Химическая мелиорация кислых почв. Химическая мелиорация почв, известкование и гипсование. Агротехнические и агробиологические способы улучшения солонцовых почв

Химическая мелиорация кислых почв. Химическая мелиорация почв, известкование и гипсование. Агротехнические и агробиологические способы улучшения солонцовых почв

Для того чтобы привести реакцию почвы к интервалу от слабокислой до слабощелочной, которая необходима практически всем растениям, применяют химическую мелиорацию почв . Кислые почвы периодически известкуют, а щелочные и прежде всего солонцы, гипсуют.

Большинство культур и почвенных микроорганизмов лучше развиваются при слабокислой или нейтральной почве. В тоже время одни растения не выдерживают кислых почв, другие прекрасно растут и развиваются. Благодаря мелиорации почв мы определяем, какое влияние кислотность почвы может оказывать на растения, а влияние бывает как прямое, так и косвенное отрицательное действие. Прямое действие замедляет рост корневой системы, ее проницаемость для питательных элементов, смещает правильное соотношение в поглощении растением катионов и анионов, нарушает обмен веществ.

Косвенное действие выражается в резком снижении почвенного плодородия и вредного влияния ионов водорода на минеральную часть почвы. Она обедняется коллоидами, которые вымываются под на недоступную для растений глубину. Недостаток в почве поглощенных кальция и магния вызывает резкое ухудшение физических и физико-химических свойств почвы. В почвенном растворе появляются свободные ионы алюминия и марганца, которые токсичны для растений, а так же уменьшается количество молибдена в почве. Почвенная кислотность угнетает почвенные организмы и прежде всего нитрофикаторы и азотофиксирующие бактерии, почвенную фауну. Основная причина смещения реакции почвы это вынос кальция и магния с урожаем и вымывание их из почвы.

Известкование почвы

Для нейтрализации кислотности проводят известкование кислых почв . Все известковые удобрения можно разделить на две группы: природные карбонатные породы, бывают как твердые, так и рыхлые и отходы промышленности богатые известью.

Основной природный известковый материал – молотый известняк, который содержит до 95% карбонатов кальция и магния. Известняки для внесения в почву требуют размола. Чем мельче размол, тем лучше мука перемешивается с почвой, быстрее действует и сильнее снижает кислотность. При обжиге природных известняков получают жженую известь, которая переходит при взаимодействии с водой в гашеную известь.

Гашеная известь – быстродействующее известковое микроудобрение, особенно ценное для глинистых почв. Это объясняется относительно хорошей растворимостью в воде. Эффективность гашеной извести намного выше, чем молотый известняк. Большое значение в применении для известкования имеют рыхлые известковые породы. Они не требуют размола, не менее эффективны молотого известняка, и значительно дешевле в виду того, что добывать можно хозяйственным способом. К ним относятся: туф, мергель, торфотуфы, природная доломитовая мука. Известковые туфы содержат от 70 до 98% карбоната кальция. Встречаются в долинах рек, в местах выхода наружу ключей, отсюда второе название – ключевая известь.

По внешнему виду известковые туфы – рыхлая зернистая порода, серая, иногда с пятнами ржавого цвета. Перед внесением туфы просеивают через грохоты, для удаления крупных частиц.

Мергель представляет собой известковый материал в котором углекислый кальций смешан с глиной и песком, содержит карбоната кальция от 25 до 50%. Встречается как рыхлый, так и в плотном состоянии, но оставленный на зиму, под влиянием дождя и снега переходит в сыпучее состояние.

Торфотуфы – представляют собой низинные торфа, в которых присутствие извести 10-70%. Используется на почвах где очень мало гумуса, в основном на подзолистых почвах.

Природная доломитовая мука это порода с высоким содержанием карбонатов кальция и магния. Ценнейшее известковое удобрение для известкования кислых песчаных почв, которые часто страдают от недостатка магния.

Ориентировочным показателем в потребности известкования почвы может служить белая окраска пахотного слоя, а так же произрастания на участке индикаторных растений: щавель, хвощ, фиалка трехцветная. Точность необходимости известкования определяется агрохимическим анализом по РН солевой вытяжки, после этого составляют картограмму. В первую очередь известкуют сильнокислые почвы. Средние и слабокислые известкуют выборочно с учетом культур, которые будут выращиваться на участке. Нейтральные или близкие к ним почвы в известковании не нуждаются. При определении степени нуждаемости почвы в известковании следует учитывать ее механический состав и набор культур в севообороте. Дозу извести чаще всего рассчитывают по гидролитической кислотности.

Лучше всего вносить известь в сухую безветренную погоду. Расчетные дозы извести вносят сразу или в несколько приемов. Это связанно с тем что некоторые культуры отрицательно реагируют на резкое изменение РН. Полные дозы извести вносят под осеннюю вспашку. Небольшие дозы вносят под культивацию или боронование.

Жжёную или гашеную известь нельзя вносить вместе с органическими удобрениями: навозом, навозной жижей или аммиачными минеральными удобрениями, так как это приведет к потери ими азота. Известкование кислых почв с низким потенциальным плодородием должно сопровождаться внесением органических и минеральных удобрений, так как одно известкование не решает проблему окультуривания почв.

Гипсование

Солонцы и сильно солонцовые почвы содержат в себе катионы натрия, которые в поглощенном состоянии обуславливают плохие физические свойства почвы, особенно физико-механические: липкость, связность, сопротивление обработке почвы. Щелочная реакция солонцеватых и солонцов губительна для растений. Окультуривание и повышение плодородия солонцов производится гипсованием. При внесении в почву гипса, ион кальция вытесняет ион натрия, почва переходит в структурное состояние, улучшаются физические и биологические свойства почвы. Одновременно с гипсованием почву промывают водой для удаления из пахотного слоя сернокислого натрия, который образуется при внесении гипса. Одновременное применение орошения, внесения навоза и минеральных удобрений, резко повышают эффект гипсования.

Доза гипса зависит от степени солонцеватости почвы и составляет 3-10 тонн на 1га, но обычно доза рассчитывается агрохимическим анализом. Действие гипсования обычно проявляется 8-10 лет.

>> Химия: Химическая мелиорация почв

Мелиорация (от лат. мелиорацио - улучшение) - это методы, посредством которых долго улучшают свойства почв. К ним относятся гидротехнические, лесотехнические и химические методы.

Для растений на каждой стадии их развития наиболее благоприятные условия создаются при определенном составе почвенного раствора. Особое значение имеет реакция раствора, зависящая от концентрации в нем ионов водорода , т. е. кислотность почв.

Кислотность почвы - это один из важнейших показателей, характеризующих ее плодородие.

Кислотность почвенного раствора обусловливается наличием в нем катионов Н+, а щелочность - анионов ОН-. В чистой воде содержится одинаковое число ионов Н+ и ОН-. С увеличением концентрации Н+ раствор становится кислотным, при повышении концентрации ОН- - щелочным. Концентрацию Н+ выражают в виде отрицательных степеней от числа 10, например 10-3, 10-4 моль ионов на 1 л. Для характеристики кислотности пользуются одним показателем степени, взяв его с обратным знаком. Он называется водородным показателем или рН. Цифра при знаке рН показывает степень кислотности. Например, рН = 5 означает, что в растворе находится 0,00001 моль ионов Н+, т. е. среда почвенного раствора среднекислот-ная; при рН = 7 - среда нейтральная, т. е. концентрации ионов Н+ и ОН- равны; при рН > 7 реакция среды щелочная.

Многие почвы в России кислотные. Ионы водорода, когда они находятся в значительном избытке, вредны для растений не только сами по себе. В чрезмерно кислотных почвах резко снижается жизнедеятельность полезных микроорганизмов. Физические свойства таких почв неудовлетворительны, они плохо проницаемы для воздуха и воды.

Улучшения свойств кислотных почв добиваются химической мелиорацией путем известкования, т. е. путем внесения в почву известковых материалов - гашеной извести Са(ОН)2 или известняка СаС03. Наиболее часто используют измельченный известняк, очень распространенный природный минерал. В кислотной почве эти соединения реагируют с ионами водорода:

СаСО3 + 2Н + = Са 2+ + Н20 + С02

Известкование улучшает деятельность клубеньковых и азо-тофиксирующих бактерий, повышает ионообменную способность почвенных частиц, а потому на 30-40% повышает эффективность применения минеральных удобрений, улучшает структуру почв, их водный и воздушный режим, способствует развитию корневой системы растений.

Культурные растения по-разному реагируют на кислотность почвы и известкование. Люцерна, капуста, клевер, свекла очень чувствительны к кислотности почв, им нужна реакция почвы, близкая к нейтральной (рН 6,2-7,2), поэтому они хорошо отзываются на известкование. Пшеница, ячмень, ку-куруза, горох, бобы, вика, турнепс, брюква хорошо растут при слабокислотной реакции (рН 5,1-6) и известковании. Рожь, овес, тимофеевка, гречиха переносят умеренную кислотность (рН 4,5-5,0) и положительно реагируют на высокие дозы извести. Картофель, лен, подсолнечник легко переносят умеренную кислотность и требуют известкования только на сильно- и среднекислотных почвах. Люпин, сераделла, чайный куст малочувствительны к повышенной кислотности почв и в известковании не нуждаются.

Кроме известняков в качестве известковых удобрений применяют известковый туф, мергель, доломит, мел и др.

1. Мелиорация.

2. Химическая мелиорация.

3. Кислотность почвы.

4. Известкование и его значение.

Напишите молекулярное уравнение реакции, соответствующее приведенному в разделе сокращенному ионному уравнению. Почему нерастворимый карбонат кальция растворяется?

Какие значения имеет рН слюны и желудочного сока? Вспомните из уроков биологии, что слюна имеет щелочную среду. О том, что среда желудочного сока кислая, вам известно также из курса химии. Почему стоматологи рекомендуют после еды почистить зубы или же пожевать некоторые сорта жевательных резинок?

Для супесчаных почв при рН менее 4,5 (что это означает?) норма внесения извести составляет 4 т/га. Рассчитайте дозу извести, необходимую для внесения на 6 соток дачного участка с этим типом почв. Напишите уравнения реакций, происходящих в почвенном растворе при известковании.

Формула доломита СаС0 3 МgСO 3 . Напишите уравнения реакций, происходящих при известковании почв доломитом.

Какие способы гидротехнической и лесотехнической мелиорации вам известны? Можно ли ограничиться только одной группой мелиоративных методов?

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Химическая мелиорация почв. Известкование кислых почв.

Основные теоретические положения

1. Распространение почв элювиального ряда и необходимость их улучшения

Меридиальная протяженность территории Красноярского края от Северного Ледовитого океана до горных систем Западного и Восточного Саяна охватывает все природные зоны между тундрой и сухими степями. Это определяет многообразие почвенного покрова. Значительное место по распространению принадлежит типам почв, которым свойственна кислотность в той или иной мере вредная для сельскохозяйственных растений.

Территориально кислые почвы в крае распространены широко . Большая их часть сосредоточена в Ачинской лесостепной зоне – 46% от общей площади кислых почв края. В Центральной пригородной и Канской лесостепной зонах их площади практически равны (16,2 и 16,3%). Несколько больше их в Северной подтаежной зоне – 18,5%. Незначительная доля – всего лишь 3% приходится на Южную лесостепную зону. В Южной степной зоне кислых почв нет совершенно.

Следует заметить, что в отличие от своих европейских аналогов кислые почвы Красноярского края менее оподзолены , что объясняется в основном карбонатностью почвообразующих пород. Характерной особенностью этих почв является низкая оструктуренность . Они быстро распыляются, образуют корку. У них слабая водопроницаемость . Вследствие этого во время снеготаяния и в периоды интенсивного выпадения осадков развивается водная эрозия.

Общая площадь кислых почв в Красноярском крае по данным агрохимической службы составляет 586,8 тыс.га. На долю сильнокислых и среднекислых почв, то есть почв нуждающихся в известковании, приходится 243 тыс. га. Следует иметь ввиду, что сенокосные и пастбищные угодья в таежной и лесостепной зонах размещаются на почвах более низкого бонитета и представлены типами почв, которым в той или иной мере свойственна почвенная кислотность.

Основной особенностью кислых почв является недостаток ионов кальция и избыток ионов водорода в пахотном горизонте, что обусловливает их крайне неблагоприятные агрохимические свойства. Прежде всего, кальций – важный элемент питания растений и его недостаток вызывает их кальциевое голодание: растения плохо развивается и плодоносит, не переносит перезимовки. Понижение реакции почвенного раствора отрицательно влияет на усвоение растениями азота, фосфора, калия и других элементов.

Высокая концентрация ионов водорода затрудняет рост и развитие корневой системы растений, резко снижается, а иногда полностью прекращается усвоения кальция, затормаживается поступление фосфора, поскольку частично изменяет состав протоплазмы корневых клеток. В кислой среде в растениях нарушаются процессы обмена с накоплением промежуточных соединений (нитритов, простых углеводов, органических кислот) вместо завершенных (белков, жиров, крахмала). Растения теряют морозо- и жаростойкость, устойчивость к засухе, к болезням и вредителям, задерживается прохождение отдельных фаз роста и развития.

В почвах с повышенной кислотностью подавляется жизнедеятельность полезных микроорганизмов, почти не развивается аммонифицирующая и нитрифицирующая микрофлора, что тормозит образование нитратов и фиксацию атмосферного азота. В результате нарушается азотное питание растений . В то же время отдельные формы грибов (пеницилиум, фузариум, триходерма), которые выделяют вещества, ядовитые для растений, в кислых почвах развиваются, что создает неблагоприятные условия для жизни и развития растений.

Повышенная кислотность уменьшает растворимость соединений ряда микроэлементов, необходимых растениям (молибден, бор, цинк и медь). Поэтому, растения, культивируемые на почвах элювиального ряда, существенно уступают по содержанию белковых соединений, чем культуры, выращиваемые на почвах черноземного типа. Напротив, в кислой среде повышается растворимость и, следовательно, содержание подвижных форм алюминия, марганца, токсичных для растений.

Кислые почвы отличаются и неблагоприятными физическими свойствами. При недостатке кальция и магния, которые образуют нерастворимые гуматы, гумусовые вещества плохо удерживаются в почве, отчего не только уменьшается запас питательных элементов, но и ухудшается структура почвы. Почвы элювиального ряда обладают, как правило, тонко – пылеватым гранулометрическим составом и бесструктурны, бедны коллоидными частицами и гумусом, что сопровождается нарушением благоприятного водно-воздушного режима.

2. Определение нуждаемости почв в известковании и расчет дозы извести

Неблагоприятные свойства кислых почв могут быть устранены вытеснением ионов водорода и алюминия из почвенного поглощающего комплекса и замещение их кальцием. Это достигается известкованием почвы, т.е. внесением в нее мелиорантов, содержащих известь. Установление потребности почвы в известковании и определение необходимых доз известковых материалов основываются на изучении почвенной кислотности.

Реакция почвенного раствора является отражением состава почвообразующих пород, характера, интенсивности основных процессов и режимов, происходящих в конкретных условиях сочетания факторов почвообразования. Те почвы, в которых оподзоливание выразилось в большей степени, а выщелачивание карбонатов и оснований прошло сильнее, обладают большей обменной кислотностью.

Различают два типа почвенной кислотности: актуальную и потенциальную.

Актуальная кислотность – это кислотность почвенного раствора (водной вытяжки). Интенсивность (степень кислотности) характеризуется активностью ионов водорода, выражаемой как отрицательный логарифм концентрации ионов водорода. Кислотность почвенного раствора обусловлена растворенными в нем химическими веществами. На величину pH почвенного раствора влияют свободные органические кислоты. Их минеральных кислот большое значение имеет угольная кислота, на количество которой влияет растворение в почвенном растворе диоксида углерода.

Потенциальная кислотность связана с твердыми фазами почвы и проявляется только при взаимодействии почвы с солевыми растворами. В составе потенциальной кислотности различают обменную кислотность, определяемую при взаимодействии почвы с раствором нейтральной соли и гидролитическую, определяемую при действии на почву гидролитически щелочной соли. Гидролитическая кислотность почвы является скрытой и показывает почти полную потенциальную кислотность почвы. При определении обменной кислотности часть ионов водорода не вытесняется в раствор в силу более прочного поглощения и установления динамического равновесия между количеством поглощенных водородных ионов и их концентрацией в растворе. Поэтому, если нет обменной кислотности, то она не вредна растениям. Величина гидролитической кислотности определяется функциональными группами гумусовых веществ (карбоксильные, фенольные, спиртовые гидроксилы, аминокислотами, простыми органическими кислотами). Важным показателем необходимости известкования является наличие и величина обменной кислотности. Обменная кислотность своим происхождением обязана совместному наличию в почвах ионов водорода и алюминия, которые находятся в поглощенном состоянии, и представляет собой небольшую, но наиболее опасную часть почвенной кислотности. Она наблюдается в почвах, в которых процесс выщелачивания оснований осуществляется весьма интенсивно и почва нуждается во внесении извести.

Общее представление об обменной кислотности можно получить, определяя pH солевой вытяжки. Установлено, что при:

а) pH солевой вытяжки почва сильно нуждается в известковании ,

б) при pH от 4,5 до 5,5 потребность в известковании уменьшается и характеризуется как средняя нуждаемость, а

в) при pH > 5,5 известкование становится ненужным.

Поскольку гидролитической кислотностью обладает подавляющее большинство почв, по одной ее величине нельзя судить о потребности почвы в известковании. Следовательно, для оценки нуждаемости почвы в извести кроме гидролитической кислотности, необходимо определить степень насыщенности основаниями (V, %):

V, % = S*100/S+H Г,

где S – сумма поглощенных оснований, мг-экв на 100 г почвы;

HГ - величина гидролитической кислотности, мг-экв на 100 г почвы.

Потребность почв в известковании в зависимости от их насыщенности основаниями, установленная эмпирически, выражается следующей шкалой (А.Е.Возбуцкая, 1968).

Почвы, у которых:

V , сильно нуждаются в извести,

от 50 до 70% - в средней степени нуждаются во внесении извести,

V - не нуждаются в извести.

Растения, подвергаясь постоянному и длительному воздействию специфических условий, характерных для тех или иных почвенных провинций, отражают эти условия в своих биологических свойствах и особенностях. В процессе естественного и искусственного отбора в различных эколого-географических районах земледелия постепенно формировались так называемые эколого-географические типы растений, для которых одним из существенных являлось различное и специфическое отношение к реакции почвенного раствора. «Оптимальный интервал pH» носит неопределенный характер в связи со сложностью взаимоотношений в системе почва – растения. Поэтому значение pH почв само по себе не может быть диагностическим признаком химической мелиорации кислых почв. Культурные растения генетически приспособлены к определенным условиям произрастания. По отношению к реакции среды они могут быть сгруппированы следующим образом:

К первой группе относят культуры, характеризующиеся очень высокой чувствительностью к кислой реакции среды почв. Они хорошо растут только при нейтральной или слабощелочной реакции и характеризуются высокой отзывчивостью на их известкование – это люцерна, эспарцет, клевер, сахарная и столовая свекла.

Во вторую группу входят культуры, отличающиеся умеренной чувствительностью к кислотности почв (произрастают при слабокислой или нейтральной реакции) и хорошо отзываются на известкование – яровая пшеница, кукуруза, соя, фасоль, горох, подсолнечник, лук.

К третьей группе относят растения, удовлетворительно растущие в широком интервале pH - слабочувствительные к кислотности почв (рожь, овес, просо, гречиха, тимофеевка). Они положительно реагируют на применение высоких доз извести.

Четвертую группу составляют культуры:

а) не переносящие избытка кальция в почве – лен;

б) удовлетворительно переносящие кислотность почв и не нуждающиеся в их известковании – картофель.

По отношению к реакции среды почв различаются не только виды растений, но и разные сорта одного и того же вида. Наивысшей отзывчивостью на известкование отличаются сорта, выведенные на почвах, имеющих нейтральную и щелочную среду.

Агроэкологические условия растений, произрастающих на кислых почвах, во многом определяются в них отдельными «кислотоопределяющими» элементами.

При проведении известкования очень важно установить оптимальную дозу извести в соответствии с особенностями почвы и возделываемых растений. Расчет дозы извести, необходимой для нейтрализации почвы, за основу принимается величина гидролитической кислотности, выраженная в мг-экв. на 100 г почвы. Для вычисления таким путем дозы извести величину гидролитической кислотности умножают на коэффициент 1,5 .

Доза CaCO 3 = H Г * 1,5* D*Г П.

В зависимости от степени нуждаемости в известковании вводится поправка в рассчитанную дозу извести. При сильной нуждаемости применяется полная расчетная доза извести, при средней -1/2 или?, при слабой -1/3 или 1/4 дозы. Кроме того, учитывается отношение культур к известкованию. Величина поправочного коэффициента зависит от гранулометрического состава почвы и возделываемой культуры.

3. Сущность и значение известкования

Теория и практика известкования кислых почв были освещены еще в работах И.А.Стебута (1865) и получали завершенность в классических работах Д.Н.Прянишникова, К.К.Гедройца.

Основное известковое удобрение – известняк CaCO 3 - практически нерастворимо в воде, однако под влиянием содержащейся в почвенном растворе углекислоты карбонат кальция постепенно превращается в растворимый бикарбонат кальция: CaCO 3 + H 2 O + CO 2 = Ca (HCO 3) 2 .

Бикарбонат кальция диссоциирует на ионы Ca 2+ и 2 HCO 3 - и частично подвергается гидролизу:

Ca (HCO 3) 2 + H 2 O = Ca (OH) 2 +2 H 2 O + 2CO 2 ;

Ca (OH) 2 = Ca 2+ + 2 OH - .

В почвенном растворе, содержащем бикарбонат кальция, повышается концентрация ионов Ca 2+ и OH - . Катионы кальция вытесняют ионы водорода из почвенного поглощающего комплекса, и кислотность нейтрализуется:

ППК] H H + Ca 2+ + 2 HCO 3 - > ППК] Ca + 2 H 2 O +2CO 2 ;

ППК]3 H + Ca 2+ + 2ОН - > ППК] H Ca + 2H 2 O.

Что дает известкование положительного?

Внесение извести устраняет актуальную и обменную кислотность, значительно снижается гидролитическая кислотность.

1. В почвенном растворе повышается степень насыщенности почвы основаниями и содержание кальция. Кальций коагулирует почвенные коллоиды, и, как следствие, образуются структурные агрегаты с последующим улучшением водно-воздушного режима, повышения водопроницаемости. Почва легче поддается обработке. Физическая спелость почвы наступает на 2-3 дня раньше.

2. Ввиду повышения поглотительной способности почвы уменьшаются потери элементов питания через вымывание. Снижается содержание подвижного алюминия, марганца, подвижность тяжелых металлов и загрязняющих веществ.

3. Усиливается микробиологическая активность почвы, особенно активность азотфиксирующих микроорганизмов, нитрификаторов. Подавляется жизнедеятельность патогенной микрофлоры.

4. Происходит мобилизация запасов фосфора за счет интенсификации минерализации органического вещества и перевода фосфатов алюминия, железа в более подвижные кальцийфосфаты.

5. Повышается доступность растениям целого ряда микроэлементов.

6. Улучшается питание растений кальцием и магнием. В растениях активно синтезируются завершенные биохимические соединения (белки, жиры, углеводы).

7. Повышается эффективность органических и минеральных удобрений и бактериальных преператов.

Что дает известкование отрицательного?

Усиление минерализации органического вещества почвы, если известкование не сопровождается применением органических удобрений, может сопровождаться обеднением почвы. «Известкование обогащает родителей, но разоряет детей», -говорит голландская пословица.

После известкования активизируется почвенный калий, но может быть нарушено соотношение K:Ca с преобладанием последнего. Поэтому в некоторых случаях возникает потребность в увеличении доз калийных удобрений.

Возникает необходимость контроля обеспеченности растений некоторыми микроэлементами.

После известкования возрастает вымывание оснований и органического углерода, 78-87% которых представлены фульво- и низкомолекулярными органическими кислотами, а 13-22% - веществами, сходными с гуминовыми кислотами.

Экологическая и экономическая напряженность в сельскохозяйственном производстве предполагает поиск и других нетрадиционных подходов и использованию кислых почв:

а) создание и подбор устойчивых и толерантных к повышенной кислотности, к высокому содержанию подвижного алюминия сортов культурных растений. Растения участвуют в регулировании реакции среды через корневые выделения: если в почве больше катионов, растения преимущественно выделяют анионы; если в почве больше анионов, растения выделяют катионы.

б) использование на кислых почвах минеральных удобрений на фоне органических;

в) освоение альтернативных систем земледелия, исключающих применение физиологически кислых удобрений.

Химические мелиоранты – удобрения длительного действия. При многократных механических обработках почвы они тщательно перемешиваются со всей массой пахотного слоя. Полная доза извести оказывает положительное действие на урожай полевых культур на средне- и тяжелосуглинистых почвах в течение 15-20 лет, а на почвах легкого гранулометрического состава 8-10 лет. Главное условие – необходимо, чтобы максимальный сдвиг показателя pH в сторону щелочного интервала по времени совпал с размещением на известкованном поле культуры, наиболее отзывчивой на это мероприятие. И наоборот, культуры, на которые известкование оказывает отрицательное действие, должны размещаться на этом поле в момент затухания действия мелиоранта.

4. Требования к внесению и заделке извести

Основным требованием является равномерное распределение (рассев) извести с последующим тщательным перемешиванием с почвой.

При известковании полной дозой, повторное внесение извести проводят через 6-8 лет.

Полную дозу извести вносится в два приема: большая часть дозы заделывается с осени под вспашку зяби, меньшая – под культивации.

Обязательным условием эффективного известкования является оптимальная влажность почвы.

Недопустимо внесение извести весной, поскольку почвенная влага будет использована на гашение извести, а почва иссушена.

Внесение извести в зимнее время может быть в исключительных случаях при строго определенных условиях: по тонкому снегу, на выровненных местах, в безветренную погоду.

Недопустимо совместное внесение извести с навозом и аммиачными удобрениями, вследствие потерь азота.

Для рассева слабопылящих материалов используют разбрасыватель минеральных удобрений РУМ-3, универсальный тракторный прицеп-разбрасыватель 1-ПТУ-3,5; разбрасыватель минеральных удобрений и извести РМИ-2, навешенный на разбрасыватель–прицеп удобрений РПТУ 2А, и туковые сеялки.

5. Известковые удобрения

Известковые удобрения подразделяются на твердые (требующие размола), мягкие или рыхлые (не требующие размола) и отходы промышленности.

Твердые известковые породы содержат разное количество CaCO 3 и MgCO 3 , различаются по количеству нерастворимого остатка (глина и песок). По содержанию CaO и MgO эти породы делятся на следующие группы: известняки содержат 55-56% CaO и до 0,9% MgO; известняки доломитизированные – 42-55% CaO и 0,9-9% MgO; доломиты – 32-30% CaO и 18-20% MgO.

Известняки и мел – осадочные породы преимущественно морского происхождения. Известняки состоят в основном из минерала кальцита, но чаще они доломитизированы и, кроме CaCO 3 , содержат MgCO 3 . Присутствие MgCO 3 повышает прочность и твердость известковых пород и уменьшает их растворимость. Твердые известковые породы являются исходным материалом для производства промышленных известковых удобрений – известняковой и доломитовой муки, жженой и гашеной извести.

Известняковая или доломитовая мука получается при размоле и дроблении известняков и доломитов на заводах. Известняковая мука состоит из CaCO 3 и небольшого количества MgCO 3 ; в пересчете на CaCO 3 содержит 85-100%.

Доломитизированную муку следует применять на почвах легкого гранулометрического состава, особенно при возделывании в севооборотах культур, чувствительных к недостатку магния, - картофеля, льна, бобовых. Быстрота взаимодействия с почвой и эффективность молотого известняка и доломита в сильной степени зависит от тонины помола. Частицы известняка и доломита крупнее 1мм плохо растворяются и очень слабо уменьшают кислотность почвы. Чем тоньше размол известняка и доломита, тем лучше она перемешивается с почвой, скорее и полнее растворяется, быстрее действует и тем выше ее эффективность.

Жженая и гашеная известь . При обжиге твердых известняков карбонаты кальция и магния теряют углекислоту и превращаются в окись кальция или окись магния, получается жженая (комовая) известь. При взаимодействии ее с водой образуется гидроокись кальция или магния, то есть так называемая гашеная известь «пушенка» - тонкий рассыпающийся порошок. Гасить жженую известь можно непосредственно в поле, присыпая влажной землей.

Гашеная известь получается как отход на известковых заводах и при производстве хлорной извести. Пушенка - наиболее быстродействующее известковое удобрение, особенно ценное для глинистых почв.

Мягкие известковые породы - вторичные пресноводные известковые отложения. К ним относят известковые туфы, мергели, природная доломитовая мука. Залежи их обычно более мелкие, но они расположены часто вблизи полей, что делает их применение экономически целесообразным, они не требует размола, а только высушивания и просеивания.

Известковые туфы называют еще ключевой известью, так как они встречаются главным образом в местах выхода ключей в притеррасных поймах; содержат от 80 до 90% CaCO 3 .

Мергели содержат в основном CaCO 3 , иногда вместе с примесью глины. Поэтому содержание здесь колеблется от 25 до 50 %. Мергели могут быть рыхлые и плотные, требующие измельчения.

Доломитовая мука - естественная рыхлая порода, состоящая из MgCO 3 и CaCO 3 , с общим содержанием в перерасчете на CaCO 3 95-108%. Не требует размола. Залежи встречаются редко. Хорошее известковое удобрение для почв легкого гранулометрического состава, бедных магнием.

Известковые отходы промышленности. К ним относятся: сланцевая зола, дефекат, белитовая мука.

Сланцевая зола . Получается при сжигании горючих сланцев на промышленных предприятиях и электростанциях. Состоит из силикатов, окисей и карбонатов кальция и магния с общим содержанием в пересчете на CaCO 3 – 65- 80%. Кроме того, содержит небольшое количество калия и серы. По действию близка к известняковой муке. Сланцевая зола пригодна для большинства полевых культур, в том числе для бобовых, картофеля, льна.

Дефекат – отход свеклосахарного производства. Содержит CaCO 3 с примесью Ca (OH) 2 с общим содержанием в пересчете на CaCO 3 до 70%. Хорошее известковое удобрение для применения вблизи сахарных заводов. Кроме извести, дефекат содержит 0,3-0,5 % азота, 1-2% фосфора, 0,6-0,9% калия, до 15% органического вещества.

Белитовая мука – отход алюминиевой промышленности, имеет следующий химический состав: CaO – 45-50%, Na 2 O+ K 2 O- 2,05, SiO 3 - 30, Fe 2 O 3 – 2,9, MnO -0,04, Al 2 O 3 - 3,4% , а также небольшое количество фосфора, серы и некоторых микроэлементов.

Установление целесообразности замены суперфосфата фосфоритной мукой по методу Б.А.Голубева

Фосфоритная мука для большей части сельскохозяйственных культур становится достаточно хорошим источником фосфорного питания только тогда, когда почва имеет повышенную кислотность, достаточную для разложения фосфоритной муки.

Исследованиями Б.А.Голубева установлено, что действие фосфоритной муки начинает проявляться, когда гидролитическая кислотность почвы достигает 2-2,5 мэкв/100 г почвы. Когда гидролитическая кислотность почвы выше указанной величины, действие фосфоритной муки, внесенной в двойной дозе по суперфосфату, может приближаться к действию суперфосфата.

Однако действие фосфоритной муки зависит не только от величины гидролитической кислотности. Прогноз возможного положительного действия фосфорита становится более точным и полным, известна емкость поглощения удобряемой почвы, а также вычислена степень насыщенности почвы основаниями. Можно ожидать полного действия фосфоритной муки, когда H г = 3 + 0,1 ЕКО.

Таблица 1. Зависимость эффективности фосфоритной муки от физико-химических свойств почвы

Потенциометрическое определение обменной кислотности

(лабораторная работа)

Материалы и оборудование: весы технические, колбы на 100мл, дистиллированная вода, стаканчики на 50 мл, иономер, вспомогательный хлорсеребряный электрод, стеклянный электрод, предварительно выдержанный в 0,1н растворе соляной кислоты.

Обменной кислотностью называют часть потенциальной кислотности, которая обнаруживается при взаимодействии почвы с раствором нейтральной соли.

Принцип метода . Метод основан на определении активности ионов водорода. Для измерения величины pH используется электронная схема со стеклянным электродом, в который впаян литиевый стерженек. При погружении электрода в раствор происходит обмен ионов лития с поверхности слоев на ионы водорода. Благодаря разности потенциалов возникает электродвижущая сила, величина которой соответствует активности ионов водорода в растворе. Извлечение обменных катионов водорода производится раствором хлористого калия концентрации 1моль/дм 3 (1н) при соотношении почвы и раствора 1:2,5.

Ход определения

В коническую колбу на 100 мл отвешивается на технических весах 10г воздушно-сухой почвы, пропущенной через сито с отверстиями в 1мм, и приливается 25 мл 1н раствора хлористого калия (колбы подписать). Содержимое колб тщательно перемешивается и встряхивается на ротаторе в течение 30 минут, далее суспензию переносят в стаканчик и производят определение pH на иономере. Электроды погружаются в стаканчик с испытуемым раствором, ожидается успокоение стрелки прибора и производится отсчет по верхней шкале прибора. При этом сопоставляются показания на верхней шкале и положение переключателя «пределы измерения»

Обсуждение результатов

При выполнении лабораторной работы каждый студент получает индивидуальный почвенный образец, характеризуемый данными этикетки.

1. На основании полученных результатов:

а) Рассчитывается степень насыщенности почвы основаниями;

б) Определяется потребность почвы в известковании;

в) Рассчитывается доза известьсодержащего мелиоранта;

г) Оформите в рабочей тетради выводы и обоснуйте полученные материалы.

Каждый студент получает индивидуальное расчетное задание, по которому следует:

Задачи и упражнения

1. Рассчитайте норму извести под картофель на дерново-подзолистой почве: S = 21 ммоль/100 г, Н г = 9,0 ммоль/100 г.

2. Какие из имеющихся удобрений (суперфосфат, фосфоритная мука, обесфторенный фосфат) необходимо применять на дерново-подзолистой почве со следующими агрохимическими показателями: S = 8 ммоль/100 г, Н г = 6,9 мг-экв/100 г, pH Kcl = 4,2?

3. Сколько необходимо внести извести под картофель, если Н г = 5 ммоль /100 г, V = 70%?

4. В хозяйстве имеются простой суперфосфат, двойной суперфосфат, фосфоритная мука. Какое удобрение вы будете применять: а) под бобовые культуры, б) при S = 20 ммоль /100 г, Н г = 7 ммоль/100 г, в) в рядки при посеве?

5. Доза внесения извести, рассчитанная по Н г, составляет 2,8 т/га. Какова норма внесения в физическом весе следующих мелиорантов: известковая мука (80%), сланцевая зола (60%), известковый туф (40%).

6. Для создания культурного пахотного слоя (0-20см) требуется узнать, нуждаются ли почвы в мелиорирующем веществе и в какой дозе по следующим показателям:

Таблица 1

Почва Горизонт Глубина, см Ммоль на 100г почвы Плотность сложения, г/см3
Са 2+ Mg 2+ Hr + ЕКО
1 A 1 5-10 7,42 6,3 5,5 19,22 1,15
А 2 10-25 3,5 2,45 0,8 6,75 1,45
2 A 1 0-15 22,0 1,9 3,8 27,7 1,22
А 1 А 2 15-35 16,8 0,9 4,3 22,0 1,25
3 A 1 2-8 9,9 3,7 4,7 18,3 1,15
А 2 8-25 1,15 0,8 2,2 4,4 1,35

7. По приведенным данным, выраженным в ммоль/100г почвы, определите: нуждаются ли почвы в химической мелиорации; если нуждаются, то в какой?

а) Са 2+ =2,5; Мg 2+ =1; Нr=8;

б) S=12; Нr=4;

в) ЕКО=21; Нr=5;

г) Са 2+ =4,6; Мg 2+ =1,3; ЕКО=7,4;

д) S=10,4; EKO=14,2;

e) S= 4,4; Hr=3,5;

ж) Са 2+ =2,9; Мg 2+ =0,7; Нr=7,3;

8. Определить место и очередность известкования следующих звеньев севооборотов на светло-серой лесной почве при S = 28 ммоль/100 г, Нг = 5,8 ммоль/100 г, pH Kcl = 5,1:

а) пар – лен – ячмень;

б) картофель – пшеница – овес;

в) донник – пшеница – ячмень;

г) кормовая свекла – пшеница – овес;

д) турнепс – пшеница – овес + горох – пшеница;

е) люцерна – люцерна – пшеница – пшеница;

9. Дайте прогноз применения фосфоритной муки. Почвы: дерново-подзолистая, при S = 14 ммоль/100 г, Нг = 6,0 ммоль/100 г; серая лесная при S = 25 ммоль/100 г, Нг = 4,8 ммоль/100 г.

10. Определите степень нуждаемости почв в химической мелиорации и дозу внесения извести для пахотного слоя (0-20 см) почвы по следующим показателям:

Таблица 2

Почва Горизонт Глубина, см Ммоль на 100г почвы Плотность сложения, г/см3
Са 2+ Mg 2+ Hr + ЕКО
1 A 1 0-18 11,2 1,5 5,3 18,0 1,15
А 2 18-30 8,8 2,2 3,7 14,7 1,45
2 A 1 0-12 18,4 3,2 4,5 26,1 1,11
А 2 12-22 17,4 0,9 2,1 20,4 1,32
3 A 1 2-8 9,8 3,7 4,8 18,3 1,2
А 2 8-23 1,5 0,7 2,2 4,4 1,5

К химической мелиорации (коренному улучшению) почв приходится прибегать в тех случаях, когда необходимо быстро изменить их неблагоприятные для растений свойства, повысить плодородие. Для этого в почву вно­сят химические соединения, улучшающие или изменяющие ее свойства. В сельском хозяйстве наиболее часто применяют известкова­ние кислых почв и гипсование, а иногда кислование щелочных.

Известкование кислых почв

В СССР около половины всех пригодных для обработки земель расположено в нечер­ноземной зоне. Здесь выпадает достаточно, а временами и слишком много атмосферных осад­ков. Но урожаи на подзолистых и дерново-подзолистых почвах, преобладающих в этой зоне, невелики. Причина низкого плодородия этих почв - недостаток питательных веществ, плохая структура и кислая реакция многих из них.

В нечерноземной полосе только Европей­ской части СССР насчитывается около 35 млн. га почв с кислой реакцией.

Кислотность почвы вызывают органические и отчасти минеральные кислоты и водородный ион, находящийся на поверхности самых мел­ких коллоидных частиц почвы.

Большинство сельскохозяйственных куль­тур плохо растет на сильнокислых почвах и дает низкие урожаи. Особенно чувствительны к почвенной кислотности свекла, капуста, горчица, клевер, люцерна, эспарцет, донник, лук, чеснок, смородина. Несколько менее, но также очень чувствительны к повышенной кис­лотности пшеница, ячмень, кукуруза, фасоль, горох, брюква, турнепс, капуста цветная, огурцы; из плодовых - яблоня, слива, вишня; из трав - костер, лисохвост. Слабо чувстви­тельны к кислой реакции, но положительно реагируют на известкование овес, рожь, гре­чиха, тимофеевка.

Есть культуры, которые легко переносят повышенную кислотность и не нуждаются обыч­но в известковании почв. Некоторые из них повышают урожай при неполном известкова­нии, когда сильная кислотность сменяется слабой. Это лен, подсолнечник, морковь, пет­рушка, репа, редька.

В чем же проявляется отрицательное дей­ствие кислотности на растения и почвы? Кис­лотный ион водорода способствует разрушению почвенных минералов и обеднению почв. Кро­ме того, он ядовит для растений и полезных микроорганизмов. Из-за высокой кислотности в почвенных растворах появляются вредные для растений и микроорганизмов соединения алю­миния, железа, марганца. Растворенный в кислых почвах алюминий может нанести расте­ниям вред больший, чем водородный ион.

Для нейтрализации почвенной кислотности в почву вносят молотый известняк (известко­вую муку) или мел, жженую известь, туф, сланцевую или торфяную золу. Но некоторые растения, например картофель, заболевают при избытке извести. В таких случаях лучше ис­пользовать молотый доломит, мергель, в ко­торых, помимо углекислого кальция, содер­жится углекислый магний. Кальций и магний нужны и как удобрения.

Яровая пшеница на кислой подзолистой почве без удобре­ний (слева) и при внесении в почву извести, суперфосфата и азота.

В зависимости от степени кислотности поч­вы, количества в ней гумуса и глинистых частиц необходимо вносить в почву разное количество извести. Например, на глинистых почвах необходимо вносить примерно в полтора раза больше извести, чем на легкосуглини­стых и супесчаных.

Слабокислые почвы в известковании не нуждаются.

В повышении плодородия кислых почв из­весткованию принадлежит одно из первых мест. Оно устраняет кислотность, переводит неко­торые ядовитые соединения, например алюми­ния, в нерастворимую, а потому невредную для растений форму и, наоборот, способствует растворимости некоторых других веществ, в том числе фосфатов (связывая подвижные алю­миний и железо), и тем самым повышает до­ступность их для растений.

Одновременно улучшаются условия жизни полезных микроорганизмов, их активность воз­растает. В почве накапливаются гумусовые вещества, улучшающие ее структуру. Почва становится более водо- и воздухопроницаемой, ее легче обрабатывать.

Наибольшие прибавки урожая и повышение плодородия почв достигаются при совместном

внесении извести с органическими и минераль­ными удобрениями. Известь повышает эффек­тивность минеральных и органических удоб­рений на 25-50%. Например, урожай ячменя и многолетних трав при внесении 20 т навоза и 6 т извести на гектар равен урожаю, который бывает при внесении 40 т навоза. Даже вне­сение половинных доз извести значительно по­вышает урожай.

На известкованных почвах урожай сель­скохозяйственных культур повышается в сред­нем: озимой пшеницы - на 3-6 ц с гектара; яровой пшеницы, ячменя и ржи - на 2-5 ц, клевера на сено - на 10-15 ц, кормовых кор­неплодов - на 60 ц.

Чем кислее почва, тем большие прибавки урожая дает внесение извести. Но одно из­весткование очень бедных почв может не дать положительного результата, так как известь понижает растворимость некоторых других веществ, например калия и микро­элементов. Поэтому на бедных почвах часто приходится при известковании вносить мик­роэлементы: бор, на некоторых почвах марга­нец, серу, молибден. Микроэлементы повышают не только урожайность растений, но и устой­чивость их против заболеваний.

В известкованные почвы нужно обяза­тельно вносить минеральные и органические удобрения. Только при этом условии можно получить наибольший эффект от устранения кислотности почв.

Известь, внесенная в почву, постепенно вымывается просачивающейся водой в более глубокие слои. Поэтому известкование необ­ходимо повторять через каждые 7 -10 лет.

На солонце кукуруза не взошла.

Солонец после мелиорации. Растения развиваются нормально

Гипсование и кислование почв

Почвы степной зоны - черноземы, кашта­новые и др.- обладают высоким естественным плодородием. Они характеризуются нейтраль­ной реакцией и в химической мелиорации не нуждаются. Однако среди них встречаются почвы щелочные. Это прежде всего солонцы. Солонцы неплодородны, на них плохо развиваются даже дикорасту­щие растения. Сухие солонцы очень плотны и при обработ­ке разбиваются на крупные глыбы. Во влажном состоя­нии они набухают, становят­ся вязкими. Вода на солон­цах застаивается. Обрабаты­вать такие почвы очень труд­но и часто бесполезно: урожая с них не полу­чишь.

Солонцы нередко встреча­ются небольшими пятнами среди других, более пло­дородных почв, занимая от 10 до 50% всей площади. Та­кое сочетание сильно ослож­няет использование хороших почв.

Неблагоприятные свойст­ва солонца вызываются при­сутствием иона натрия на поверхности самых мелких, коллоидных частиц почвы. В присутствии натрия кол­лоидные частицы ведут себя иначе, чем с другими ионами, в результате чего эти почвы переходят в бесструктурное состояние.

Удалить из солонца нат­рий можно, только промыв его раствором какой-либо соли, например кальция. Ион кальция вытеснит натрий. После этого неблагоприятные свойства солонца исчезнут. Однако вносить в почву для вытеснения обменного натрия углекислый кальций, как делается при известковании, бесполезно. В солонцах он остается недеятельным. Вно­сить надо более растворимую сернокислую соль кальция - тонкоразмолотый гипс или фосфогипс, в кото­ром, кроме гипса, содержится 2-3% фосфор­ного ангидрида.

Обычно приходится вносить от 5 до 25 т сырого (водного) гипса на один гектар солон­цов.

Гипс рассыпают по поверхности почв, а затем запахивают.

Вместо гипса можно вносить хлористый кальций. Его доставляют в виде концентриро­ванного раствора с химических заводов, где он скапливается как отход при производстве соды. Хлористый кальций химически активнее гипса, но он плох тем, что связанный с ним ион хлора ядовит для растений. После мелиорации хлористым кальцием почвы нуждаются в более ускоренной промывке, что возможно только при искусственном орошении. После промыв­ки солонцы становятся хорошими, плодород­ными почвами.

Солонцы, которые содержат углекислый кальций начиная с самого верхнего слоя, мож­но улучшать, внося в почву кислые промышлен­ные отходы, лучше всего отходы от производ­ства технической серной кислоты. Этот прием называется кислованием солон­цов.

Иногда применяют кислоту на почвах, от­водимых под плантации чая. Чайный куст растет в субтропиках. Он развивается только на слабокислых почвах, площадь которых на юге недостаточна: большая часть почв сухих и полусухих субтропиков содержит углекислый кальций. Кнслование и промывки почв, содержащих углекислый кальций, могут сделать их пригодными для культуры чая.

Есть еще и иные способы мелиорации солон­цов и некоторых других щелочных почв.

За многовековую историю земледелия че­ловечество освоило в общей сложности около 10% площади материков. Может показаться, что это совсем немного, однако резервы при­годных для обработки плодородных земель на нашей планете почти исчерпаны. Остальные площади заняты неплодородными и малоплодо­родными почвами, в том числе требующими хи­мической мелиорации. Например, только в СССР более 40 млн. га солонцов. Это огромная площадь. Чтобы обеспечить продуктами пита­ния быстро растущее население земного шара, важно всемерно повысить плодородие всех используемых почв, а также улучшить не­которые неплодородные и малоплодородные почвы.

Химическая мелиорация - важная часть той огромной работы по коренному улучшению земель, которая развернулась на всей огром­ной территории нашей страны. На юге прово­дится орошение и устраняется засоление и щелочность почв, на севере осушаются пе­реувлажненные земли и ведется борьба с вред­ной кислотностью почв. В недалеком будущем наши колхозы и совхозы получат с этих земель дополнительные тонны зерна, хлопка, овощей и другой ценной сельскохозяйственной про­дукции.

Повышенная кислотность оказывает как прямое (непосредственное) негативное влияние на физиологические процессы в клетках и тканях растений, так и косвенное — вследствие ухудшения агрохимических, агрофизических свойств почвы и снижения ее биологической активности.

Подкисление характерно для многих почв и происходит постоянно, поскольку в процесс почвообразование связан со значительным потерями оснований в результате выщелачивания и отчуждения их растениями. Реакция почвы является отражением характера протекающих в ней химических и биологических внутрипочвенных процессов.

Повышенная кислотность дерново-подзолистых и серых лесных почв является основной причиной низкой продуктивности сельскохозяйственных угодий, высокого содержания в почве подвижного алюминия, железа и марганца, а также снижения активности почвенной микрофлоры. При этом, для многих культурных растений повышенное содержание алюминия оказывает большее негативное влияние, нежели концентрация ионов водорода, рН почвы.

Косвенное действие повышенной кислотности и подвижного алюминия проявляется в снижении доступности растениям азота, фосфора, молибдена и снижении активности почвенной микрофлоры. Подвижные формы алюминия, железа и марганца снижают доступность фосфора растениям, связывая растворимые соединения фосфора в нерастворимые АlРО 4 и FeРО 4 .

Повышенная кислотность почвы вызывает изменение интенсивности и направленности биохимических процессов обмена веществ в растениях, вследствие чего нарушается синтез белков, углеводов и жиров, происходит накопление промежуточных продуктов обмена — аминокислот, моно — и дисахаридов и нитратов.

Известкование кислых почв — наиболее дешевый способ улучшения условий азотного, фосфорного и калийного питания растений, что особенно важно в связи с высокой стоимостью минеральных удобрений в России. При внесении извести одну и ту же прибавку урожая сельскохозяйственных культур можно получать при значительно меньших дозах удобрений.

Оптимальная реакция среды позволяет получать хорошие урожаи (40-45 ц/га) зерновых культур при среднем содержании доступных элементов питания в почве и средних дозах удобрений, в то время как на кислых почвах для получения таких урожаев содержание этих элементов должно быть в 1,5-2 раза выше.

При сельскохозяйственном использовании земель подкисление почвы происходит более интенсивно, нежели в естественных травостоях вследствие отчуждения кальция и магния с урожаем, вымывания их за пределы корнеобитаемого слоя почвы и внесения физиологически кислых минеральных удобрений. В результате длительного выщелачивания оснований кислые почвы широко распространены в районах с промывным водным режимом почв.

Наиболее значительное влияние на подкисление почвы оказывают вынос кальция и магния урожаем и их вымывание из пахотного слоя осадками. Вынос Ca и Мg сельскохозяйственными культурами варьирует в широком диапазоне и обусловливается, прежде всего, биологическими особенностями растений и величиной урожая. Например, с 1 т основной продукции с учетом побочной зерновые культуры выносят 10-14 кг CaO и МgО, зернобобовые 40-45 кг. В зависимости от урожайности зерновыми ежегодно отчуждается с поля примерно 20-50 кг/га кальция и магния, бобовыми — 100-200 кг/га и более. Поэтому, чем выше продуктивность посевов, тем больше отчуждается оснований, быстрее наступает подкисление почвы и чаще требуется проводить известкование.

Большее количество кальция и магния теряется из почвы в результате выщелачивания осадками. Вымывание этих элементов из почвы зависит от ее гранулометрического состава, количества и характера выпадения осадков, состояния растительного покрова и доз минеральных удобрений. Результаты лизиметрических опытов ВИУА, ВНИИ кормов, Раменской агрохимической станции НИУИФ показали, что потери Са 2+ и Мg 2+ из почвы от вымывания в значительной мере зависят от атмосферных осадков и доз минеральных удобрений. Наименьшие их потери были в условиях засушливого лета без внесения удобрений. Вымывание кальция и магния значительно возрастают с увеличением доз аммонийных азотных и калийных удобрений. При внесении этих удобрений, например NH 4 Cl или (NH4) 2 SO 4 , растения для питания используют преимущественно аммонийный азот (NH4 +) в обмен на ион водорода (Н +), который с оставшимися в растворе анионами хлора Cl — или SO 4 — образует соответствующие кислоты. Эти удобрения являются физиологически кислыми. Таким образом, в случае когда растения преимущественно потребляют из удобрений катионы по сравнению с анионами они будут физиологически кислыми (NH 4 Cl, (NH 4) 2 SO 4 , KCl, K 2 SO 4), и, напротив, если растения более интенсивно используют анионы, происходит подщелачивание раствора и такие удобрения являются физиологически щелочными.

По данным лизиметрических опытов (И. А. Шильников и др., 2001) в условиях Московской области потери кальция и магния из почвы возрастали с увеличением доз минеральных удобрений и количества осадков. Вымывание кальция из суглинистой дерново-подзолистой почвы составило в среднем за 15 лет в вариантах без удобрений 35 кг/га, при внесении возрастающих доз минеральных удобрений – 80-140 кг/га. Потери из супесчаной почвы были в 1,5-2 раза выше, чем их суглинистой. Среднее содержание Са 2+ в лизиметрических водах суглинистых почв было примерно в 5 раз выше, чем Mg 2+ , а супесчаных почвах — в 6-7 раз.

В последние годы большое внимание уделяется кислотным атмосферным осадкам, выпадение которых связано с выбросами диоксида серы и оксидов азота автотранспортом и промышленностью. Однако, как показали исследования выпадение "кислых" атмосферных осадков, не играет существенной роли в подкислении почв, как предполагалось, поскольку параллельно увеличился также выброс в атмосферу оснований.

Важно отметить, что потери кальция и магния в лизиметрических опытах не следует полностью отождествлять с реальными полевыми условиями, поскольку в лизиметрах можно учесть только нисходящую миграцию элементов питания. В полевых условиях, в результате потребления растениями воды на транспирацию существенное значение имеет восходящая миграция элементов питания, в том числе кальция и магния.

Если учесть, что в супесчаных почвах валовое содержание Са составляет 0,10,3%, то при ежегодном вымывании кальция 200 кг/га за 30-50 лет его потери превышали бы содержание в почве. Отсюда следует, что результаты краткосрочных лизиметрических опытов отражают общие закономерности водной миграции элементов питания, но не могут дать объективной количественной оценки потерям кальция из почвы.

Изучение баланса элементов питания в полевых опытах показало довольно значительные потери кальция и магния, однако в целом они в 1,5-2 раза ниже, чем в лизиметрических опытах и происходят в основном в ранневесенний и осенний периоды на почвах не покрытых растениями. Под растениями, в период интенсивного потребления ими воды и элементов питания, потери кальция минимальны или отсутствуют.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .