вектор называется Даламберовой силой инерции .

Формулировка принципа: В каждый момент движения несвободной материальной точки активная сила и реакция связи уравновешиваются Даламберовой силой инерции .

Проектируя векторное уравнение (11.27) на какие-либо координатные оси, мы получим соответствующие уравнения равновесия, пользуясь которыми можно находить неизвестные реакции.

Спроектируем уравнение (11.27) на естественные оси:

(11.28)

где называется центробежной силой инерции, всегда направленной в отрицательную сторону главной нормали; .

Замечания:

1). В действительности к точке помимо сил и каких-либо других физических сил не приложено и три силы не составляют уравновешенную систему сил. В этом смысле Даламберова сила инерции является фиктивной силой, условно прикладываемой к точке.

2). Принцип Даламбера следует рассматривать как удобный методический прием, позволяющий задачу динамики свести к задаче статики.

Пример 1. Определим реакцию связи, действующую на лётчика при выходе самолёта, движущегося в вертикальной плоскости, из пикирующего полёта (рис.11.5).

На лётчика действует сила тяжести и реакция сидения . Применим принцип Даламбера, присоединив к этим силам Даламберову силу инерции:

(11.29)

Запишем уравнение (11.29) в проекциях на нормаль :

(11.30)

где r - радиус окружности при выходе самолёта на горизонтальный полёт,

Максимальная скорость самолёта в этот момент.

Из уравнения (11.30)

(11.31)

Пример 2. Определим теперь ту же реакцию, действующую на лётчика в момент выхода из режима набора высоты (рис.11.6).

Относительное движение материальной точки

Если системы отсчета движутся относительно инерциальной системы отсчета не поступательно, либо неравномерно или криволинейно движутся начала их координат, то такие системы отсчета являются неинерциальными . В этих системах отсчета аксиомы А 1 и А 2 не соблюдаются, но из этого не следует, что в динамике исследуются лишь движения, происходящие в инерциальных системах отсчета. Рассмотрим движение материальной точки в неинерциальной системе координат, если известны силы, действующие на материальную точку, и задано движение неинерциальной системы отсчета относительно инерциальной системы отсчета. В дальнейшем инерциальная система отсчета будет называться неподвижной, а неинерциальная – подвижной системой отсчета. Пусть - равнодействующая активных сил, действующих на точку, а - равнодействующая реакции связей; - неподвижная система координат; - подвижная система координат.

Рассмотрим движение материальной точки М (рис. 11.7), не связанной жестко с подвижной системой координат, а движущейся по отношению к ней. Это движение точки в кинематике называли относительным, движение точки относительно неподвижной системы координат – абсолютным, движение подвижной системы координат – переносным.


Основной закон динамики для абсолютного движения точки М будет иметь вид

(11.33)

где - абсолютное ускорение точки.

На основании теоремы сложения ускорений кинематики (теоремы Кориолиса) абсолютное ускорение складывается из относительного, переносного и кориолисова ускорений

. (11.34)

Подставляя (11.34) в (11.33), получим

и после переноса и ввода обозначений

(11.35)

где ; вектор называют переносной силой инерции; - кориолисовой силой инерции.

Равенство (11.35) выражает закон относительного движения точки. Следовательно, движение точки в неинерциальной системе отсчета можно рассматривать как движение в инерциальной системе, если к числу действующих на точку активных сил и реакций связей добавить переносную и кориолисову силы инерции.

В предыдущих лекциях рассматривались способы решения задач динамики, основанные на законах Ньютона. В теоретической механике разработаны и другие способы решения динамических задач, в основе которых лежат некоторые иные исходные положения, называемые принципами механики.

Важнейшим из принципов механики является принцип Даламбера. С принципом Даламбера тесно связан метод кинетостатики - способ решения задач динамики, в котором динамические уравнения записываются в форме уравнений равновесия. Метод кинетостатики широко применяется в таких общеинженерных дисциплинах, как сопротивление материалов, теория механизмов и машин, в других областях прикладной механики. Принцип Даламбера результативно используется и внутри самой теоретической механики, где с его помощью созданы эффективные способы решения задач динамики.

Принцип Даламбера для материальной точки

Пусть материальная точка массы совершает несвободное движение относительно инерциальной системы координат Oxyz под действием активной силы и реакции связи R (рис. 57).

Определим вектор

численно равный произведению массы точки на ее ускорение и направленный противоположно вектору ускорения. Вектор имеет размерность силы и называется силой инерции (даламберовой) материальной точки.

Принцип Даламбера для материальной точки сводится к следующему утверждению: если к силам, действующим на материальную точку, условно присоединить силу инерции точки, то получим уравновешенную систему сил, т. е.

Вспоминая из статики условие равновесия сходящихся сил, принцип Даламбера можем записать также в следующей форме:

Легко видеть, что принцип Даламбера эквивалентен основному уравнению динамики, и наоборот, из основного уравнения динамики следует принцип Даламбера. Действительно, перенося в последнем равенстве вектор в другую часть равенства и заменяя на , получаем основное уравнение динамики. Наоборот, перенося в основном уравнении динамики член та в одну сторону с силами и используя обозначение , получаем запись принципа Даламбера.

Принцип Даламбера для материальной точки, будучи вполне эквивалентным основному закону динамики, выражает этот закон в совершенно иной форме - в форме уравнения статики. Это дает возможность пользоваться при составлении уравнений динамики методами статики, что и называется методом кинетостатики.

Метод кинетостатики особенно удобен при решении первой задачи динамики.

Пример. Из наивысшей точки гладкого сферического купола радиуса R соскальзывает материальная точка М массы с пренебрежимо малой начальной скоростью (рис. 58). Определить, в каком месте точка сойдет с купола.

Решение. Точка будет двигаться по дуге некоторого меридиана . Пусть в некоторый (текущий) момент радиус ОМ составляет с вертикалью угол . Раскладывая ускорение точки а на касательное ) и нормальное представим силу инерции точки также в виде суммы двух составляющих:

Касательная составляющая силы инерции имеет модуль и направлена противоположно касательному ускорению, нормальная составляющая - модуль и направлена противоположно нормальному ускорению.

Добавляя эти силы к фактически действующим на точку активной силе и реакции купола N, составляем уравнение кинетостатики

Все методы решения задач динамики, которые мы до сих пор рассматривали, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствиями этих законов. Однако, этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Пусть мы имеем систему, состоящих из n материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил и (в которые входят и активные силы, и реакции связи) точка получает по отношению к инерционной системе отсчета некоторое ускорение .

Введем в рассмотрение величину

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки(иногда даламберовой силой инерции).

Тогда оказывается, что движение точки обладает следующим общим свойством: если в каждый момент времени к фактически действующим на точку силам и прибавить силу инерции , то полученная система сил будет уравновешенной, т.е. будет

.

Это выражение выражает принцип Даламбера для одной материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает . Перенося здесь член в правую часть равенства и придем к последнему соотношению.

Повторяя проделанные высшее рассуждения по отношению к каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы, кроме фактически действующих на ней внешних и внутренних сил, приложить соответствующие силы инерции, то полученная система сил будет находиться в равновесии и к ней можно будет применять все уравнения статики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; что делает единообразный подход к решению задач и обычно намного упрощает соответствующие расчёты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики.


Применяя принцип Даламбера, следует иметь в виду, что на точку механической системы, движение которой изучается, действуют только внешние и внутренние силы и , возникающие в результате взаимодействия точек системы друг с другом и с телами, не входящими в систему; под действием этих сил точки системы и движутся с соответствующими ускорениями . Силы же инерции, о которых говорится в принципе Даламбера, на движущиеся точки не действуют (иначе, эти точки находились бы в покое или двигались без ускорений и тогда не было бы и самих сил инерции). Введение сил инерции - это лишь приём, позволяющий составлять уравнения динамики с помощью более простых методов статики.

Из статики известно, что геометрическая сумма сил, находящихся в равновесии, и сумма их моментов относительно любого центра О равны нулю, причём по принципу отвердевания это справедливо для сил, действующих не только на твёрдое тело, но и на любую изменяемую систе6му. Тогда на основании принципа Даламбера должно быть.

Силы инерции в динамике материальной точки и механической системы

Силой инерции материальной точки называется произведение массы точки на ее ускорение, взятое со знаком минус, т. е. Силы инерции в динамике применяются в следующих случаях:

  • 1. При исследовании движения материальной точки в неинерциальной (подвижной) системе координат, т. е. относительного движения. Это переносная и кориолисова силы инерции, которые часто называют эйлеровыми.
  • 2. При решении задач динамики с использованием метода кинетостатики. В основу этого метода положен принцип Даламбера, в соответствии с которым вводятся силы инерции материальной точки или системы материальных точек, движущихся с некоторым ускорением в инерциальной системе отсчета. Эти силы инерции называются даламберовыми.
  • 3. Даламберовы силы инерции применяются также при решении задач динамики с использованием принципа Лагранжа-Даламбера или общего уравнения динамики.

Выражение в проекциях на оси декартовых координат

где - модули проекций ускорения точки на оси декартовых координат.

При криволинейном движении точки силу инерции можно разложить на касательную и нормальную:; , - модуль касательного и нормального ускорений; - радиус кривизны траектории;

V - скорость точки.

Принцип Даламбера для материальной точки

Если к несвободной материальной точке, движущейся под действием приложенных активных сил и сил реакций связей, приложить ее силу инерции, то в любой момент времени полученная система сил будет уравновешенной, т. е. геометрическая сумма указанных сил будет равна нулю.

механический точка тело материальный

где - равнодействующая активных сил, приложенных к точке; - равнодействующая реакций связей, наложенных на точку; сила инерции материальной точки. Примечание: На самом деле сила инерции материальной точки приложена не к самой точке, а к тому телу, которое сообщает ускорение данной точке.

Принцип Даламбера для механической системы

Геометрическая сумма главных векторов внешних сил, действующих на систему, и сил инерции всех точек системы, а также геометрическая сумма главных моментов этих сил относительно некоторого центра для несвободной механической системы в любой момент времени равны нулю, т.

Главный вектор и главный момент сил инерции твердого тела

Главный вектор и главный момент сил инерции точек системы определяются отдельно для каждого твердого тела, входящего в данную механическую систему. Их определение основывается на известном из статики методе Пуансо о приведении произвольной системы сил к заданному центру.

На основании этого метода силы инерции всех точек тела в общем случае его движения можно привести к центру масс и заменить их главным вектором * и главным моментом относительно центра масс. Они определяются по формулам т. е. при любом движении твердого тела главный вектор сил инерции равен со знаком минус произведению массы тела на ускорение центра масс тела; ,где r kc -- радиус-вектор k-й точки, проведенный из центра масс. Эти формулы в частных случаях движения твердого тела имеют вид:

1. Поступательное движение.

2. Вращение тела вокруг оси, проходящей через центр масс

3. Плоскопараллельное движение

Введение в аналитическую механику

Основные понятия аналитической механики

Аналитическая механика - область (раздел) механики, в котором изучается движение или равновесие механических систем с помощью общих, единых аналитических методов, применяемых для любых механических систем.

Рассмотрим наиболее характерные понятия аналитической механики.

1. Связи и их классификация.

Связи -- любые ограничения в виде тел или каких-либо кинематических условий, накладываемые на движения точек механической системы. Эти ограничения могут быть записаны в виде уравнений или неравенств.

Геометрические связи -- связи, уравнения которых содержат только координаты точек, т. е. ограничения накладываются только на координаты точек. Это связи в виде тел, поверхностей, линий и т. п.

Дифференциальные связи -- связи, накладывающие ограничения не только на координаты точек, но и на их скорости.

Голономные связи -- все геометрические связи и те дифференциальные, уравнения которых могут быть проинтегрированы.

Неголономные связи -- дифференциальные неинтегрируемые связи.

Стационарные связи -- связи, в уравнения которых не входит явно время.

Нестационарные связи -- связи, изменяющиеся с течением времени, т. е. в уравнения которых явно входит время.

Двусторонние (удерживающие) связи -- связи, ограничивающие движение точки в двух противоположных направлениях. Такие связи описываются уравнениями.

Односторонние (неудерживающие) связи - связи, ограничивающие движение только в одном направлении. Такие связи описываются неравенствами

2. Возможные (виртуальные) и действительные перемещения.

Возможными или виртуальными перемещениями точек механической системы называются воображаемые бесконечно малые перемещения, которые допускают наложенные на систему связи.

Возможным перемещением механической системы называется совокупность одновременных возможных перемещений точек системы, совместимых со связями. Пусть механическая система -- кривошипно-шатунный механизм.

Возможным перемещением точки А является перемещение которое в силу его малости считается прямолинейным и направленным перпендикулярно к ОА.

Возможным перемещением точки В (ползуна) является перемещение в направляющих. Возможным перемещением кривошипа ОА является поворот на угол, а шатуна АВ -- на угол вокруг МЦС (точка Р).

Действительными перемещениями точек системы называются также элементарные перемещения, которые допускают наложенные связи, но с учетом начальных условий движения и действующих на систему сил.

Число степеней свободы S механической системы - это число ее независимых возможных перемещений, которые можно сообщить точкам системы в фиксированный момент времени.

Принцип возможных перемещений (принцип Лагранжа)

Принцип возможных перемещений или принцип Лагранжа выражает условие равновесия несвободной механической системы, находящейся под действием приложенных активных сил. Формулировка принципа.

Для равновесия несвободной механической системы с двусторонними, стационарными, голономными и идеальными связями, находящейся в покое под действием приложенных активных сил, необходимо и достаточно, чтобы сумма элементарных работ всех активных сил равнялась пулю на любом возможном перемещении системы из рассматриваемого положения равновесия:

Общее уравнение динамики (принцип Лагранжа-Даламбера)

Общее уравнение динамики применяется к исследованию движения несвободных механических систем, тела или точки которых движутся с некоторыми ускорениями.

В соответствии с принципом Даламбера совокупность приложенных к механической системе активных сил, сил реакций связей и сил инерции всех точек системы образует уравновешенную систему сил.

Если к такой системе применить принцип возможных перемещений (принцип Лагранжа), то получим объединенный принцип Лагранжа-Даламбера или общее уравнение динамики. Формулировка этого принципа.

При движении несвободной механической системы с двусторонними, идеальными, стационарными и голономными связями сумма элементарных работ всех приложенных к точкам системы активных сил и сил инерции на любом возможном перемещении системы равна нулю:

Уравнения Лагранжа второго рода

Уравнения Лагранжа второго рода - это дифференциальные уравнения движения механической системы в обобщенных координатах.

Для системы с S степенями свободы эти уравнения имеют вид

Разность полной производной по времени от частной производной от кинетической энергии системы по обобщенной скорости и частной производной от кинетической энергии по обобщенной координате равна обобщенной силе.

Уравнения Лагранжа для консервативных механических систем. Циклические координаты и интегралы

Для консервативной системы обобщенные силы определяются через потенциальную энергию системы по формуле

Тогда уравнения Лагранжа перепишутся в виде

Так как потенциальная энергия системы есть функция только обобщенных координат, т. е. , то С учетом этого представим в виде, где Т - П = L -- функция Лагранжа (кинетический потенциал). Окончательно уравнения Лагранжа для консервативной системы

Устойчивость положения равновесия механической системы

Вопрос об устойчивости положения равновесия механических систем имеет непосредственное значение в теории колебания систем.

Положение равновесия может быть устойчивым, неустойчивым и безразличным.

Устойчивое положение равновесия - положение равновесия, при котором точки механической системы, выведенные из этого положения, в дальнейшем движутся под действием сил в непосредственной близости возле своего равновесного положения.

Это движение будет обладать той или иной степенью повторяемости во времени, т. е. система будет совершать колебательное движение.

Неустойчивое положение равновесия - положение равновесия, из которого при сколь угодно малом отклонении точек системы в дальнейшем действующие силы еще дальше будут удалять точки от их равновесного положения.

Безразличное положение равновесия -- положение равновесия, когда при любом малом начальном отклонении точек системы от этого положения в новом положении система также остается в равновесии..

Для определения устойчивого положения равновесия механической системы существуют различные методы.

Рассмотрим определение устойчивого положения равновесия на основании теоремы Лагранжа-Дирихле

Если в положении равновесия консервативной механической системы с идеальными и стационарными связями ее потенциальная энергия имеет минимум, то это положение равновесия является устойчивым.

Явление удара. Ударная сила и ударный импульс

Явление, при котором за ничтожно малый промежуток времени скорости точек тела изменяются на конечную величину, называется ударом. Этот промежуток времени называется временем удара. При ударе в течение бесконечно малого промежутка времени действует ударная сила. Ударной силой называется сила, импульс которой за время удара является конечной величиной.

Eсли конечная по модулю сила действует в течение времени, начиная свое действие в момент времени , то ее импульс имеет вид

Также при действии ударной силы на материальную точку можно сказать, что:

действием немгновенных сил за время удара можно пренебречь;

перемещение материальной точки за время удара можно не учитывать;

результат действия ударной силы на материальную точку выражается в конечном изменении за время удара вектора ее скорости.

Теорема об изменении количества движения механической системы при ударе

изменение количества движения механической системы за время удара равно геометрической сумме всех внешних ударных импульсов, приложенных к точкам систем, где - количество движения механической системы в момент окончания действия ударных сил, - количество движения механической системы в момент начала действия ударных сил, - внешний ударный импульс.

Методы решения задач механики, которые до сих пор рассматривались, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствием этих законов. Однако этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Найдем сначала выражение принципа для одной материальной точки. Пусть на материальную точку с массой действует система активных сил, равнодействующую которых обозначим и реакция связи N (если точка является несвободной). Под действием всех этих сил точка будет двигаться по отношению к инерциальной системе отсчета с некоторым ускорением а.

Введем в рассмотрение величину

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки.

Тогда оказывается, что движение точки обладает следующим свойством: если в любой момент времени к действующим на точку активным силам и реакции связи присоединить силу инерции, то полученная система сил будет уравновешенной, т. е.

Это положение выражает принцип Даламбера для материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает Перенося здесь величину та в правую часть равенства и учитывая обозначение (84), придем к соотношению (85). Наоборот, перенося в уравнении (85) величину в другую часть равенства и учитывая обозначение (84), получим выражение второго закона Ньютона.

Рассмотрим теперь механическую систему, состоящую из материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил (в которые входят и активные силы, и реакции связей) точка будет двигаться по отношению к инерциальной системе отсчета с некоторым ускорением Введя для этой точки силу инерции получим согласно равенству (85), что

т. е. что образуют уравновешенную систему сил. Повторяя такие рассуждения для каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы кроме действующих на нее внешних и внутренних сил присоединить соответствующие силы инерции, то полученная система сил будет уравновешенной и к ней можно применять все уравнения статики.

Математически принцип Даламбера для системы выражается векторными равенствами вида (85), которые, очевидно, эквивалентны дифференциальным уравнениям движения системы (13), полученным в § 106. Следовательно, из принципа Даламбера, как и из уравнений (13), можно получить все общие теоремы динамики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; это делает единообразным подход к решению задач и часто упрощает соответствующие расчеты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики (см. § 141).

Из статики известно, что геометрическая сумма сил, находящихся в равновесии, и сумма их моментов относительно любого центра О равны нулю, причем, как показано в § 120, это справедливо для сил, действующих не только на твердое тело но и на любую изменяемую механическую систему.

Тогда на основании принципа Даламбера должно быть:

Введем обозначения:

Величины представляют собою главный вектор и главный момент относительно центра О системы сил инерции. В результате, учитывая, что геометрическая сумма внутренних сил и сумма их моментов равны нулю, получим из равенств (86):

Применение уравнений (88), вытекающих из принципа Даламбера, упрощает процесс решения задач, так как эти уравнения не содержат внутренних сил. По существу уравнения (88) эквивалентны уравнениям, выражающим теоремы об изменении количества движения и главного момента количеств движения системы, и отличаются от них только по форме.

Уравнениями (88) особенно удобно пользоваться при изучении движения твердого тела или системы твердых тел. Для полного изучения движения любой изменяемой системы этих уравнений будет недостаточно, так же как недостаточно уравнений статики для изучения равновесия любой механической системы (см. § 120).

В проекциях на координатные оси равенства (88) дают уравнения, аналогичные соответствующим уравнениям статики (см. § 16, 30). Чтобы пользоваться этими уравнениями при решении задач, надо знать выражения главного вектора и главного момента сил инерций.

В заключение следует подчеркнуть, что при изучении движения по отношению к инерциальной системе отсчета, которое здесь и рассматривается, силы инерции вводятся только тогда, когда для решения задач применяется принцип Даламбера