Повышение надежности и эффективности оборудования. Методы повышения надёжности и эффективности технологического и энергетического оборудования добычи и транспорта нефти и газа Смородов Евгений Анатольевич

Повышение надежности и эффективности оборудования. Методы повышения надёжности и эффективности технологического и энергетического оборудования добычи и транспорта нефти и газа Смородов Евгений Анатольевич
Повышение надежности и эффективности оборудования. Методы повышения надёжности и эффективности технологического и энергетического оборудования добычи и транспорта нефти и газа Смородов Евгений Анатольевич

Дудникова, Вера Викторовна

Ученая cтепень:

Кандидат технических наук

Место защиты диссертации:

Ростов-на-Дону

Код cпециальности ВАК:

Специальность:

Материаловедение (по отраслям)

Количество cтраниц:

1. СОСТОЯНИЕ ВОПРОСА, ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ.

1.1. Амализ методов обеспечения заданного усталостного ресурса деталей машин.

1.2. Анализ методов определения минимальной усталостной прочности деталей машин.

1.3. Анализ методов определения максимальной нагруженности деталей машин.

1.4. Выводы, цели и задачи исследований.

2. МОДЕЛЬ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ФУНКЦИОНИРОВАНИЯ КУЛЬТИВАТОРА ЗА СЧЕТ УВЕЛИЧЕНИЯ ЕГО НАДЕЖНОСТИ.

2.1. Модель обеспечения заданного усталостного гамма-процп ithoeo ресурса стойки культиватора .

2.2. Модель надежности культиваторного узла (группы стоек).

2.3. al 1али гическое определение параметров вероят1ioctiюго paci 1рнделения совокуш юсти конечного объема прочности и ресурса по их выборочным данным.

2.4. алгоритм и расчет эффективности работы культиватора за счет увеличения его надежности

2.5. Выводы.

3. РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МИНИМАЛЬНОЙ УСТАЛОСТНОЙ ПРОЧНОСТИ, НАГРУЖЕННОСТИ И РЕСУРСА ДЕТАЛИ НА СТАДИИ ПРОЕКТИРОВАНИЯ.

3.1. расчетно-эксперименталыюе определение минимальной усталостной прочнос ти образцов (деталей) для совокупности конечного объема по выборочным данным.

3.2. расчетно-экспериментальное определение максимальной нагруженности деталей.

3.3. расчетно-экспериментальное определение гамма-процентного ресурса де тали.

3.4. Выводы.

4. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ.

4.1. методика повышения эффективности функционирования культиватора за счет увеличения его надежности.

4.2. Обеспечение гамма-процентного ресурса стойки культиватора.

4.3. Методика и результаты подтверждения расчетного гамма-процентного ресурса с тойки культиватора акв-4 после внедрения рекомендаций.

4.4. Расчет экономического эффекта от увеличения гамма-процентного ресурса стойки культиватора.

Введение диссертации (часть автореферата) На тему "Повышение надежности и эффективности функционирования культиватора за счет увеличения ресурса стоек"

Рост производительности труда в сельском хозяйстве связан с повышением эффективности функционирования сельскохозяйственных машин за счет увеличения их надежности. Большое значение имеет повышение эффективности работы машин начального этапа сельскохозяйственного производства; к ним относятся, в том числе культиваторы. При ограничении сроков подготовки почвы культиваторам предъявляются высокие требования по надежности. Отказы культиваторов приводят к простоям в ремонте и к ущербу от простоя техники, вызванному смещением сроков выполнения технологического процесса выращивания сельхозкультур.

В группу деталей, отказывающих и лимитирующих надежность культиваторов, входят S-образные пружинные стойки. Повышение надежности стоек культиватора, а также оптимизация их ресурса обеспечит снижение величины потока отказов, затрат на ремонт, сократит сроки и экономический ущерб вследствие уменьшения продолжительности технологического цикла.

Исследования эффективности и надежности сельскохозяйственных машин проводили Андросов A.A., Беленький Д.М., Грошев Л.М., Далальянц А.Г., Ермольев Ю.И., Жаров В.П. Полушкин O.A., Спиченков В.В., Хозяев И.А., однако выполненный анализ исследований в области эффективности и надежности сельхозмашин показал, что имеются резервы дальнейшего улучшения методов повышения их надежности.

Целью данного исследования является разработка метода повышения надежности и эффективности функционирования культиватора за счет увеличения ресурса его стоек.

Для достижения поставленной цели требуется решить, следующие задачи: разработать метод повышения надежности и эффективности работы культиватора за счет увеличения ресурса его стоек, учитывая аналитический переход от выборочных распределений прочности, нагруженности и ресурса к распределениям совокупности; разработать модель надежности культиваторного узла (группы стоек); разработать алгоритм расчета оптимальной вероятности безотказной работы Б-образной стойки культиватора; определить расчетно-экспериментальным методом параметры прочности, нагруженности и ресурса стойки культиватора на стадии проектирования; оптимизировать гамма-процентный ресурс стойки культиватора и подтвердить его стендовыми испытаниями; рассчитать экономический эффект от увеличения гамма-процентного ресурса группы стоек культиватора.

В первой главе выполнен анализ методов повышения надежности, эффективности и обеспечения заданного усталостного ресурса деталей машин. Освещены различные подходы к определению минимальной усталостной прочности и максимальной нагруженности деталей машин.

Во второй главе диссертации приводится описание модели, разработанной для повышения надежности и эффективности работы культиватора и обеспечения заданного усталостного ресурса его деталей.

В третьей главе приводится расчетно-экспериментальное определение параметров прочности, нагруженности и ресурса деталей на стадии проектирования. Определяется расчетно-экспериментальным методом минимальная усталостная прочность 8-образной стойки культиватора для совокупности конечного объема по выборочным данным. Рассмотрен метод расчетно-экспериментального определения максимальной нагруженности деталей. Приведено расчетно-экспериментальное определение гамма-процентного Б-образной стойки культиватора.

В четвертой главе изложена методика повышения эффективности функционирования культиватора за счет увеличения ресурса стоек. Дана характеристика обеспечения гамма-процентного ресурса стойки культиватора, АКВ-4, выпущенной ЗАО «Красный Аксай ». Приведен расчет экономического эффекта от увеличения гамма-процентного ресурса группы стоек культиватора.

В заключении сделаны выводы о проделанной работе.

Научная новизна выполненной работы состоит в следующем:

Разработана модель, позволяющая установить закономерности повышения надежности и эффективности работы культиватора за счет увеличения ресурса его стоек, позволяющая оптимизировать гамма-процентное значение ресурса стоек по критерию - удельные суммарные затраты на изготовление и эксплуатацию стоек культиватора. Получены аналитические решения для определения параметров трехпараметрического распределения Вейбулла прочности и ресурса для совокупности конечного объема по выборочным данным.

Практическая значимость: выполненных аналитических и экспериментальных исследований заключается в следующем:

Разработан алгоритм расчета эффективности работы культиватора за счет увеличения ресурса его стоек;

Определена расчетно-экспериментальным методом минимальная усталостная прочность 8-образной стойки для совокупности конечного объема но выборочным данным;

Представлен разработанный алгоритм расчетно-экспериментального определения гамма-процентного ресурса детали; достигнуто увеличение вероятности безотказной работы стойки культиватора с 0,90 до 0,99 (оптимальное значение) при этом расчетный гамма-процентный ресурс составит около 229 ч (Р=0,99), что превышает заданный техническими условиями ресурс 200 ч.

Основные положения и результаты работы докладывались и обсуждались на научно-технических конференциях в Ростовском государственном строительном университете в 2001 - 2006 гг.

Заключение диссертации по теме "Материаловедение (по отраслям)", Дудникова, Вера Викторовна

ОБЩИЕ ВЫВОДЫ

1. Разработан метод повышения надежности и эффективности работы культиватора за счет увеличения ресурса его стоек, позволяющий оптимизировать гамма-процентное значение ресурса по критерию -удельные суммарные затраты на изготовление и эксплуатацию стоек культиватора; получен аналитический переход от выборочных распределений прочности, нагруженности и ресурса к распределениям совокупности.

2. Предложена для стадии проектирования модель надежности культиваторного узла (группы стоек), в которой в качестве критерия оптимизации используются удельные затраты на создание и эксплуатацию стоек, а оптимальное значение у для ресурса определяется в интервале 0,9 - 0,94 при априорно установленном размахе ресурса 11=40-60; определен суммарный поток отказов для группы стоек. Разработан алгоритм определения параметров трехпараметрического распределения Вейбулла, описывающего распределения ресурса стоек и расчета этих параметров для потока отказов группы стоек.

3. Разработан алгоритм расчета оптимального гамма-процентного ресурса стойки культиватора. Проведенный расчет показал, что в результате применения мероприятий по увеличению прочности и снижению нагруженности стойки культиватора вероятность безотказной работы увеличивается с 0,9 до оптимального значения 0,99.

4. Для расчетно-экспериментального определения минимальной усталостной прочности для совокупности конечного объема по выборочным данным произведены испытания образцов из 13-ти углеродистых и легированных марок сталей, применяемых для изготовления деталей сельскохозяйственных машин. Получены для этих сталей значения относительной величины расхождения параметров сдвига для совокупности конечного объема и выборки: при Ь>2 расхождение S = 3-14%, при b

5. Для аппроксимации действующих напряжений в виде средневзвешенного напряжения использовано вероятностное распределение Фишера-Типпета, определяемого по аналогии с прочностью для выборки деталей. Выполнен вероятностный расчет с помощью метода статистических испытаний ресурса стойки для различных условий (размахи прочности =1,1-1,5, нагруженности Rctcb=1,16-1,5, значений у=80-99,99%, объем совокупности Nc=103-105).

6. Для увеличения вероятности безотказной работы S- образной стойки из стали 55С2 с 0,9 необходимо повысить качество ее наружной поверхности в области опасного сечения путем шлифования, что даст повышение коэффициента, учитывающего шероховатость поверхности, с 0,65 до 0,85, а предела выносливости в 1,3 раза, а также увеличить момент сопротивления с j

533 до 602 мм и сечение детали на 13% - это приведет к возрастанию вероятности безотказной работы до оптимального значения 0,99.

7. В результате внедрения предложенных рекомендаций достигается повышение эффективности работы культиватора: сокращение количества отказов стоек, снижение затрат на ремонт, сокращение простоев и сроков подготовки почвы для посевов. Ускоренные стендовые испытания S-образных стоек культиватора АКВ-4 производства ЗАО «Красный Аксай » подтвердили достоверность прогноза гамма-процентного ресурса.

8. Экономический расчет показал, что при прогнозируемом увеличении вероятности безотказной работы стойки культиватора с Р=0,9 до Р=0,99 эффект от внедрения результатов исследований составит 21060 рублей при годовой программе выпуска культиваторов 500 шт.

Список литературы диссертационного исследования кандидат технических наук Дудникова, Вера Викторовна, 2007 год

1. Абдуллаев A.A., Курбанов Ш.М., Саттаров A.C. О надежности хлопковых культиваторов // Тракторы и сельскохозяйственные машины. 1992. - №2. - С. 32-33.

2. Агамиров J1.B. О закономерностях рассеяния долговечности в связи с формой кривой усталости // Вестник машиностроения. 1997. - №5.- С. 37.

3. Агафонов Н.И. Эффективное использование сельскохозяйственной техники. М.: Знание 1997, № 4. - 63 с.

4. Александров A.B., Лащеников Б.Я., Шапошников H.H. Строительная механика. Тонкостенные пространственные системы. М.: Стройиздат, 1983.-488 с.

5. Андрющенко Ю.Е., Марисов А.Ф., КушнаревВ.И. Оценка требуемого уровня надежности элементов привода // Эксплуатационная нагруженность и прочность сельскохозяйственных машин/ ДГТУ . Ростов-на-Дону, 1993. №5. - С. 16-21.

6. Анилович В.Я. и др. Прогнозирование надежности тракторов. М.: Машиностроение, 1986. - 224 с.

7. Аржанов М.И. Интерпретация значения нижней доверительной границы для вероятности безотказной работы // Надежность и контроль качества. 1993.-№5.-С. 6-11.

8. Беленький Д.М., Бескопыльный А.Н. Обеспечение высокой надежностидеталей строительно-дорожных машин // Строительные и дорожные машины, 1995. №4. - С. 24-27.

9. Беленький Д.М., Касьянов В.Е. Повышение надежности серийных машин путем увеличения ресурсов лимитирующих деталей // Вестник машиностроения, 1980. №1. - С. 12-14.

10. Беленький Д.М., Касьянов В.Е., Кубарев А.Е., Вернези H.JI. Определение установленных показателей надежности машины и ее составных частей (на примере одноковшового экскаватора) // Надежность и контроль качества. 1986.-№5.-С. 17-22.

11. Беленький Д.М., Ряднов В.Г. О законе распределения предельных напряжений. //Проблемы прочности. 1974. - №2. - С. 73-76.

12. Биргер И.А. Принципы построения норм прочности и надежности в машиностроении //Вестник машиностроения, 1988. № 7. - С. 3-5.

13. Бойцов Б.В. Надежность шасси самолета. М.: Машиностроение, 1976. -216.

14. Бойцов Б.В., Орлова Т.М., Сигалев В.Ф. Определение" закона распределения ресурса деталей машин и механизмов методов статистических испытаний // Вестник машиностроения. 1983. № 2. - С. 20-22.

15. Болотин В.В. Значение механики материалов и конструкций для обеспечения надежности и безопасности технических систем // Проблемы машиностроения и надежности машин. 1990. №5. - С. 3-8.

16. Болотин В.В. Ресурс машин и конструкций. М.: Машиностроение. 1990. -446 с.

17. Бондарович Б.А., Даугелло В.А. Метод статистического моделирования Монте-Карло при расчетах металлических конструкций землеройных машин на прочность //Строительные и дорожные машниы. 1990. № 12. -С. 20-21.

18. Василенко П.М., Бабий П.Г. Культиваторы, конструкции, теория и расчет. Киев, 1961.

19. Величкин И.Н. К вопросу обеспечения требуемой надежности машин // Тракторы и сельхозмашины. 1980. № 4. - С. 6-7.

20. Величкин И.Н. Улучшить нормирование показателей надежности машин // Тракторы и сельскохозяйственные машины. 1990. - №4. - С. 24-27.

21. Величкин И.Н., Коварский E.K. Пути повышения надежности парка тракторов // Тракторы и сельхозмашины, 1987. № 6. - С 32-36.

22. Вентцель Е.С. Теория вероятностей. М.: Наука, 1969. - 576 с.

23. Веремеенко A.A., Дудникова В.В. Определение напряженно-деформированного состояния стойки культиватора АКВ-4. //Деп. в ВИНИТИ №1586-в 2005.

24. Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. Математические методы в теории надежности. М.: Наука, 1965. - 524 с.

25. Гнеденко Б.В., Ушаков И.А. О некоторых современных проблемах теории и практики надежности // Вестник машиностроения. 1988. - №12. - С. 3-9.

26. Гоберман В.А. Вопросы качества и надежности зерноуборочных комбайнов «Дон-1500» // Стандарты и качество, 1988. № 8. - С. 30-34.

27. ГОСТ 11.007-75. Прикладная статистика. Правила определения оценок и доверительных границ для параметров распределения Вейбулла. М.: Изд-во стандартов, 1975

28. ГОСТ 25.502-83. Надежность в технике. Прогнозирование надежности изделий при проектировании.

29. ГОСТ 25.504-82. Расчеты и испытания на прочность. Методы расчета характеристик сопротивления усталости.

30. Грошев JI.M. Оценка рассеивания характеристик нагруженности сельскохозяйственных машин // Динамика, прочность и надежность сельскохозяйственных машин / РИСХМ. Ростов -на- Дону, 1991. С.44-48.

31. Грошев JI.M., Дмитриченко С.С., Рыбак Т.И. Надежность сельскохозяйственной техники. Киев: Урожай, 1990. 188 с.

32. Гумбель Э. Статистика экстремальных значений. М.: Мир, 1965. - 464 с.

33. Гусев A.C. Сопротивление усталости и живучесть конструкций при случайных нагрузках. М.Машиностроение, 1989. - 248 с.

34. Гусев A.C. Структурный анализ случайных процессов с учетом реализационного рассеивания. // Проблемы машиностроения и надежности машин. 1995. - №2. - С. 42-47.

35. Даниев Ю.Ф., Кущ И.А., Переверзев Е.С. Нижняя и верхняя оценки надежности технических устройств// Надежность и контроль качества, 1993. -№ 11.-С. 11-16.

36. Диллон Б., Сингх Г. Инженерные методы обеспечения надежности систем. -М.: Мир, 1984.-318 с.

37. Димитров В.П. Об организации технического обслуживания машин с использованием экспертных систем // Вестник ДГТУ, 2003. - № 1 С. 5-10.

38. Дмитриченко С.С., Артемов В.А. Опыт расчета на усталость металлоконструкций тракторов и других машин //Вестник машиностроения, 1989. № 10. - С. 14-16.

39. Дмитриченко С.С., Егоров Д.К. Расчет долговечности корпусов мостов трактора //Вестник машиностроения, 1989. № 5. - С. 43-44.

40. Дмитриченко С.С., Завьялов Ю.А., Артемов В.А. Параметры случайных процессов нагружения металлоконструкций колесного трактора //Тракторы и сельскохозяйственные машины. 1987. № 1. - С. 21-26.

41. Дудникова В.В. Исследование причин отказа и рекомендации по увеличению гамма-процентного ресурса стойки культиватора АКВ 4.// Деп. в ВИНИТИ, № 1471 - в 2005.

42. Ермаков С.М. Метод Монте-Карло и смежные вопросы. М.: Наука, 1975. - 472 с.

43. Зорин В.А. Основы долговечности строительных и дорожных машин. М.: Машиностроение, 1986. - 248 с.

44. Игнатенко И.В. Исследование динамических характеристик крепления опор ротационных узлов на панели зерноуборочных комбайнов. Диссертация на соискание ученой степени канд. техн. наук. Ростов-на-Дону, РИСХМ, 1970.

45. Капур К., Ламберсон Л. Надежность и проектирование систем. М.: Мир, 1980. - 640 с.

46. Карасев Г.Н. Технико-экономическая оценка конструкций строительных экскаваторов // Строительные и дорожные машины. 1997. - №4.- С. 1115.

47. Карпенко А.Н. и др. Сельскохозяйственные машины. Изд. 3-е, перераб. и доп. М., «Колос », 1975.

48. Касьянов В.Е, Анабердиев А.Х. М., Роговенко Т.Н. Оценка ресурса деталей с усталостными отказами методом статистических испытаний //Эксплуатационная нагруженность и прочность сельскохозяйственных машин/ДГТУ. - Ростов-на-Дону. 1993. С. 67-71.

49. Касьянов В.Е, Андросов A.A., Роговенко Т.Н. Обеспечение минимального ресурса рамы энергосредства «Дон-800». // Вестник машиностроения, 2003, № 3.

50. Касьянов В.Е, Дудникова В.В., Ямоков С.Г. Модель и определение надежности культиваторного узла (группы стоек). // Деп. в ВИНИТИ, № -2006.

52. Касьянов В.Е. Анализ применения трехпараметрического распределения Вейбулла в расчетах надежности машин // Надежность и контроль качества. 1989. - №4. - С. 23-28.

53. Касьянов В.Е. и др. МР-92-83. Определение экономической эффективности повышения надежности выпускаемых машин. М.: ВНИИНМАШ, 1983. -24 с.

54. Касьянов В.Е. и др. МС-248-88. Надежность в технике. Методы расчета показателей надежности для моделей «прочность-нагрузка». М.: Издательство стандартов, 1988. - 20 с.

55. Касьянов В.Е. и др. Р 50-109-89. Надежность в технике. Обеспечение надежности изделий. Общие требования. М.: Издательство стандартов, 1989.- 15 с.

56. Касьянов В.Е. и др. РД 50-576-85. Методические указания. Надежность в технике. Установление норм показателей надежности изделий. Основные положения. М.: Издательство стандартов, 1985. - 22 с.

57. Касьянов В.Е. Интегральная оценка, повышение и оптимизация надежности машин (на примере одноковшового экскаватора) // Вестник машиностроения. 1990. - №4. - С. 7-8.

58. Касьянов В.Е. Принципы создания практически безотказных" машин. //Стандарты и качество. 1988. - №7. - С. 39-42.

59. Касьянов В.Е. Системное обеспечение надежности машин, применяемых в мелиоративном строительстве: Автореф. дис. . д-ра техн. наук. Ростов-на-Дону.-1991.-48 с.

60. Касьянов В.Е., Аннабердиев А. Х.-М. Определение статистического распределения действующих напряжений при нестационарном нагружении деталей одноковшовых экскаваторов. Деп. в ЦНИИТЭСТРОЙМАШ №51сд-85Деп., 20.04.85.

61. Касьянов В.Е., Кузьменко A.B. Определение плотности распределения отказов для машин. Деп в ВИНИТИ 8.04.04, №585.

62. Касьянов В.Е., Кузьменко A.B., Ямоков С.Г. Аналитический метод определения параметров распределения Вейбулла для совокупностиконечного объема действующих напряжений в деталях машин. Деп в ВИНИТИ № в 2006.

63. Касьянов В.Е., Прянишникова Л.И., Дудникова В.В., Кузьменко A.B. Определение параметров распределения Вейбулла для совокупности конечного объема по выборке прочностных характеристик сталей Деп в ВИНИТИ № 389 в 2004.

64. Касьянов В.Е., Прянишникова Л.И., Роговенко Т.Н., Дудникова В.В. Определение гамма процентного значения гипотетическогораспределения выборочных сдвигов для прочностных характеристик сталей // Деп. в ВИНИТИ №1411, 17.07.03.

65. Касьянов В.Е., Роговенко Т.Н. Вероятностно-статистическая оценка гамма-процентного ресурса рамы машины // Вестник машиностроения. 1999. -№6. -С. 10-12.

66. Касьянов В.Е., Роговенко Т.Н. Выбор показателя степени кривой усталости в сверхмногоцикловой области/ Рост. гос. акад. стр-ва. Ростов н/Д, 1993. -8 с. - Деп. в ВИНИТИ №1594 - В95 от 31.05.95.

67. Касьянов В.Е., Роговенко Т.Н. Статистическая оценка прочности сталей с помощью полинома. //Надежность и контроль качества. 1996. - №8. - С. 28-36

68. Касьянов В.Е., Роговенко Т.Н., Дудникова В.В. Анализ методов расчета усталостного ресурса деталей машин. / Деп. в ВИНИТИ № 827, 28.04.03.

69. Касьянов В.Е., Роговенко Т.Н., Дудникова В.В, Кузьменко A.B. Определение средневзвешенных напряжений в деталях машин при переменных напряжениях. Деп. в ВИНИТИ 12.05.03, № 910.

70. Касьянов В.Е., Роговенко Т.Н., Кинсфатор A.A. Статистическая оценка механических характеристик сталей с помощью полинома рациональных степеней. Деп. ВИНИТИ №835 В00 в 2000.

71. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Анализ методов расчета минимального ресурса деталей машин // Деп. в ВИНИТИ №3002-В99, 8.07.99.

72. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Определение корреляционной связи параметров функции распределения генеральной совокупности конечного объема деталей и выборочных распределений // Деп. в ВИНИТИ №3038-В99, 11.10.99.

73. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Определение минимальных значений прочности деталей машин. // Методы менеджмента качества, 2001, № 12, с. 38-41.

74. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Определение связи между минимальными значениями ресурса деталей для генеральной совокупности конечного объема и выборки. Деп. в ВИНИТИ №611-В99, 26.02.99.

75. Касьянов В.Е., Роговенко Т.Н., Щулькин Л.П. Основы теории и практики создания надежных машин. // Вестник машиностроения, 2003, № 10, с. 3-6.

76. Касьянов В.Е., Топилин И.В. Определение функции распределения средневзвешенных напряжений по амплитудным значениям напряжений для расчета усталостного ресурса деталей методом Монте-Карло. Деп в ВИИТИ №364-В99,13.02.99.

77. Касьянов В.Е., Щулькин Л.П. Теоретические основы системного обеспечения надежности строительных машин // Известия высших учебных заведений «Строительство », 2001. №7. - 90-96.

78. Когаев В.П. Определение надежности механических систем по условию прочности. М.: Знание, 1976. - 48 с.

79. Когаев В.П. Расчеты на прочность при нагружениях переменных во времени. М.: Машиностроение, 1977. - 233 с.

80. Когаев В.П., Бойцов Б.В.Рассеивание пределов выносливости деталей машин в связи с конструктивными и технологическими факторами. // Надежность и контроль качества, 1969. № 10. - С. 53-66.

81. Когаев В.П., Махутов H.A., Гусенков А.П. Расчеты деталей машин и конструкций на прочность и долговечность. М.: Машиностроение. 1985. - 224 с.

82. Когаев В.П., Петрова И.М. Расчет функции распределения ресурса деталей машин методом статистических испытаний //Вестник машиностроения. 1981. -№ 1.-С. 9-11.

83. Колокольцев В.А., Волжнов Е.Д. О расчете ресурса и сопротивлении усталости деталей машин при нерегулярных стационарных режимах нагружения // Вестник машиностроения. 1995. - №11. - С. 23-27.

84. Коновалов JI.B. Нагруженность , усталость, надежность ■ деталей металлургических машин. М.: Машиностроение. 1981. - 256 с.

85. Косов В.П., Сиделев В.И., Каменев M.JI., Морозов В.М. Методика определения надежности картофелеуборочных комбайнов // Тракторы и сельскохозяйственные машины. 1986. - №3. - С. 33-34.

86. Крамер Г. Математические методы статистики. М.: Мир, 1975. - 648 с.

87. Кугель Р.В. Надежность машин массового производства. М.: Машиностроение, 1981. 244 с.

88. Левицкий C.B. Исследование виброэффекта упругой подвески рабочих органов скоростного лапового культиватора с целью снижения тягового сопротивления. Диссертация на соискание ученой степени канд. техн. наук. Ростов-на-Дону, РИСХМ, 1980.

89. Лукинский B.C., Зайцев E.H. Прогнозирование надежности автомобилей. -Л.: Политехника, 1991. 224 с.

90. Марковец М.П. определение механических свойств металлов по твердости. -М.: Машиностроение, 1979. 191 с.

91. Методика испытаний пружинных стоек. Порядок проведения H 043.14.514. Ростов-на-Дону,ЗАО «Красный Аксай » (В.И. Гасилин , В.Г. Торгало), 2005 г. с.5.

92. Методы оценки конструктивной прочности машин (Грошев Л.М., Спиченко В.В., Андросов A.A. и др.) Учебное пособие. Ростов-на-Дону.: Издательский центр ДГТУ. 1997. 163 с.

93. Миркитанов В.И., Журавель А.И., Почтенный Е.К., Щурик К.В. Расчетно-экспериментальная оценка долговечности несущих систем// тракторы и сельскохозяйственные машины. 1988. № 7. - С. 44-45.

94. Михлин В.М. Управление надежностью сельскохозяйственной техники. -М.: Колос, 1984.-335 с.

95. Надежность и эффективность в технике: Справочник: Ют. / Ред. Совет: B.C. Авдуевский (пред) и др. М.: Машиностроение, 1988. - Т. 5.: Проектный анализ надежности / Под ред. В.И. Патрушева и А.И. Рембезы. -316с.

96. Надежность и эффективность в технике: Справочник: Ют. / Ред. Совет:

97. B.C. Авдуевский (пред) и др. М.: Машиностроение, 1988. - Т. 6: Экспериментальная отработка и испытания / Под. Общ. Ред. P.C. Судакова , О.И. Тескина. - 376 с.

98. Нахатакян Р.Х., Клятис JI.M., Карпов Л.И. Прогнозирование надежности новых машин по результатам приемочных испытаний // Тракторы и сельскохозяйственные машины. 1991. - №11. - С. 30-32.

99. Оболенский Е.П., Сахаров Б.И., Стрекозов Н.П. Прочность агрегатов оборудования и элементов систем жизнеобеспечения летательных аппаратов. М.: Машиностроение, 1989. - 248 с.

100. Оськин C.B. Технико-экономическая оценка эффективности эксплуатации оборудования //Механизация и электрификация социалистического сельского хозяйства, 2006. № 1. - С. 2-3.

101. Почтенный Е.К., Капуста П.П. Вероятностные диаграммы многоцикловой усталости деталей машин. //Вестник машиностроения, 1993. № 12.1. C. 5-7.

102. Прянишникова Л.И., Прянишников A.B., Дудникова В.В. Аналитическое определение у процентного минимального значения для совокупности конечного объема по выборочным данным (случай средней гарантии) //Деп. в ВИНИТИ, № 1852 - в 2003.

103. Решетов Д.Н., Иванов A.C., Фадеев В.З. Надежность машин. М.: Высшая школа. - 1988.-238 с.

104. Роговенко Т.Н. Вероятностно-статистическая оценка гамма-процентного ресурса ответственных деталей машин: Автореф. дис. канд. техн. наук. -Ростов-на-Дону, -1995. 24 с.

105. Роговенко Т.Н. Методы определения минимального значения прочности сталей для некоторых выборок // Рост. гос. акад. стр.-ва. Ростов-на-Дону, 1993. - 8 с. - Деп. В ВИНИТИ № 1593 - В95 от 31.05.95.

106. Ротенберг Р.В. Основы надежности системы водитель-автомобиль-дорога-среда. М.: Машиностроение, 1986. - 216 с.

107. Ряхин В.А. Нагруженность металлоконструкций строительных и дорожных машин циклического действия при оценке живучести // Строительные и дорожные машины. 1995. - №11. - С. 23-25.

108. Самойлов Д.Н., Ахтариев М.Р. Прогнозирование технического состояния автомобилей // Механизация и электрификация социалистического сельского хозяйства, 2006. № 7. - С. 30-31.

109. Седов Л.И. Механика сплошной среды. М.: Наука, 1976. Т. 1. - 536 е., Т. 2.-576 с.

110. Секулович М. Метод конечных элементов.-М.:Стройиздат,1993. 664 с.

111. ПЗ.Серенсен C.B., Когаев В.П., Шнейдерович P.M. Несущая способность ирасчет деталей машин на прочность. М.: Машиностроение, 1975. ~ 488 с.

112. Смирнов Н.В., Дунин-Барковский И.В. Курс теории вероятностей и математической статистики для технических приложений. М.: Наука, 1969.- 512 с.

113. Соболь И.М. Численные методы Монте-Карло. М.: Наука, 1973. - 280 с.

114. Соколов С.А. Вероятностные основы расчета ресурса металлических конструкций по методу предельных состояний // Проблемы машиностроения и надежности машин. 1997. - №4. - С. 105-111.

115. Соколовский В.В. Теория пластичности. М.: Высшая школа, 1969.-608 с.

116. Сопротивление материалов. Под ред. Писаренко Г.С. , Киев: Выща школа, 1979.-693 с.

117. Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. М.: Гиле, 1969. 200 с.

118. Тензометрия в машиностроении. Справочное пособие. Под. Ред. канд. техн. наук P.A. Макарова. М.: Машиностроение, 1975. 288 с.

119. Ткаченко В.А., Львов Б.В., Стопалов С.Г. О показателях безотказности и долговечности высоконадежных изделий // Тракторы и сельскохозяйственные машины. 1991. - №1. - С. 43-45.

120. Топилин И.В. Определение связи между значениями ресурса для генеральной совокупности конечного объема и выборки / Известия РГСУ : Сб. ст. Ростов-на-Дону: РГСУ. - 1999. - №4. - с. 237 - 238.

121. Уилкс С. Математическая статистика. Перевод с англ. Наука, 1967. -632 с.

122. Федосов В.В., Шабанов Б.М. Оценка надежности несущих конструкций грейферных погрузчиков //ДГТУ. Ростов- на-Дону, 1993. С. 54-59.

123. Форрест П. Усталость металлов. Перевод с англ. Под ред. Академика АН УССР С.В. Серенсена. М. «Машиностроение ». 1968.

124. Хазов Б.Ф. Эффективность повышения показателей долговечности машин и комплексов // Строительные и дорожные машины. 1990. - №7. - С. 2224.

125. Хазов Б.Ф. Эффективность функционирования и надежность машин ремонтируемого класса // Вестник машиностроения. 1988.- №12.-С. 1821.

126. Халфин М.А. Управление надежностью машин в эксплуатации// Механизация и электрификация социалистического сельского хозяйства, 1982.-№ 1.-С. 46-52.

127. Хейвуд Р.Б. Проектирование с учетом усталости. М.: Машиностроение, 1969.-504 с.

128. Хозяев И.А. Исследование надежности машин для животноводства и кормопроизводства и оптимизация их показателей // Машины и оборудование для животноводства и кормопроизводства: Сб. тр. -ВНИИКОМЖ. М. 1985. - С. 24-30.

129. Хозяев И.А. Основы обеспечения надежности при проектировании производственных линий животноводческих ферм и комплексов: Учебное пособие /РИСХМ. Ростов-на-Дону, 1984. - 94 с.

130. Храмцов Л.Д, Сорваниди Ю.Г., Карпенко В.Д. Оценка надежности комбайнов «Дон-1500» в эксплуатационных условиях // Тракторы и сельскохозяйственные машины. 1991. - №12. - С. 44-46.

131. Червяков И.В. Математические методы теории надежности и контроль качества // Методы менеджмента качества. 2005. - № 5. С. 37-42.

132. Шевцов В.Г. Основные аспекты повышения конкурентоспособности отечественных сельскохозяйственных тракторов // Тракторы и сельскохозяйственные машины. 1992. - №7. - С.9-16.

133. Шор Я.Б. Статистические методы анализа и контроля качества и надежности. М.: Советское радио, 1962. - 552 с.

134. Dubey S.D. Hyper efficient of the location parameter of the Weibull laws // Naval Research Logistics Quarterly. 1966. - N13. - P.253.

135. Epstein B. Application о the theory extreme values in fracture problems, J. Amer. Statist. Assoc. 1948, v.43, p. 403-412.

136. Fisher R.A., Tippet L.H.C. Limiting forms of the frequency distribution of longest of smallest member of a sample. OCPS, 24 (1928). 180 p.

137. Gumbel E.J. Les valeurs extremes des distributions statistiques, Annales de Г Institute Henri Poincare, 1935. v. 4, Fasc, 2 p 115.

138. Isermann R., Balle P. Trends in the application of model based Fault detection and diagnosis of technical processes. 13th World congress of IFAC. Preprints, Vol. 4, 1996.-P. 1-12.

139. Newton D.W. Reliability Mathematics. In: Reliability Engineering (Ed.: O"Connor PDT), Hemisphere Publishing Corporation, Washington, 1998.

140. Oakland J.S. Total quality management: The route to improving performance. -2nd edition. Butterworth Heinemann Professional Publishing Ltd., Oxford, 1994.

141. Sholtes P. Total quality or performance appraisal: choose one // Nation Prod Rev, 1993. 12. - №3. - P. 349 - 363.

142. Weibull W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951. p. 293-297.

143. Weibull W. A statistical theory of the strength of materials, Ing. Vetenskaps Akad. Handl, N151.1939.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания.
В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Основ­ными источниками экономической эффективности в сфере эксплуа­тации являются повышение надежности техники, повышение ее производительности, снижение сопутствующих капитальных затрат, снижение затрат эксплуатационных материалов, затрат на техни­ческое обслуживание и ремонт.

Все перечисленные источники могут проявляться самостоятель­но, но чаще всего взаимосвязаны между собой. Так, повышение надежности техники увеличивает ее производительность, хотя по­следняя после стандартизации может возрасти и в силу других причин - изменения конструкции, автоматизации отдельных эле­ментов, использования прогрессивных материалов и пр.

Учет экономического эффекта, возникающего в результате по­вышения надежности техники, является исключительно сложным процессом. Для его раскрытия необходимо более детально рас­смотреть составляющие его элементы.

Надежность техники является комплексным показателем и ха­рактеризуется такими свойствами изделий, как безотказность, дол­говечность, ремонтопригодность и сохраняемость. По каждому из этих свойств установлен ряд показателей, характеризующих на­дежность изделия и регламентированных в НТД на продукцию и, в частности, в государственных стандартах. Основные показатели надежности техники отражены в табл. (3.4).

В целом повышение надежности меняет производительность техники, ее срок службы, эксплуатационные затраты, размер ка­питаловложений, т. е. все составляющие, используемые при расчете экономического эффекта от использования новой техники. Однако каждое из отдельных свойств надежности вносит свой вклад в по­лучение народнохозяйственного эффекта, и поэтому методы его расчета имеют свою специфику.

Экономический эффект от повышения безотказности определя­ется по формуле:

где C 1 и C 2 - себестоимость единицы продукции до и после повы­шения надежности; K 1 и K 2 - удельные капитальные вложения в производственные фонды до и после повышения надежности; Е Н - нормативный коэффициент экономической эффективно­сти; В 1 и В 2 - годовые объемы продукции (работы), производимой одной машиной до и после повышения надежности; и- годовые эксплуатационные издержки потребителя до и после повышения надежности в расчете на объем продукции (работы), производимой машиной с повышенной надежностью;и- сопутствующие капитальные вложения потребителя (без учета стоимости машины) до и после повышения надежности в расчете на объем продукции (работы), производимой машиной с повышен­ной надежностью;Р 2 -доля отчислений от балансовой стоимости на полное восстановление (реновацию) машины с повышенной надежностью;А 2 - годовой выпуск машин повышенной надежно­сти.

Таблица 3.4

Комплексный подход к изучению надежности

Основные свойства надежности

Характеристика свойств надеж­ности единичного изделия

Основные показатели

надежности

изме­рения

Безотказность

Наработка на от­каз

Наработка до от­каза

Установленная безотказ­ная наработка

Средняя наработка на отказ

Долговечность

Срок службы

Установленный ресурс

Средний ресурс.

Уста­новленный срок службы. Средний срок службы

Часы работы, циклы, км.пробега

Ремонтопри­годность

восстанов­ления

Среднее время восста­новления.

Удельная трудоемкость

восстановления

Месяцы, годы,

Сохраняемость

Срок сохраняемо­сти

Установленный срок со­храняемости.

Средний срок сохраняе­мости

В некоторых случаях коэффициент учета роста производитель­ности (B 2 /B 1) может быть представлен в виде:

где Т 1 и Т 2 - время работы оборудования до и после повышения надежности;

где δ - коэффициент загрузки оборудования; Ф об - эффективный годовой фонд времени.

Специфика расчетов экономической эффективности повышения надежности по каждому из его свойств проявляется не только в методе расчета самого эффекта, но и необходимых затрат, связан­ных с повышением того или иного показателя. Поэтому по каждо­му из описываемых элементов надежности необходимо рассмот­реть методы расчета затрат на достижение повышенных показа­телей надежности.

Затраты на повышение безотказности и методы их расчета можно представить в следующем виде:

единовременные затраты, включающие проведение проектных работ, увеличение затрат на установку более безотказных комп­лектующих деталей, узлов, агрегатов, осуществление резервирова­ния отдельных узлов и механизмов, определяются по формуле:

(3.59)

где К ПР - стоимость проектных работ; - увеличение стоимости отдельных деталей, узлов, агрегатов;п - количество деталей,узлов и агрегатов, подлежащих модернизации; - стоимость дополнительных устройств и механизмов;m

Разница в текущих затратах , складывающихся за счет более частого проведения профилактических осмотров, более тщатель­ного диагностирования технического состояния деталей, узлов, агрегатов и машины в целом, определяется по формуле:

(3.60)

где и-годовые эксплуатационные издержки до и после повышения надежности;B 2 /В 1 - коэффициент учета роста произ­водительности.

Экономический эффект от повышения долговечности определя­ется по формуле:

где С 1 и С 2 - себестоимость единицы продукции до и после повы­шения долговечности; K 1 и К 2 - удельные капитальные вложения в производственные фонды до и после повышения долговечности; Е - нормативный коэффициент экономической эффективно­сти; Р 1 и P 2 - доли отчислений от балансовой стоимости на полное восстановление (реновацию) до и после повышения долговечности; и- годовые эксплуатационные издержки до и после повы­шения долговечности;и- сопутствующие капитальные вложения потребителя до и после повышения долговечности;А 2 - годовой выпуск продукции с повышенной долговечностью.

Затраты на повышение долговечности также следует разделить на единовременные и текущие затраты.

Единовременные затраты, включающие стоимость проектных работ, увеличение стоимости отдельных деталей, узлов, агрегатов, введение дополнительных узлов и механизмов, определяются по формуле:

(3.62)

где К ПР - стоимость проектных работ; - увеличение стоимости отдельных деталей, узлов, агрегатов;- стоимость дополнительных устройств и механизмов;п - количество деталей, узлов и агрегатов, подлежащих модернизации; m - количество допол­нительных устройств и механизмов.

Текущие затраты, складывающиеся за счет более частого про­ведения профилактических осмотров и ремонтов, более тщатель­ного диагностирования технического состояния деталей, узлов, аг­регатов и машины в целом, определяются по формуле:

где Р 1 i и Р 2 j - количество осмотров и ремонтов одного видаi -го или j -го в год; З 1 и З 2 - затраты на проведение осмотров и ремонтов каждого вида; п и m - количество видов осмотров и ремонтов до и после повышения долговечности.

Экономическая эффективность повышения ремонтопригодности определяется по формуле:

где C 1 и С 2 - себестоимость единицы продукции до и после повы­шения ремонтопригодности; K 1 и К 2 - удельные капитальные вло­жения в производственные фонды до и после повышения ремонто­пригодности; Е Н - нормативный коэффициент экономической эффективности; B 1 и В 2 - годовой объем продукции (работы), про­изводимой машиной с повышенной ремонтопригодностью; Р 2 - до­ля отчислений от балансовой стоимости на полное восстановление (реновацию) машины с повышенной ремонтопригодностью; и- годовые эксплуатационные издержки до и после повыше­ния ремонтопригодности;и- сопутствующие капитальные вложения потребителя до и после повышения ремонтопригодности;А 2 -годовой выпуск продукции с повышенной ремонтопригод­ностью.

Затраты на повышение ремонтопригодности разделяются на единовременные, включающие стоимость проектных работ и затра­ты на разработку ремонтной документации, и текущие, связанные с увеличением стоимости отдельных узлов и механизмов, изготов­ленных с учетом требований повышения их приспособленности к техническому обслуживанию и ремонту. В результате повышения ремонтопригодности достигается:

уменьшение годовых эксплуатационных издержек:

увеличение коэффициента роста производительности:

И, наконец, последними являются показатели сохраняемости изделий. Источниками экономии в связи с повышением сохраняе­мости являются: уменьшение затрат на монтаж; сокращение сро­ков освоения проектной мощности.

Экономический эффект от повышения сохраняемости определя­ется по формуле:

где С 1 и С 2 - себестоимость единицы продукции до и после по­вышения сохраняемости; К 1 и К 2 - удельные капитальные вложе­ния в производственные фонды до и после повышения сохраняемости; Е Н - нормативный коэффициент экономической эф­фективности; и- годовые эксплуатационные издержки до и после повышения сохраняемости;и- сопутствующие капитальные вложения потребителя до и после повышения сохра­няемости;Р 2 - доля отчислений от балансовой стоимости на пол­ное восстановление (реновацию) машины с повышенной сохраня­емостью; А 2 - годовой выпуск продукции с повышенной сохраня­емостью.

Затраты на повышение сохраняемости образуются за счет:

увеличения стоимости проектных работ, в результате чего вы­рабатываются более совершенные конструктивные решения;

использования более эффективных методов консервации и упа­ковки;

улучшения условий хранения.

В. Ф. Резинских, А.Г. Тумановский
ОАО «Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт», Москва

АННОТАЦИЯ

Представлены некоторые из наиболее значимых малозатратных технических предложений ОАО «ВТИ», направленные на повышение надежности и эффективности эксплуатации установленного оборудования ТЭС.

1. ВВЕДЕНИЕ

Одной из основных задач института является обеспечение надежной и эффективной эксплуатации действующего оборудования. Еще длительное время будет эксплуатироваться установленное на электростанциях в 60-80-е годы прошлого века оборудование. Несмотря на солидный возраст ещё не исчерпаны в полной мере ресурсы по повышению его надежности и эффективности эксплуатации. Ниже приводится описание некоторых быстроокупаемых технических решений, разработанных ОАО «ВТИ», которые позволят генерирующим компаниям более эффективно эксплуатировать тепломеханическое оборудование ТЭС.

2. ОПТИМИЗАЦИЯ ГРАФИКОВ РЕМОНТОВ ОБОРУДОВАНИЯ ТЭС

Значительная часть затрат, связанных с производством тепловой и электрической энергии ложится на ремонт тепломеханического оборудования. При проведении ремонтов преследуются две цели: сохранение на приемлемом уровне надежности оборудования и его экономичности. Сроки проведения ремонтов и их объемы регламентируются отраслевыми нормативными документами, которые устанавливают единые требования к типовому оборудованию без учета его технического состояния. Как правило, эти требования носят консервативный характер. Для конкретного оборудования имеется возможность сокращения ремонтных работ и/или смещения сроков ремонтов. В то же время не исключена ситуация, когда для оборудования, отработавшего назначенный ресурс сроки и объемы ремонтов, предписанные системой планово-предупредительных ремонтов, уже не будут обеспечивать надежность и эффективность его эксплуатации. В этом случае потребуется сокращение межремонтного ресурса и увеличения объема ремонтных работ.

Целью данной работы является оптимизация затрат генерирующей компании при эксплуатации тепломеханического оборудования ТЭС на проведение ремонтов.

Для реализации указанной цели решаются следующие задачи:

Оценка технического состояния оборудования энергоустановок ТЭС по данным об отказах оборудования, результатов диагностики и выполненных ремонтах;

Технический аудит энергоустановок с прогнозом деградации показателей их работы в межремонтный период;

Оценка рисков, связанных с изменением регламента контроля металла и ремонта оборудования;

Экономическое обоснование перехода на новый регламент ремонта тепломеханического оборудования;

Разработка нормативных документов по контролю металла основных элементов котлов, турбин и трубопроводов и регламенту их ремонтов.

На сегодня имеющийся в ОАО «ВТИ» опыт проведения данной работы на ряде электростанций на энергоблоках мощностью 200-800 МВт пока позволил увеличить ресурс между капитальными ремонтами до 50 тыс.ч.

3. МОДЕРНИЗАЦИЯ ГАЗО-МАЗУТНЫХ БЛОКОВ С ИСПОЛЬЗОВАНИЕМ ПАРОГАЗОВОЙ ТЕХНОЛОГИИ

В связи с выработкой ресурса работы блоков перспективным представляется их модернизация, которая может быть выполнена путем:

Демонтажа и замены на ИГУ;

Модернизации по парогазовому циклу. Чтобы данная модернизация была максимально

эффективна, ОАО «ВТИ» предлагает выполнение данного проекта в следующей последовательности:

1) разработка инвестиционного проекта;

2) разработка технических требований на оборудование;

3) оптимизация тепловой и пусковой схем и алгоритма управления;

4) совершенствование водоподготовки и водно-химических режимов;

5) разработка природоохранных мероприятий;

6) пуско-наладочные и гарантийные испытания.

4. РАЗРАБОТКА КОМПЛЕКСА МЕРОПРИЯТИЙ ДЛЯ ПЕРЕВОДА ДЕЙСТВУЮЩИХ КОТЛОВ НА СЖИГАНИЕ НЕПРОЕКТНЫХ ТОПЛИВ

В связи с хозяйственными изменениями в стране многие электростанции вынуждены использовать непроектные топлива.

При переводе действующих котлов на сжигание непроектного топлива возникают проблемы, которые могут быть успешно преодолены только при

комплексном их решении: разработке мероприятий по подготовке топлива к сжиганию (топливоподача, сушильно-мельничные системы), организации сжигания в топке котла, очистке дымовых газов от вредных выбросов с обеспечением надежности работы оборудования и достижением требуемых норм по экологическим и экономическим показателям

В результате реализации этих мероприятий удается обеспечить работоспособность котлов, снижение вредных выбросов до требуемых норм, повышение надежности и экономичности работы конкретных котлов.

5. РАЗРАБОТКА И ВНЕДРЕНИЕ КОМПЛЕКСНОГО МЕТОДА СНИЖЕНИЯ ВЫБРОСОВ ОКСИДОВ АЗОТА ДЛЯ КОТЛОВ, РАБОТАЮЩИХ НА УГЛЕ И ПРИРОДНОМ ГАЗЕ

Во многих энергосистемах Европейской части России и Урала пылеугольные котлы в течение весенне-летнего и осеннего периода работают на природном газе и только 2-3 месяца вынуждены сжигать твердое топливо. Для таких котлов по экономическим соображениям нерационально сооружать установки по очистке дымовых газов от NOX даже в тех случаях, когда загазованность атмосферы от других источников высока.

Значительного снижения выбросов можно достичь путем трехступенчатого сжигания с восстановлением NOX за счет создания в топке локальной восстановительной зоны.

ОАО «ВТИ» предлагает реализацию проекта, позволяющего при минимальных затратах силами энергосистем снизить при сжигании угля выбросы ΝΟΧ на 75 %.

6. РАЗРАБОТКА МЕРОПРИЯТИЙ ПО СНИЖЕНИЮ ГАЗОВОЙ КОРРОЗИИ ПОВЕРХНОСТЕЙ НАГРЕВА КОТЛОВ

При эксплуатации котлов на высокосернистых твердых, жидких и газообразных топливах наблюдается коррозия экранов топочных камер, пароперегревателей, экономайзеров и хвостовых поверхностей нагрева. Основное соединение, вызывающее коррозию топочных экранов (сероводород), образуется в зоне активного горения при недостатке окислителя. Ликвидация образования H2S в факеле многократно снижает скорость коррозии.

Пароперегреватели могут подвергаться интенсивной высокотемпературной газовой коррозии вследствие аэродинамической неравномерности потока горячих газов и гидродинамической неравномерности расхода среды через отдельные змеевики. Хвостовые поверхности нагрева подвергаются сернистой коррозии, скорость которой определяется температурой металла и концентрацией паров серной кислоты в газах

Предлагается снизить скорость коррозии экранов за счет:

Интенсификации смешения пылегазовых потоков в объеме топочной камеры и на выходе из горелок;

Оптимизации коэффициента избытка воздуха горелок;

Рационального выбора температур в зоне активного горения;

пароперегревателей за счет:

Устранения неравномерностей потоков газов с внешней поверхности труб и расхода пароводяной среды между отдельными змеевиками - с внутренней;

воздухоподогревателей за счет:

Рационального выбора температуры металла, его качества, пассивных защит (эмалирование и др.)

7. РАЗРАБОТКА МЕРОПРИЯТИЙ ПО СНИЖЕНИЮ ШЛАКОВАНИЯ ПОВЕРХНОСТЕЙ НАГРЕВА НА УГОЛЬНЫХ КОТЛАХ

Шлакование поверхностей нагрева является распространенной проблемой угольных котлов. ОАО «ВТИ» разработал рекомендации по снижению шлакования поверхностей нагрева на угольных котлах.

Снижение шлакования экранов и конвективных поверхностей нагрева достигается за счет интенсификации воспламенения частиц угольной пыли на выходе из горелок, оптимизации температурного режима в зоне активного горения, ликвидации зон с восстановительной газовой средой. Интенсивность шлакования и прочность отложений может быть снижена в 2-5 раз.

8. РАЗРАБОТКА И ВНЕДРЕНИЕ НА КОТЛАХ ДЕЙСТВУЮЩИХ БЛОКОВ СКД ПОЛНОПРОХОДНЫХ ИЛИ ВСТРОЕННЫХ СЕПАРАТОРОВ С ВЕРХНИМ ВЫХОДОМ ПАРА, ОБЕСПЕЧИВАЮЩИХ ПОВЫШЕНИЕ НАДЕЖНОСТИ ПАРОПЕРЕГРЕВАТЕЛЬНЫХ ПОВЕРХНОСТЕЙ НАГРЕВА В РЕЖИМАХ ПУСКА

Установлено, что при существующих встроенных сепараторах котлов блоков СКД, имеет место заброс воды в пароперегревательные поверхности нагрева, что резко снижает их надежность. При применении полнопроходных сепараторов существенно упрощается пусковой узел с ликвидацией сложной арматуры. (ВЗ; Др-1 и Др-3).

Для конкретных объектов предлагается разработать новые конструкции сепараторов (полнопроходных и встроенных с верхним выходом пара). При применении полнопроходных сепараторов будут усовершенствованы гидравлические схемы па-рогенерирующей части тракта для ведения пусков на скользящем давлении во всем тракте.

9. ВНЕДРЕНИЕ НА ЭЛЕКТРОСТАНЦИЯХ С БЛОКАМИ СКД МОЩНОСТЬЮ 300-800 МВТ РЕЖИМОВ ПУСКОВ НА СКОЛЬЗЯЩЕМ ДАВЛЕНИИ ВО ВСЕМ ПАРОВОДЯНОМ ТРАКТЕ КОТЛОВ

Пуски блоков СКД 300 и 800 МВт на скользящем давлении во всем тракте котлов из различных тепловых состояний в отличие от пусков по типо-

вой инструкции показали, например, на блоках 800 МВт с котлами ТПП-804 следующие основные преимущества: повышение надежности, сокращение времени пуска из различных тепловых состояний и упрощение пусковых операций, экономия топлива, возможность пусков блоков «собственным» паром

ОАО «ВТИ» предлагает разработку новых типовых эксплуатационных инструкций при внедрении режимов пуска на скользящем давлении во всем тракте котлов, а также графиков-заданий для оптимизации таких пусков из различных тепловых состояний.

10. СОВЕРШЕНСТВОВАНИЕ СИСТЕМ ОЧИСТКИ ОХЛАЖДАЮЩЕЙ ВОДЫ И ШАРИКОВОЙ ОЧИСТКИ КОНДЕНСАТОРНЫХ ТРУБОК

Существующие конструкции самоотмывающегося автоматизированного фильтра, шарикоулавли-вающего устройства, разгрузочных камер и другого оборудования имеют недостатки, обнаруженные в процессе эксплуатации, что отрицательно сказывается на надежности их работы.

ОАО «ВТИ» предлагает разработку и внедрение усовершенствованных конструктивных элементов оборудования шариковой очистки с использованием гидропривода для фильтра; разработку рабочей документации, авторский надзор за изготовлением и монтажом.

11. ТИПОВЫЕ РЕШЕНИЯ ПО УВЕЛИЧЕНИЮ РАСПОЛАГАЕМОЙ ТЕПЛОВОЙ НАГРУЗКИ ТЕПЛОФИКАЦИОННЫХ ТУРБИН ЗА СЧЕТ СНИЖЕНИЯ ПОТЕРЬ ТЕПЛА В КОНДЕНСАТОРЕ

При работе теплофикационных турбин с полностью закрытыми регулирующими диафрагмами для обеспечения допустимого теплового состояния предусматривается определенный вентиляционный пропуск пара в ЧНД, проектная величина которого составляет 20-30 т/ч. В случае охлаждения конденсатора циркводой тепло этого пара полностью теряется. Предлагается комплекс мероприятий, позволяющий увеличить располагаемую тепловую нагрузку турбин мощностью 50-185 МВт за счет снижения в 5-10 раз этого пропуска пара. Комплекс мероприятий включает в себя модернизацию регулирующих диафрагм с целью их уплотнения и установку новой системы охлаждения выхлопной части. Эти мероприятия прошли апробацию на ряде турбин. Внедрение их увеличивает располагаемую тепловую нагрузку на 7-10 Гкал/ч и позволяет получить экономию топлива не менее 1 τ у. т/ ч. При этом экономический эффект достигается без снижения надежности, маневренности и располагаемой электрической мощности

ОАО «ВТИ» готов разработать техническую документация по уплотнению регулирующей диафрагмы и системе охлаждения для теплофикационных турбин мощностью 50-185 МВт, а также организовать ее внедрение.

12. РАЗРАБОТКА РЕЖИМНЫХ И КОНСТРУКЦИОННЫХ МЕРОПРИЯТИЙ ПО СНИЖЕНИЮ ЭРОЗИОННОГО ИЗНОСА ЧНД ТЕПЛОФИКАЦИОННЫХ ТУРБИН

Входные кромки рабочих лопаток частей низкого давления (ЧНД) подвергаются значительному эрозионному износу не только в последних, но и в первых ступенях ЧНД. Этот износ связан с особенностями работы в переменных режимах первой ступени ЧНД, имеющей регулирующую поворотную диафрагму. Действительный процесс в ней существенно отличается от процесса дросселирования, что приводит к увеличению теплового перепада на ступень и, как следствие, к повышению степени влажности в ступенях ЧНД. Анализ реальных режимов работы турбин на конкретной ТЭЦ (по давлению в нижнем отборе, тепловой нагрузке, степени открытия диафрагмы и др.) позволяет организовать такие режимы и конкретные мероприятия, при внедрении которых снижается весовое количество влаги в ступенях ЧНД разных турбин, что обеспечивает более надежную и долговечную работу

ОАО «ВТИ» готово провести анализ режимов работы турбины и разработать рекомендации по их оптимизации, а также подготовить техническую документацию по конструкционным мероприятиям.

13. АВТОМАТИЗИРОВАННАЯ СИСТЕМА КОНТРОЛЯ ВИБРАЦИИ И ДИАГНОСТИКИ (АСКВД) ТУРБОАГРЕГАТОВ, ВКЛЮЧАЯ АРМ ПО ВИБРАЦИОННОМУ ОБСЛУЖИВАНИЮ ВРАЩАЮЩЕГОСЯ ОБОРУДОВАНИЯ

Разработана и внедрена на ряде ТЭС АСКВД, обеспечивающая выполнение всех требований ПТЭ и ГОСТов по контролю вибрационного состояния турбоагрегатов. Используя сетевые технологии, в составе АСКВД реализованы АРМ по вибрационному обслуживанию и контролю оборудования. Многолетний опыт эксплуатации на семи турбоагрегатах Конаковской ГРЭС подтвердила эффективность использования АСКВД для выявления развивающихся дефектов, предотвращения аварийных ситуаций, проведения виброналадочных работ.

ОАО «ВТИ» готово поставить системы, сдать АСКВД и АРМ в эксплуатацию «под ключ» на базе имеющейся штатной виброаппаратуры или в комплекте в новой; провести адаптацию системы к действующему оборудованию (программ мониторинга, диагностики, балансировки, анализа архивных данных и др.); выполнять сервисное обслуживание системы и ее техническое сопровождение, обучение персонала.

14. ВНЕДРЕНИЕ ВОССТАНОВИТЕЛЬНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПАРОПРОВОДОВ

Замена паропровода, исчерпавшего свой ресурс, является весьма дорогостоящей и трудоемкой операцией. Вовремя и правильно проведенная восстановительная термообработка (ВТО) может полно-

стью восстановить ресурс металла паропровода. ОАО «ВТИ» имеет многолетний положительный опыт проведения ВТО.

В рамках проведения данной работы ОАО «ВТИ» готово выполнить определение целесообразности и режимов проведения ВТО, организацию ВТО, определение ресурса восстановленного паропровода. Восстановительная термообработка увеличивает ресурс паропровода примерно в два раза.

15. РАЗРАБОТКА И ВНЕДРЕНИЕ ПРОТИВОЭРОЗИОННЫХ ЗАЩИТНЫХ ПОКРЫТИЙ ДЛЯ ЛОПАТОЧНОГО АППАРАТА ПАРОВЫХ ТУРБИН

Эрозионный износ входных и выходных кромок лопаток последних ступеней конденсационных и теплофикационных турбин является основной причиной для преждевременного выхода их из строя и последующей замены новыми. Существующие методы защиты входных кромок лопаток ненадёжны. Титановые лопатки в виду специфических свойств титановых сплавов вообще не имеют защиты от эрозионного воздействия паро-капельного потока.

ОАО «ВТИ» разработал и успешно применяет в течение около 10 лет технологию нанесения противоэрозионных защитных покрытий на стальные и титановые лопатки паровых турбин, основанную на технологии электроискрового легирования. Технология позволяет восстанавливать лопатки без разлопачивания ротора в сроки проведения капитального ремонта турбины.

Накопленный к настоящему времени опыт ВТИ позволяет увеличить ресурс лопаток последних ступеней не менее, чем в 2 раза. В настоящий период времени в эксплуатации находятся более 20 000 лопаток последних ступеней турбин К-200-130 ЛМЗ, К-300-240 ХТГЗ, К-300-240 ЛМЗ, К-220-44 ХТГЗ, К-800-240 ЛМЗ Ставропольской ГРЭС, Костромской ГРЭС, Рязанской ГРЭС, Березовской ГРЭС-1, ГРЭС-24, Заинской ГРЭС, Ириклинской ГРЭС, Кольской АЭС и др.

16. ОБСЛЕДОВАНИЕ ДЕЙСТВУЮЩИХ ВПУ С РАЗРАБОТКОЙ ПРЕДЛОЖЕНИЙ ПО ОПТИМИЗАЦИИ ИХ РАБОТЫ И ПРОВЕДЕНИИ НАЛАДОЧНЫХ РАБОТ

Условия работы ВПУ многих ТЭС значительно изменились, появились на рынке новые материалы, реагенты, ионообменные смолы. Внедрение их позволяет получить значительный экономический эффект без реконструкции ВПУ.

Специалисты ОАО «ВТИ» выполняют обследование ВПУ, разрабатывают малозатратные мероприятия по оптимизации работы ВПУ и оказывают помощь при их внедрении. Результатами проведенных мероприятий становятся новые режимные карты работы оборудования, пересмотренные инструкции по эксплуатации.

17. ПРОВЕДЕНИЕ ПАРОВОДОКИСЛОРОДНЫХ ОЧИСТОК, ПАССИВАЦИИ И КОНСЕРВАЦИИ ПАРОВЫХ КОТЛОВ, ТУРБИН И ИНОГО ТЕПЛОМЕХАНИЧЕСКОГО ОБОРУДОВАНИЯ ТЭС

Применение пароводокислородных обработок энергетических котлов и энергоблоков в целом позволяет решить одновременно проблемы частичной очистки поверхностей нагрева и проточной части турбин, пассивации и консервации оборудования практически без применения химических реагентов.

ОАО «ВТИ» разработаны методические указания (МУ) по применению этой технологии как для предпусковых очисток оборудования, так и для эксплуатационных. В связи с тем, что характер эксплуатационных отложений может быть чрезвычайно разнообразным, технологию и схему обработки необходимо выбирать применительно к каждому объекту. Для конкретного объекта разрабатываются технологический регламент и технологическая схема. Оказывается техническая помощь при внедрении технологии.

18. РАЗРАБОТКА И ВНЕДРЕНИЕ КОНСЕРВАЦИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ ПРИ ДЛИТЕЛЬНЫХ ПРОСТОЯХ

ОАО «ВТИ» предлагает способы консервации энергетических и водогрейных котлов пленкообразующими ингибиторами коррозии или воздухом.

Консервация пленкообразующими ингибиторами

Достоинства консервации этими ингибиторами заключается в следующем:

консервация проводится при комнатной температуре;

консервирующий раствор может использоваться повторно, т.е. оборудование может консервироваться по очереди одним и тем же раствором ингибитора, что дает существенную экономию;

после создания защитной пленки консервирующий раствор может быть слит (это дает возможность проводить ремонт или замену оборудования) или оставлен до окончания срока консервации.

ОАО «ВТИ» предлагает консервацию энергетических котлов малотоксичными ингибиторами коррозии Н-М-1 и Д-Щ и консервацию водогрейных котлов нетоксичным ингибитором Минкор-12.

Срок защитного действия ингибиторов при сливе растворов составляет 6 месяцев, при нахождении раствора ингибитора в объеме на все время консервации - до двух лет.

Консервация воздухом

Данная технология позволяет:

консервировать оборудование с первых суток останова;

защищать внутренние поверхности от атмосферной коррозии безреагентным методом на длительный период простоя;

осуществлять текущие ремонтные работы на законсервированном оборудовании;

сокращать время восстановления водно-химического режима до норм ПТЭ при пуске после простоя.

ОАО «ВТИ» предлагает вентиляционные возду-хоосушительные установки типа ВОУ и вентиляционные осушительно-нагревательные установки типа БОНУ, предназначенные для консервации котлов и турбин, а также свои услуги при проведении консервации.

19. РАЗРАБОТКА НОРМАТИВОВ ПРЕДЕЛЬНО ДОПУСТИМЫХ И ВРЕМЕННО СОГЛАСОВАННЫХ ВЫБРОСОВ (ПДВ И ВСВ) ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ ДЛЯ ТЭС

ОАО «ВТИ» много лет разрабатывает проекты ПДВ для ТЭС с проведением инвентаризации выбросов загрязняющих веществ и согласованием в органах Роспотребнадзора и Ростехнадзора.

Реконструкция и модернизация оборудования ТЭС сопровождается экологическим обоснованием и корректировкой действующих документов по нормированию выбросов загрязняющих веществ. Кроме того, возможна корректировка границ СЗЗ, если по экологическим показателям с учетом ввода нового оборудования это необходимо. При корректировке тома ПДВ устанавливаются нормативы удельных выбросов загрязняющих веществ в атмосферу по методике, разработанной ВТИ и рекомендованной МПР к применению в 2009 г.

Введение нового более эффективного золоулавливающего оборудования позволяет во многих случаях обосновать уменьшение коэффициента оседания золы в атмосфере и скорректировать норматив ПДВ в сторону его увеличения без нарушения природоохранных требований. Это особенно актуально в связи с увеличением доли твердого топлива в структуре топливного баланса.

20. ТЕХНИЧЕСКИЕ РЕШЕНИЯ ПО МАЛОЗАТРАТНОЙ МОДЕРНИЗАЦИИ ЭЛЕКТРОФИЛЬТРОВ ДЕЙСТВУЮЩИХ ТЭС

Установленные на угольных ТЭС электрофильтры морально и физически устаревших типов ПГД, ДГПН, ПГД, ПГДС с высотой электродов до 7,5 м к настоящему времени выработали ресурс, имеют недостаточные габариты для обеспечения нормативных выбросов летучей золы в атмосферу и нуждаются в существенной реконструкции с целью многократно снизить выбросы летучей золы. Более новые аппараты типов УГЗ, ЭГА, ЭГБ и ЭГД с высотой электродов 9-12 м, как правило, также не обеспечивают проектных показателей очистки и нуждаются в модернизации, которая обеспечит снижение выбросов летучей золы в 2-3 раза. В связи с этим необходима разработка технических решений, позволяющих без увеличения габаритов, при умеренных затратах снизить выбросы золы и повысить надежность работы аппаратов. К таким решениям можно отнести:

Установку приставки микросекундного разряда к агрегатам питания;

Установку системы автоматического контроля и оптимизации режимов электропитания и отряхивания электродов;

Установку автоматизированной системы выгрузки золы.

Результатом работы будет техническая документация по модернизации электрофильтров; комплектация, поставка и наладка оборудования. Ожидается снижение выбросов летучей золы в 2-3 раза и расхода воды на гидрозолоудаление в 2 раза.

ЗАКЛЮЧЕНИЕ

Представленные технические решения не исчерпывают всего пакета предложений ОАО «ВТИ», направленного на повышение надежности и эффективности эксплуатации установленного оборудования ТЭС. Мы готовы внимательно изучать пожелания заказчиков и находить оптимальные решения по обозначенным проблемам.

10.04.2018

Источник: Журнал «PROнефть»

Management of reliability and integrity of equipment is an important tool for enhancing business efficiency

УДК 338.45:622.276

В.Р. Амиров
ПАО «Газпром нефть»

Ключевые слова: надежность, целостность, оборудование, риск, затраты, эффективность, бюджет, планирова- ние, производственная безопасность, система управления операционной деятельностью (СУОД)

V.R. Amirov
Gazprom Neft PJSC, RF, Saint-Petersburg

The article is devoted to improvement of operational efficiency of oil and gas fields and examines one of the key direc- tions of the operational management system (OMS). This direction is the management of reliability and integrity of equipment – implemented by the Deming cycle. A prerequisite of effective management of reliability and integrity is a correct assessment of the current condition of the asset through the risk assessment and registration costs and damages. The risk-based approach allows for comparable levels of direct costs for management of reliability and in- tegrity, to improve the total economic result (direct costs + damage) while reducing the number of failures. In conclu- sion, the assessment of the current state of management of reliability and integrity in Upstream Division of GPN

Keywords: reliability, integrity, equipment, risk, cost, efficiency, budget, planning, production safety, operational management system (OMS)

DOI : 10.24887/2587-7399-2018-1-10-15

Введение

Задачей программы «Эталон» (система управления операционной деятельностью (СУОД)) ПАО «Газпром нефть» является обеспечение максимальной операционной эффективности компании за счет надежности и безопасности производственной деятельности и вовлечения всех сотрудников в процесс непрерывных улучшений. Управление надежностью и целостностью оборудования (УНЦО) представляет собой комплекс мероприятий, обеспечивающий бесперебойную работу нефтепромыслового оборудования на протяжении всего периода эксплуатации. Важность этого направления производственной деятельности отражена в его выделении в отдельный элемент СУОД.

Прямые затраты и совокупный экономический результат

В условиях объективного ухудшения условий эксплуатации в нефтегазодобывающей отрасли (истощение месторождений, увеличение обводненности продукции скважин и др.) целесообразно оценить «свежим взглядом» структуру затрат на поддержание текущей деятельности активов. Значительную долю (до 20) занимают затраты на УНЦО. Они распределены по различным статьям бюджета актива и могут быть разделены по следующим направлениям (прямые затраты):

1.1. текущий ремонт оборудования;

1.2. капитальный ремонт (или замена) оборудования (частично осуществляется за счет капитальных вложений);

1.3. диагностика состояния оборудования (включая экспертизу промышленной безопасности оборудования с истекшим сроком эксплуатации, мероприятия по коррозионному мониторингу и др.);

1.4. защита оборудования (включая выбор материалов, нанесение защитных покрытий, ингибирование коррозии и др.).

Кроме того, в процессе операционной деятельности возникают дополнительные затраты на УНЦО, которые также влияют на себестоимость добычи нефти:

2.1. затраты на устранение отказов оборудования и ликвидацию последствий этих отказов;

2.2. штрафы и платежи, связанные с нарушением целостности и отказами оборудования.

Третья группа затрат, а точнее, потерь, которые влияют на финансовый результат деятельности актива за отчетный период включает:

3.1. потери продукции, связанные с нарушением целостности и отказами оборудования. Эти три группы затрат актива по-разному соотносятся с рисками нарушения целостности оборудования. Затраты 1.1., 1.2., 1.4. снижают эти риски (как вероятность, так и последствия), затраты 2.1., 2.2., 3.1. возникают вследствие реализовавшихся рисков. Затраты 1.3. обеспечивают оценку данных рисков и не влияют на величину риска. Эффективность УНЦО оценивается по совокупному экономическому результату, который представляет собой сумму всех вышеперечисленных затрат. Управление совокупным экономическим результатом составляет основу УНЦО и включает: планирование, выполнение, контроль выполнения и оценку эффективности и актуализацию подхода к УНЦО.

Риск и ущерб

Стоимостная оценка риска и ущерб – величины, которые характеризуют прогнозный и фактический результат деятельности, связанной с УНЦО.

Риск нарушения целостности – прогнозируемая величина ущерба от отказов и нарушения целостности оборудования за планируемый период. Качество оценки данного риска определяется сравнением этой оценки с суммой понесенного ущерба в течение данного периода с учетом предотвращенного ущерба. Поскольку в настоящее время величина ущерба от отказов и нарушения целостности оборудования учитывается неполностью, то и качество оценки соответствующего риска определить непросто из-за отсутствия базы сравнения.

В этих условиях обоснованием деятельности, связанной УНЦО, может быть только уверенность в том, что затраты (1.1., 1.2., 1.3., 1.4.) существенно меньше ущерба, который они должны предотвратить. Для новых растущих активов такое предположение, как правило, верно, но по мере снижения маржинальности

бизнеса, ставится вопрос обоснованности этих затрат.

В общем случае деятельность, связанная с УНЦО имеет экономический смысл, если

где Зi – затраты по направлениям 1.1., 1.2., 1.3., 1.4. за отчетный период; У – ущерб от отказов и нарушения целостности оборудования в течение отчетного периода (2.1., 2.2., 3.1.); Упр – предотвращенный ущерб в течение отчетного периода.

Для того, чтобы экономически обосновать затраты на УНЦО, необходим учет затрат 1.1., 1.2., 1.3., 1.4. за отчетный период, ущерба от отказов и нарушения целостности оборудования (затраты 2.1., 2.2., 3.1.), а также предотвращенного ущерба в течение этого периода.

Указанные задачи решаются в рамках организации соответствующей отчетности: о прямых затратах на УНЦО, об ущербе от отказов оборудования и нарушения целостности оборудования, об эффективности прямых затрат на УНЦО.

Риск-ориентированный подход к управлению надежностью и целостностью оборудования

В настоящее время в нефтегазодобывающей отрасли используются в основном два подхода к УНЦО.

1. Ремонт и замена оборудования проводятся в минимальном объеме по факту отказа. Диагностика оборудования выполняется в соответствии с требованиями законодательства (техническое освидетельствование по нормам правил безопасности, экспертиза промышленной безопасности для оборудования с истекшим сроком эксплуатации и др.). Совокупный экономический результат этого подхода представлен на рисунке, а в виде ромба красного цвета и далек от оптимального по числу предотвращенных отказов (кружок зеленого цвета). Этот подход характерен для зрелых активов на поздней стадии разработки месторождений со значительными операционными затратами.

2. Ремонт и замена оборудования проводятся в соответствии с нормативными сроками, рекомендациями изготовителя с учетом результатов технического освидетельствования. Диагностика оборудования выполняется в соответствии с требованиями законодательства (техническое освидетельствование по нормам правил безопасности, экспертиза промышленной безопасности для оборудования с истекшим сроком эксплуатации и др.).

Совокупный экономический результат реализации подходов 1 и 2 (а) и риск-ориентированного подхода (б)

Этот подход характерен для развивающихся активов с растущей добычей. Совокупный экономический результат такого подхода показан на рисунке, а ромбом желтого цвета и также не оптимален. Кроме того, сумма прямых затрат на УНЦО в этом случае больше ущерба и для выполнения указанного выше условия необходимо оценивать сумму предотвращенного ущерба, что, как уже отмечалось, довольно сложно.

Альтернативным является подход, основанный на оценке риска отказов и нарушения целостности оборудования (RBI – Risk Based Inspection, RCM – Reliability Centered Maintenance), который называют риск-ориентированным. Результат реализации этого подхода представлен на рисунке, б. Следует обратить внимание, что при таком подходе форма кривой, характеризующей ущерб от отказов, отличается от приведенной на рисунке, а. Это связано с тем, что при риск-ориентированном подходе затраты в первую очередь направляются на предотвращение отказов с наиболее негативными последствиями (ущерб людям, окружающей среде, репутации компании, значительные производственные потери), т.е. неприемлемых рисков. На отрезке кривой, соответствующем 70 – 100 предотвращенных отказов, остаются отказы с незначительными последствиями. Сравнение кривых на рисунке, а, б показывает, что рискориентированный подход позволяет при сравнимых уровнях прямых затрат на УНЦО улучшить совокупный экономический результат при одновременном снижении числа отказов. Оптимальный совокупный экономический результат показан на рисунке, б зеленым кружком. Особенно эффективен этот подход в компаниях с разными активами (новыми, развивающимися, зрелыми).

Для использования риск-ориентированного подхода к УНЦО необходимо решить две задачи.

1. Выполнить качественную оценку рисков нарушения целостности различных видов оборудования на планируемый период, включающую разработку и внедрение модели расчета:

– вероятности отказа оборудования в зависимости от ключевых (внутренних и внешних)

факторов влияния, к которым относятся срок службы, результаты технического освидетельствования, состояние защищенности оборудования, материал изготовления, условия и история его эксплуатации и др.;

– последствий отказа оборудования в зависимости от его производительности, рабочих параметров, стоимости, места установки (по отношению к другому оборудованию, местам нахождения персонала, населенным пунктам, водоохранным зонам и др.), временного интервала реагирования на критические отклонения рабочих параметров, состояния ремонтопригодности оборудования, состояния систем внешней защиты и реагирования и др.

2. Сформировать автоматизированную отчетность за определенный период

– о прямых затратах на УНЦО по видам оборудования (1.1, 1.2, 1.3, 1.4);

– о реализовавшихся рисках отказов и нарушения целостности оборудования (2.1, 2.2, 3.1).

Представленный подход применяется для кратко-, среднеи долгосрочного планирования деятельности, связанной с УНЦО.

Текущее состояние и перспективы унцо блока разведки и добычи ПАО «Газпром нефть»

Для решения первой задачи в Дирекции по добыче (ДД) Блока Разведки и Добычи (БРД) ПАО «Газпром нефть» разработана и реализуется программа надежности и целостности нефтепромыслового оборудования (НПО), включающая:

– оценку риска нарушения целостности НПО через заполнение и анализ оценочных листов по видам НПО;

– разработку на основе этой оценки методологии планирования затрат на УНЦ НПО;

– формирование подразделений по УНЦО в дочерних обществах;

– оценку эффективности реализации программы технического обслуживания и ремонта НПО.

В Дирекции по газу и энергетике (ДГиЭ) в настоящее время реализуется пилотный проект «Создание единой системы планирования и контроля планово-предупредительного ремонта энергооборудования», основными задачами которого являются снижение числа ремонтов и затрат на них за счет определения вида и объема ремонта на основании оценки технического состояния энергооборудования (RBI) и баланса между требуемым уровнем надежности и затратами на его поддержание (RCM). Кроме того, в ближайшее время ДГиЭ планирует начать реализацию пилотного проекта «Испытание систем предиктивной аналитики на основном оборудовании электростанций и объектов транспорта газа», задача которого – повышение надежности работы, сокращение времени внеплановых простоев оборудования путем предупреждения и устранения неисправностей на ранней стадии (RBI).

Вторую задачу в части оценки ущерба предполагается решить с помощью внедрения разработанного в ПАО «Газпром нефть» методического документа МД-16.10-05 «Методика финансовой оценки ущерба от происшествий в области производственной безопасности» путем выделения из существующих информационных систем происшествий по КТ-55, которые классифицируются как нарушения целостности оборудования (все отказы, порывы трубопроводов и др.).

Организация отчетности о прямых затратах на УНЦО должна осуществляться на основе:

– внедрения основополагающего стандарта ПАО «Газпром нефти» на УНЦО, разработку которого Центр развития СУОД завершает в 2018 г.;

– анализа существующей автоматизированной системы управленческой отчетности.

Выводы

1. Совокупный экономический результат – ключевой показатель эффективности деятельности, связанной с УНЦО.

2. Внедрение и анализ отчетности о затратах и ущербе от отказов и нарушения целостности оборудования дают возможность приоритизации затрат на УНЦО.

3. Риск-ориентированный подход обеспечивает наиболее эффективное распределение прямых затрат на УНЦО.

4. Текущее состояние УНЦО в БРД в части как процедур, так и обеспечения нормативно-методической документацией позволяет внедрить основополагающий стандарт на УНЦО без значительных изменений действующих документов.