Внутреннее строение земли краткое описание. Внутренние и внешние слои Земли. Из чего состоит атмосфера Земли

Внутреннее строение земли краткое описание. Внутренние и внешние слои Земли. Из чего состоит атмосфера Земли
Внутреннее строение земли краткое описание. Внутренние и внешние слои Земли. Из чего состоит атмосфера Земли

Есть одна интересная особенность в строении нашей планеты: с наиболее сложным и разнообразным строением мы встречаемся в поверхностных слоях земной коры; чем глубже мы опускаемся в недра Земли, тем проще оказывается ее строение. Можно, конечно, высказать подозрение, что это нам только так кажется, потому что чем глубже мы опускаемся, тем приблизительнее и неопределеннее становятся наши сведения. По-видимому, это все же не так, и упрощение строения с глубиной представляет собой объективный факт, независимый от степени наших знаний.

Мы начнем свое рассмотрение сверху, с наиболее сложно устроенных верхних слоев земной коры. Эти слои, как мы знаем, изучаются преимущественно с помощью прямых геологических методов.

Приблизительно две трети земной поверхности покрыто океанами; одна треть приходится на долю материков. Строение земной коры под океанами и материками различно. Поэтому мы рассмотрим сначала особенности материков, а потом обратимся к океанам.

На поверхности Земли на материках в разных местах обнаруживаются горные породы разного возраста. Некоторые районы материков сложены на поверхности наиболее древними породами - археозойскими или, как их чаще называют, архейскими, и протерозойскими. Вместе они называются допалеозойскими или докембрийскими породами. Их особенностью является то, что большая их часть сильно метаморфизована: глины превратились в метаморфические сланцы, песчаники - в кристаллические кварциты, известняки - в мраморы. Большую роль среди этих пород играют гнейсы, т. е. сланцеватые граниты, а также обычные граниты. Площади, на которых на поверхность выходят эти наиболее древние горные породы, называются кристаллическими массивами или щитами . Примером является Балтийский щит, обнимающий Карелию, Кольский полуостров, всю Финляндию и Швецию. Другой щит охватывает большую часть Канады. Точно так же большая часть Африки представляет собой щит, как и значительная часть Бразилии, почти вся Индия и вся Западная Австралия. Все породы древних щитов не только метаморфизованы и претерпели перекристаллизацию, но и очень сильно смяты в мелкие сложные складки.

Другие области на материках заняты породами преимущественно более молодого - палеозойского, мезозойского и кайнозойского возраста. Это - главным образом осадочные породы, хотя среди них встречаются и породы магматического происхождения, излившиеся на поверхность в виде вулканической лавы или внедрившиеся и застывшие на некоторой глубине. Существуют две категории областей: на поверхности одних пласты осадочных пород залегают очень спокойно, почти горизонтально, и в них наблюдаются лишь редкие и небольшие складки. В таких местах магматические породы, особенно интрузивные, играют относительно малую роль. Такие области называются платформами . В других местах осадочные породы сильно смяты в складки, пронизаны глубокими трещинами. Среди них часто встречаются внедрившиеся или излившиеся магматические породы. Эти места обычно совпадают с горами. Они называются складчатыми зонами , или геосинклиналями .

Различия между отдельными платформами и складчатыми зонами - в возрасте лежащих спокойно или смятых в складки пород. Среди платформ выделяются древние платформы, на которых все палеозойские, мезозойские и кайнозойские породы залегают почти горизонтально поверх сильно метаморфизованного и смятого в складки «кристаллического основания», сложенного докембрийскими породами. Примером древней платформы является Русская платформа, в пределах которой все слои, начиная с кембрийских, лежат в общем очень спокойно.

Существуют платформы, на которых не только докембрийские, но также кембрийские, ордовикские и силурийские слои смяты в складки, а спокойно поверх этих складок на их размытой поверхности (как говорят, «несогласно») залегают более молодые породы, начиная с девонских. В других местах «складчатый фундамент» образован, кроме докембрийских, всеми палеозойскими породами, а почти горизонтально лежат породы только мезозоя и кайнозоя. Платформы двух последних категорий называются молодыми. Одни из них, как мы видим, образовались после силурийского периода (до того здесь существовали складчатые зоны), а другие - после конца палеозойской эры. Таким образом, выясняется, что на материках есть платформы разного возраста, образовавшиеся раньше или позже. До того, как образовалась платформа (в одних случаях - до конца протерозойской эры, в других - до конца силурийского периода, в третьих - до конца палеозойской эры), в земной коре происходило сильное смятие слоев в складки, в нее внедрялись магматические расплавленные породы, осадки подвергались метаморфизации, перекристаллизации. И только после этого наступало успокоение, и последующие слои осадочных пород, накопившись горизонтально на дне морских бассейнов, в общем так и сохраняли в дальнейшем свое спокойное залегание.

Наконец, в остальных местах все слои смяты в складки и пронизаны магматическими породами - вплоть до неогеновых.

Говоря, что платформы могли образоваться в разное время, мы вместе с тем указываем и на разный возраст складчатых зон. Действительно, на древних кристаллических щитах смятие слоев в складки, внедрение магматических пород, перекристаллизация закончились до начала палеозоя. Следовательно, щиты являются зонами докембрийской складчатости. Там, где спокойное залегание слоев не нарушалось с девонского периода, смятие слоев в складки продолжалось до конца силурийского периода, или, как говорят, до конца раннего палеозоя. Следовательно, эта группа молодых платформ является в то же время областью раннепалеозойской складчатости. Складчатость этого времени носит название каледонской складчатости. Там, где платформа образовалась с начала мезозоя, мы имеем зоны позднепалеозойской или герцинской складчатости. Наконец области, где в складки сильно смяты все слои, вплоть до неогеновых включительно, являются зонами наиболее молодой, альпийской складчатости, оставившей не смятыми только слои, образовавшиеся в четвертичном периоде.

Карты, изображающие расположение платформ и складчатых зон разного возраста и некоторые другие особенности строения земной коры, называются тектоническими (тектоника - раздел геологии, изучающий движения и деформации земной коры). Эти карты служат дополнением к геологическим картам. Последние представляют собой первичные геологические документы, наиболее объективно освещающие строение земной коры. На тектонических картах содержатся уже некоторые выводы: о возрасте платформ и складчатых зон, о характере и времени образования складок, о глубине залегания складчатого фундамента под спокойными слоями платформ и др. Принципы составления тектонических карт были разработаны в 30-х годах советскими геологами, главным образом академиком А. Д. Архангельским. После Великой Отечественной войны тектонические карты Советского Союза составлялись под руководством академика Н. С. Шатского. Эти карты приняты в качестве примера для составления международных тектонических карт Европы, других материков и всей Земли в целом.

Толщина осадочных свит в тех местах, где они лежат спокойно (т. е. на платформах), и там, где они сильно смяты в складки, различна. Например, отложения юрского возраста на Русской платформе нигде не имеют толщину или «мощность» больше 200 метров, тогда как их толщина на Кавказе, где они сильно смяты в складки, местами достигает 8 километров. Отложения каменноугольного периода на той же Русской платформе имеют мощность не больше нескольких сотен метров, а на Урале, где те же отложения сильно смяты в складки, их мощность местами вырастает до 5-6 километров. Это указывает на то, что когда на платформе и в районах складчатой зоны накапливались одновозрастные отложения, земная кора очень мало прогибалась на платформе и много сильнее прогибалась в складчатой зоне. Поэтому на платформе не было места для накопления столь мощных свит, какие могли накопиться в глубоких прогибах земной коры в складчатых зонах.

В пределах платформ и складчатых зон мощность накопившихся осадочных пород не остается всюду одинаковой. Она изменяется от участка к участку. Но на платформах изменения эти плавны, постепенны и невелики. Они указывают, что во время накопления отложений платформа прогибалась местами немного больше, местами немного меньше и в ее фундаменте образовывались широкие пологие прогибы (синеклизы), разделенные столь же пологими поднятиями (антеклизами). В противоположность этому в складчатых зонах мощность осадочных пород одного и того же возраста изменяется от участка к участку очень резко, на коротких расстояниях, то возрастая до нескольких километров, то уменьшаясь до нескольких сотен или десятков метров или даже сходя на нет. Это указывает на то, что во время накопления осадков в складчатой зоне одни районы прогибались сильно и глубоко, другие прогибались мало или даже вовсе не прогибались, а третьи в то же время сильно поднимались, как о том свидетельствуют находимые рядом с ними грубообломочные отложения, образовавшиеся в результате размыва поднимавшихся участков. При этом существенно то, что все эти участки, интенсивно прогибавшиеся и интенсивно поднимавшиеся, были узки и располагались в виде полос тесно рядом друг с другом, что приводило к очень большим контрастам в движениях земной коры на близких расстояниях.

Имея в виду все указанные особенности движений земной коры: очень контрастные и сильные опускания и поднятия ее, сильную складчатость, энергичную магматическую деятельность, т. е. все особенности исторического развития складчатых зон, эти зоны обычно называют геосинклиналями , оставляя название «складчатая зона» лишь для характеристики современного их строения, явившегося результатом всех предшествовавших бурных событий в земной коре. Термином «геосинклиналь» мы и будем в дальнейшем пользоваться, когда речь будет идти не о современном строении складчатой зоны, а об особенностях ее предшествующего развития.

Платформы и складчатые зоны значительно отличаются друг от друга по тем полезным ископаемым, которые находятся на их территории. На платформах мало магматических пород, которые внедрились в спокойно лежащие слои осадочных пород. Поэтому на платформах лишь редко встречаются полезные ископаемые магматического происхождения. Зато в спокойно залегающих осадочных слоях платформы широко распространены угли, нефть, природные газы, а также каменная соль, гипс, строительные материалы и т. д. В складчатых зонах преимущество на стороне магматических полезных ископаемых. Это - различные металлы, которые образовались в разные стадии застывания магматических очагов.

Впрочем, когда мы говорим о преимущественной приуроченности осадочных полезных ископаемых к платформам, не надо забывать, что речь идет о слоях, залегающих спокойно, а не о тех сильно метаморфизованных и смятых кристаллических породах древнего «складчатого фундамента» платформ, который лучше всего виден на «щитах». Эти породы фундамента отражают ту эпоху, когда платформы здесь еще не было, а существовала геосинклиналь. Поэтому полезные ископаемые, находимые в складчатом фундаменте, по типу своему - геосинклинальные, т. е. преимущественно магматические. Следовательно, на платформах существует как бы два этажа полезных ископаемых: нижний этаж - древний, принадлежащий фундаменту, геосинклинальный; для него характерны металлические руды; верхний этаж - собственно платформенный, принадлежащий спокойно лежащему на фундаменте покрову осадочных пород; это - осадочные, т. е. преимущественно неметаллические полезные ископаемые.

Несколько слов надо сказать о складках.

Выше упоминалась сильная складчатость в складчатых зонах и слабая складчатость на платформах. Следует отметить, что речь должна идти не только о разной интенсивности складчатости, но и о том, что для складчатых зон и платформ характерны складки разных типов. В складчатых зонах складки принадлежат типу, который называется линейным, или полным. Это - длинные узкие складки, которые, как волны, следуют друг за другом, примыкая друг к кругу и покрывая сплошь большие площади. Складки имеют разную форму: некоторые из них округлые, другие острые, одни прямые, вертикальные, другие - наклонные. Но все они похожи друг на друга, а главное, покрывают складчатую зону непрерывной чередой.

На платформах - складки иного типа. Это - отдельные изолированные поднятия слоев. Некоторые из них имеют столообразную или, как говорят, сундучную или коробчатую форму, многие имеют вид пологих куполов или валов. Складки здесь не вытянуты, как в складчатой зоне, в полосы, а располагаются более сложными фигурами или разбросаны довольно беспорядочно. Это складчатость «прерывистая», или куполовидная.

Складки прерывистого типа - сундучные поднятия, купола и валы - встречаются не только на платформе, но и на краю складчатых зон. Так что существует в некоторой мере постепенный переход от складок платформенных к тем, которые типичны для складчатых зон.

На платформах и на краю складчатых зон встречается еще один своеобразный тип складок - так называемые «диапировые купола». Они образуются там, где на какой- то глубине лежат мощные пласты каменной соля, гипса или мягких глин. Удельный вес каменной соли меньше, чем удельный вес других осадочных пород (каменной соли 2,1, песков и глин 2,3). Таким образом, более легкая соль оказывается под более тяжелыми глинами, песками, известняками. Благодаря способности горных пород медленно пластически деформироваться под действием малых механических сил (явление ползучести, о котором упоминалось выше), соль стремится всплыть к поверхности, проткнув и раздвинув вышележащие более тяжелые слои. Этому помогает то, что соль под давлением оказывается чрезвычайно текучей и в то же время прочной: она легко течет, но не ломается. Соль всплывает в виде колонн. При этом она приподымает вышележащие слои, изгибает их куполообразно и, выпирая вверх, вызывает их раскалывание на отдельные куски. Поэтому на поверхности такие диапировые купола часто имеют вид «разбитой тарелки». Аналогичным способом образуются диапировые складки, в «ядрах протыкания» которых мы находим не соль, а мягкие глины. Но глиняные диапировые складки обычно имеют вид не круглых колонн, как соляные диапировые купола, а длинных вытянутых гребней.

Встречающиеся на платформах купола (в том числе и диапировые) и валы играют большую роль в образовании скоплений нефти и газов. В складчатых зонах месторождения полезных ископаемых большей частью приурочены к трещинам.

Обратимся теперь к более глубоким слоям земной коры. Нам придется покинуть область, которая нам известна по непосредственным наблюдениям с поверхности, и направиться гуда, где сведения можно получить только путем геофизических исследований.

Как уже говорилось, в пределах видимой части земной коры глубже всего лежат метаморфические породы архейского возраста. Среди них больше всего распространены гнейсы и граниты. Наблюдения показывают, что чем более глубокий срез земной коры наблюдаем мы на поверхности, тем больше встречаем гранитов. Поэтому можно думать, что еще глубже - в нескольких километрах под поверхностью кристаллических щитов или примерно в 10 км под поверхностью платформ и складчатых зон - мы встретили бы под материками сплошной слой гранита. Верхняя поверхность этого гранитного слоя очень неровна: она то поднимается к дневной поверхности, то опускается на 5- 10 км ниже нее.

Глубину нижней поверхности этого слоя нам остается только предполагать на основании некоторых данных о скорости распространения в земной коре упругих сейсмических колебаний. Скорость движения так называемых продольных сейсмических волн в гранитах в среднем около 5 км/сек.

В продольных волнах колебания частиц происходят в направлении движения волн: вперед и назад. Так называемые поперечные волны характеризуются колебаниями поперек направления движения волны: вверх - вниз или вправо - влево.

Но в ряде мест было обнаружено, что на глубине в 10, 15, 20 км скорость распространения тех же продольных сейсмических волн становится больше и достигает 6 или 6,5 км/сек. Поскольку эта скорость слишком велика для гранита и близка к скорости распространения упругих колебаний, характеризующей по лабораторным испытаниям такую породу, как базальт, слой земной коры с большей скоростью распространения сейсмических волн получил название базальтового . В разных районах он начинается на разной глубине - обычно на глубине в 15 или 20 км, но в некоторых районах подходит гораздо ближе к поверхности, и скважина глубиной 6-8 км могла бы его достичь.

Однако до сих пор ни одна скважина не проникла в базальтовый слой и никто не видел тех пород, которые лежат в этом слое. Действительно ли это базальты? По этому поводу высказываются сомнения. Некоторые думают, что вместо базальтов мы найдем там те же гнейсы, граниты и метаморфические породы, которые свойственны вышележащему гранитному слою, но которые на большей глубине сильно уплотнены давлением вышележащих пород, и поэтому скорость распространения в них сейсмических волн больше. Решение этого вопроса представляет огромный интерес и не только теоретический: где-то в нижней части гранитного и верхней части базальтового слоев происходят процессы образования гранитов и зарождения тех горячих растворов и газов, из которых выше, при их движении к поверхности, кристаллизуются различные рудные минералы. Знать, что представляет собой в действительности базальтовый слой, - это означает лучше попять процессы образования металлических руд в земной коре и законы их распространения. Вот почему заслуживает всяческой поддержки проект бурения сверхглубинных скважин для изучения строения всего гранитного и по крайней мере верхней части базальтового слоя.

Базальтовый слой - нижний слой материковой земной коры. Внизу он отделяется от более глубоких частей Земли очень резким разделом, который называется разделом Мохоровичича (по имени югославского сейсмолога, открывшего существование этого раздела в начале нашего века). На этом разделе Мохоровичича (или, сокращенно, Мохо) скорость продольных сейсмических волн изменяется резким скачком: выше раздела она обычно равна 6,5 км/сек, а сразу же ниже его увеличивается до 8 км/сек. Этот раздел считается нижней границей земной коры. Расстояние его от поверхности, следовательно, является толщиной земной коры. Наблюдения показывают, что толщина коры под материками далеко не одинакова. В среднем она равна 35 км, но под горами увеличивается до 50, 60 и даже 70 км. При этом чем выше горы, тем толще земная кора: крупному выступу поверхности земли вверх соответствует значительно больший по размеру выступ вниз; таким образом, горы имеют как бы «корни», глубоко опускающиеся в более глубокие слои Земли. Под равнинами, наоборот, толщина коры оказывается меньше средней. Изменяется также от района к району и относительная роль в разрезе земной коры гранитного и базальтового слоев. Особенно интересно, что под одними горами «корни» образованы главным образом за счет увеличения толщины гранитного слоя, а под другими - за счет возрастания толщины базальтового слоя. Первый случай наблюдается, например, на Кавказе, второй - в Тянь-Шане. Дальше мы увидим, что происхождение этих гор различно; это отразилось и на различном строении под ними земной коры.

Одно свойство земной коры, тесно связанное с «корнями» гор, следует особо отметить: это так называемая изостазия, или равновесие. Наблюдения над величиной силы тяжести на поверхности Земли показывают, как мы видели, наличие некоторых колебаний этой величины от места к месту, т. е. существование некоторых аномалий силы тяжести. Однако эти аномалии (после вычета влияния географического и высотного положения точки наблюдения) чрезвычайно малы; они могут вызвать изменение веса человека всего на несколько граммов. Такие отклонения от нормальной силы тяжести чрезвычайно малы по сравнению с теми, которые можно было бы ожидать, имея в виду рельеф земной поверхности. В самом деле, если бы горные хребты представляли собой нагромождение излишних масс на поверхности Земли, то эти массы должны были бы создавать более сильное притяжение. Наоборот, над морями, где вместо плотных горных пород притягивающим телом является менее плотная вода, сила тяжести должна была бы ослабевать.

На самом деле таких различий нет. Сила тяжести не становится больше в горах и меньше на море, она всюду приблизительно одинакова, а наблюдающиеся отклонения от средней величины значительно меньше того влияния, которое должны были бы оказывать неровности рельефа или замена пород морской водой. Отсюда возможен лишь один вывод: дополнительным массам на поверхности, образующим хребты, должна соответствовать недостача масс на глубине; только в этом случае общая масса и общее притяжение пород, находящихся под горами, не превысит нормальной величины. Наоборот, недостатку масс на поверхности в морях должны соответствовать какие-то более тяжелые массы на глубине. Указанные выше изменения толщины коры под горами и равнинами как раз и отвечают этим условиям. Средняя плотность пород земной коры равна 2,7. Под земной корой, сразу же ниже раздела Мохо, вещество имеет более высокую плотность, достигающую 3,3. Поэтому там, где земная кора тоньше (под низменностями), ближе к поверхности подступает тяжелый подкоровый «субстрат» и его притягивающее влияние компенсирует «недостачу» масс на поверхности. Напротив, в горах увеличение толщины легкой коры снижает общую силу притяжения, компенсируя тем самым то увеличение притяжения, которое вызывается дополнительными поверхностными массами. Создаются условия, при которых земная кора как бы плавает на тяжелой подстилке подобно льдинам на воде: более толстая льдина глубже погружается в воду, но и выше выдается над ней; менее толстая льдина погружается меньше, но и меньше выступает.

Такое поведение льдин соответствует известному закону Архимеда, определяющему равновесие плавающих тел. Этому же закону подчиняется и земная кора: там, где она толще, она глубже уходит в субстрат в виде «корней», но и выше выступает на поверхности; где кора тоньше, тяжелый субстрат подступает ближе к поверхности, а поверхность коры оказывается относительно опущенной и образует либо равнину, либо дно моря. Таким образом, состояние коры соответствует равновесию плавающих тел, почему это состояние и называется изостазией.

Следует оговориться, что вывод о равновесии земной коры по отношению к ее тяжести и субстрату справедлив в том случае, если мы будем учитывать среднюю толщину коры и среднюю высоту ее поверхности для больших площадей - диаметром в несколько сот километров. Если же мы будем выяснять поведение значительно меньших участков земной коры, то обнаружим уклонения от равновесия, несоответствия между толщиной коры и высотой ее поверхности, которые и выражаются в виде соответствующих аномалий силы тяжести. Представим себе большую льдину. Ее равновесие, как тела, плавающего на воде, будет зависеть от ее средней толщины. Но в разных местах льдина может иметь очень разную толщину, она может быть разъедена водой и ее нижняя поверхность может иметь много мелких карманов и выпуклостей. В пределах каждого кармана или каждой выпуклости положение льда по отношению к воде может сильно отличаться от равновесного: если мы выколем соответствующий кусок льда из льдины, то он либо погрузится глубже окружающей льдины, либо всплывает выше нее. Но в целом льдина находится в равновесии, и это равновесие зависит от средней толщины льдины.

Под земной корой мы входим в следующую, очень мощную оболочку Земли, называемую мантией Земли . Она простирается вглубь на 2900 км. На этой глубине находится следующий резкий раздел в веществе Земли, отделяющий мантию от ядра Земли . Внутри мантии, по мере углубления, скорость распространения сейсмических волн растет и внизу мантии достигает для продольных волн 13,6 км/сек. Но нарастание этой скорости неравномерно: оно значительно быстрее в верхней части, до глубины около 1000 км, и чрезвычайно медленно и постепенно на большей глубине. В связи с этим мантию можно разделить на две части - верхнюю и нижнюю мантию. Сейчас накапливается все больше данных, указывающих, что такое разделение мантии на верхнюю и нижнюю имеет большое принципиальное значение, так как развитие земной коры, по-видимому, непосредственно связано с процессами, происходящими в верхней мантии. О характере этих процессов речь будет дальше. Нижняя мантия, видимо, мало влияет непосредственно на земную кору.

Вещество, из которого состоит мантия, твердое. Это подтверждает характер прохождения через мантию сейсмических волн. Относительно химического состава мантии имеются расхождения во взглядах. Некоторые думают, что верхняя мантия состоит из горной породы, называемой перидотитом. Эта порода содержит очень немного кремнезема; основной составной частью ее является минерал оливин - силикат, богатый железом и магнием. Другие предполагают, что верхняя мантия значительно богаче кремнеземом и по своему составу соответствует базальту, но минералы, из которых состоит этот глубинный базальт, более плотные, чем минералы поверхностного базальта. Например, в глубинном базальте существенную роль играют гранаты - минералы с очень плотной «упаковкой» атомов в кристаллической решетке. Такой глубинный базальт, получившийся как бы в результате спрессовывания обычного поверхностного базальта, называется эклогитом.

Существуют аргументы в пользу обеих точек зрения. В частности, вторую точку зрения подтверждает огромное количество изливавшихся и изливающихся сейчас во время вулканических извержений очень однообразных по своему химическому составу базальтов. Источник их может быть только в верхней мантии.

Если эта точка зрения окажется правильной, то тогда мы должны считать, что на разделе Мохо происходит не изменение химического состава вещества, а переход одного и того же по химическому составу вещества в новое, более плотное, «глубинное» состояние, в другую, как говорят, «фазу». Такие переходы называются «фазовыми переходами». Этот переход зависит от изменения с глубиной давления. При достижении определенной величины давления обычный базальт переходит в эклогит и менее плотные полевые шпаты заменяются более плотными гранатами. На такие переходы влияет также температура: повышение ее при одном и том же давлении затрудняет переход базальта в эклогит. Поэтому нижняя граница земной коры становится подвижной, зависимой от изменения температуры. Если температура повышается, то некоторая часть эклогита переходит обратно в обычный базальт, граница коры опускается, кора становится толще; при этом объем вещества увеличивается на 15%. Если же температура понижается, то при том же давлении часть базальта в нижних слоях коры переходит в эклогит, граница коры поднимается, кора становится тоньше, и объем перешедшего в новую фазу материала уменьшается на 15%. Этими процессами можно объяснить колебания земной коры вверх и вниз: в результате своего утолщения кора будет всплывать, подниматься, при уменьшении же толщины она будет тонуть, прогибаться.

Однако окончательно вопрос о химическом составе и физическом состоянии верхней мантии будет решен, видимо, только в результате сверхглубокого бурения, когда буровые скважины, пройдя насквозь всю кору, достигнут вещества верхней мантии.

Важной особенностью строения верхней мантии является «пояс размягчения», расположенный на глубине между 100 и 200 км. В этом поясе, который называется также астеносферой , скорость распространения упругих колебаний немного меньше, чем выше и ниже его, а это свидетельствует о несколько менее твердом состоянии вещества. В дальнейшем мы увидим, что «пояс размягчения» играет в жизни Земли очень важную роль.

В нижней мантии вещество становится значительно более тяжелым. Его плотность повышается, по-видимому, до 5,6. Предполагается, что оно состоит из силикатов, очень богатых железом и магнием и бедных кремнеземом. Возможно, что в нижней мантии широко распространен сульфид железа.

На глубине 2900 км, как указывалось, мантия кончается и начинается ядро Земли . Важнейшей особенностью ядра является то, что оно пропускает продольные сейсмические колебания, но оказывается непроходимым для поперечных колебаний. Поскольку поперечные упругие колебания проходят через твердые тела, но быстро угасают в жидкостях, тогда как продольные колебания проходят и сквозь твердые, и сквозь жидкие тела, следует сделать вывод, что ядро Земли находится в жидком состоянии. Конечно, оно далеко не такое жидкое, как вода; это очень густое вещество, близкое к твердому состоянию, но все же значительно более текучее, чем вещество мантии.

Внутри ядра выделяется еще внутреннее ядро , или ядрышко. Верхняя граница его находится на глубине 5000 км, т. е. на расстоянии 1370 км от центра Земли. Здесь наблюдается не очень резкий раздел, на котором скорость сейсмических колебаний еще раз быстро падает, а потом, по направлению к центру Земли, снова начинает возрастать. Есть предположение, что внутреннее ядро твердое и что в жидком состоянии находится только внешнее ядро. Однако, поскольку последнее препятствует прохождению поперечных колебаний, вопрос о состоянии внутреннего ядра не может быть пока окончательно решен.

О химическом составе ядра было много споров. Они продолжаются до сих пор. Многие еще придерживаются старой точки зрения, считая, что ядро Земли состоит из железа с небольшой примесью никеля. Прототипом этого состава являются железные метеориты. Метеориты вообще рассматриваются либо как осколки ранее существовавших и распавшихся планет, либо как оставшиеся «неиспользованными» мелкие космические тела, из которых несколько миллиардов лет назад были «собраны» планеты. В обоих случаях метеориты должны как будто представлять химический состав той или иной оболочки планеты. Каменные метеориты, вероятно, отвечают химическому составу мантии, во всяком случае нижней. Более тяжелые, железные метеориты соответствуют, как многие думают, более глубоким недрам - ядру планеты.

Однако другие исследователи находят аргументы против представления о железном составе ядра и полагают, что ядро должно состоять из силикатов, в общем таких же, какие слагают мантию, но что эти силикаты находятся в «металлическом» состоянии в результате огромного давления в ядре на верхней границе ядра оно равно 1,3 млн. атмосфер, а в центре Земли 3 млн. атм.). Это значит, что под влиянием давления атомы силикатов частично разрушились и от них откололись отдельные электроны, которые получили возможность независимо двигаться. Этим, как и в металлах, обусловлены некоторые металлические свойства ядра: большая плотность; достигающая в центре Земли 12,6 электропроводность, теплопроводность.

Наконец, существует и промежуточная точка зрения, начинающая теперь преобладать, а именно, что внутреннее ядро - железное, а внешнее сложено силикатами в металлическом состоянии.

Согласно современной теории, с внешним ядром связано магнитное поле Земли. Заряженные электроны движутся во внешнем ядре на глубине между 2900 и 5000 км, описывая круги или петли, и это их движение и приводит к возникновению магнитного поля. Хорошо известно, что советские ракеты, пущенные к Луне, не обнаружили у нашего естественного спутника магнитного поля. Это вполне соответствует предположениям об отсутствии у Луны ядра, подобного земному.

Рассмотрим теперь строение земных недр под океанами.

Хотя за последнее время, начиная с Международного Геофизического Года, дно океана и глубины Земли под океанами изучаются чрезвычайно интенсивно (хорошо известны многочисленные рейсы советского исследовательского корабля «Витязь»), мы знаем геологическое строение территорий океанов все же много хуже, чем строение материков. Установлено, впрочем, что на дне океанов нет щитов, платформ и складчатых зон, подобных тем, которые известны на материках. По рельефу дна в океанах можно выделить в качестве наиболее крупных элементов равнины (или бассейны), океанические хребты и глубоководные рвы.

Равнины занимают широкие пространства на дне всех океанов. Они располагаются почти всегда на одной глубине (5-5,5 км).

Океанические хребты представляют собой широкие бугристые валы. Особенно характерен Атлантический подводный хребет. Он протягивается с севера на юг, в точности по средней линии океана, изгибаясь параллельно берегам окаймляющих материков. Его гребень находится обычно на глубине около 2 км, но отдельные вершины поднимаются выше уровня моря в виде вулканических островов (острова Азорские, Св. Павла, Вознесения, Тристань-да-Кунья). Прямо на продолжении подводного хребта расположена Исландия с ее вулканами.

Подводный хребет в Индийском океане тянется также в меридиональном направлении вдоль средней линии океана. У островов Чагос этот хребет разветвляется. Одна его ветвь идет прямо на север, где на его продолжении в районе Бомбея известны огромные застывшие потоки вулканических базальтов (плато Деккан). Другая ветвь направляется к северо-западу и теряется перед входом в Красное море.

Атлантический и Индийский подводные хребты соединены между собой. В свою очередь Индийский хребет соединяется с Восточно-Тихоокеанским подводным хребтом. Последний тянется в широтном направлении южнее Новой Зеландии, но на меридиане 120° западной долготы резко поворачивает к северу. Он приближается к берегам Мексики и здесь теряется в мелководье перед входом в Калифорнийский залив.

Ряд более коротких подводных хребтов занимает центральную часть Тихого океана. Почти все они вытянуты с юго-востока на северо-запад. На вершине одного такого подводного хребта расположены Гавайские острова, на вершинах других - многочисленные архипелаги более мелких островов.

Примером подводного океанического хребта является также открытый советскими учеными в Северном Ледовитом океане хребет Ломоносова.

Почти все крупные подводные хребты соединены между собой и образуют как бы единую систему. Неясно пока взаимоотношение хребта Ломоносова с другими хребтами.

Глубоководные океанические рытвины представляют собой узкие (100-300 км) и длинные (несколько тысяч километров) желоба в дне океана, в пределах которых наблюдаются максимальные, глубины. Именно в одной из таких рытвин, Марианской, была найдена советским экспедиционным судном «Витязь» наибольшая глубина Мирового океана, достигающая 11034 м. Глубоководные рытвины расположены по периферии океанов. Чаще всего они окаймляют островные дуги. Последние в ряде мест являются характерной особенностью строения переходных зон между материками и океаном. Островные дуги особенно широко развиты по западной периферии Тихого океана - между океаном, с одной стороны, и Азией и Австралией, с другой. С севера на юг гирляндами спускаются дуги островов Алеутских, Курильских, Японских, Бонино-Марианских, Филиппинских, Тонга, Кермадек и Новой Зеландии. Почти все эти дуги с внешней (выпуклой) стороны окаймляются глубоководными рытвинами. Такая же рытвина окаймляет Антильскую островную дугу в Центральной Америке. Другая рытвина окаймляет со стороны Индийского океана островную дугу Индонезии. Некоторые рытвины, находясь на периферии океана, не связаны с островными дугами. Такова, например, Атакамская рытвина у берегов Южной Америки. Периферическое положение глубоководных рытвин, конечно, не случайно.

Говоря о геологическом строении дна океана, прежде всего следует отметить, что в открытом океане толщина накопившихся на дне рыхлых осадков невелика - не больше километра, а часто и меньше. Эти осадки состоят из очень тонких известковых илов, образованных преимущественно микроскопически мелкими раковинками одноклеточных организмов - глобигерин, а также из так называемых красных глубоководных глин, содержащих мельчайшие крупинки окислов железа и марганца. За последнее время во многих местах на огромных расстояниях от берегов обнаружены целые полосы осадков обломочного происхождения - песков. Они явно принесены в эти районы океанов из прибрежных областей и своим существованием указывают на наличие сильных глубоководных течений в океанах.

Другой особенностью является огромное и повсеместное развитие следов вулканической деятельности. На дне всех океанов известно большое количество конусовидных огромных гор; это - погасшие древние вулканы. Много на дне океанов и действующих вулканов. Из этих вулканов изливались и изливаются только базальты и при этом очень однообразные до своему составу, всюду одинаковые. По периферии океанов, на островных дугах, известны и другие лавы, содержащие больше кремнезема, - андезиты, но в средних частях океанов вулканические излияния - только базальтовые. И вообще в средних частях океанов почти неизвестно никаких других твердых горных пород, кроме базальтов. Океанографическая драга всегда поднимала со дна обломки только базальтов, если не считать некоторых осадочных пород. Следует еще упомянуть о глубоких огромных широтных трещинах длиной в несколько тысяч километров, рассекающих дно северо-восточной части Тихого океана. Вдоль этих трещин прослеживаются резкие уступы в дне океана.

Глубинное строение земной коры в океане значительно проще, чем под материками. В океанах отсутствует гранитный слой и рыхлые осадки непосредственно лежат на базальтовом слое, толщина которого значительно меньше, чем на материках: обычно она равна всего 5 км. Таким образом, твердая часть земной коры в океанах состоит из одного километра рыхлых осадков и пяти километров базальтового слоя. То, что этот слой действительно состоит из базальта, для океанов гораздо вероятнее, чем для материков, если учесть широкое распространение базальтов на дне океана и на океанических островах. Если к этому прибавить пять километров средней толщины слоя океанической воды, то глубина нижней границы земной коры (раздела Мохо) под океанами будет всего 11 км - много меньше, чем под материками. Таким образом, океаническая кора тоньше материковой. Поэтому американские инженеры и начали бурение сквозь всю земную кору именно в океане, с плавучей буровой установки, рассчитывая там легче достичь верхних слоев мантии и выяснить их состав.

Есть данные, заставляющие предполагать, что океаническая кора становится толще под подводными хребтами. Там ее толщина 20-25 км и она остается базальтовой. Интересно, что кора имеет океаническое строение не только под открытыми океанами, но и под некоторыми глубокими морями: базальтовая кора и отсутствие гранитного слоя были установлены под глубокой частью Черного моря, под Южным Каспием, под наиболее глубокими впадинами Карибского моря, под Японским морем и в других местах. Моря промежуточной глубины имеют и промежуточное строение коры: она под ними тоньше типичной материковой, но толще океанической, имеет и гранитный и базальтовый слои, но гранитный слой много тоньше, чем на материке. Такая промежуточная кора наблюдается в мелких районах Карибского моря, в Охотском море и в других местах.

Строение мантии и ядра под океанами в общем сходно со строением их под материками. Отличие наблюдается в верхней мантии: «пояс размягчения» (астеносфера) под океанами толще, чем под материками; под океанами этот пояс начинается уже на глубине 50 км и продолжается в глубину до 400 км, тогда как на материках он сосредоточен между 100 и 200 км глубины. Таким образом, различия в строении между материками и океанами распространяются не только на всю толщу земной коры, но и на верхнюю мантию до глубины по крайней мере 400 км. Глубже - в нижних слоях верхней мантии, в нижней мантии, во внешнем и внутреннем ядре - никаких изменений в строении в горизонтальном направлении, никаких различий между материковыми и океаническими секторами Земли пока не найдено.

В заключение скажем несколько слов о некоторых общих свойствах земного шара.

Земной шар излучает тепло. Постоянный поток тепла течет из внутренних частей Земли к поверхности. В связи с этим существует так называемый температурный градиент - повышение температуры с глубиной. В среднем этот градиент принимается равным 30° на 1 км, т. е. с углублением на 1 км температура повышается на 30° Цельсия. Этот градиент, однако, изменяется в очень широких пределах от места к месту. Кроме того, он правилен только для самых поверхностных частей земной коры. Если бы он сохранялся таким же вплоть до центра Земли, то во внутренних областях Земли температура была бы столь высока, что наша планета попросту взорвалась бы. Сейчас нет сомнений в том, что с глубиной температура повышается все медленнее и медленнее. В нижней мантии и в ядре она повышается очень слабо и в центре Земли, видимо, не превышает 4000°.

Исходя из температурного градиента близ поверхности, а также из теплопроводности горных пород, можно вычислить, какое количество тепла притекает из глубины наружу. Оказывается, что каждую секунду Земля со всей своей поверхности теряет 6 ∙ 10 12 калорий. За последнее время было произведено довольно много измерений размера теплового потока Земли в разных местах -на материках и на дне океанов. Оказалось, что в среднем тепловой поток равен 1,2 ∙ 10 -6 кал/см 2 в секунду. В отдельных наиболее обычных случаях он колеблется между 0,5 и 3 ∙ 10 -6 кал/см 2 в секунду, причем нет каких-либо различий в выделении тепла на материках и в океане. Однако на этом равномерном фоне были обнаружены аномальные зоны - с очень высокой отдачей тепла, в 10 раз превышающей нормальный тепловой поток. Такими зонами являются подводные океанические хребты. Особенно много измерений было сделано на Восточно-Тихоокеанском хребте.

Эти наблюдения ставят перед геофизиками интересный вопрос. Сейчас вполне ясно, что источником тепла внутри Земли являются радиоактивные элементы. Они присутствуют во всех горных породах, во всем материале земного шара и при своем распаде выделяют тепло. Если учесть среднее содержание радиоактивных элементов в горных породах, принять, что содержание их в мантии равно содержанию их в каменных метеоритах, а содержание в ядре считать равным содержанию в железных метеоритах, то окажется, что общего количества радиоактивных элементов более чем достаточно для образования наблюдаемого потока тепла. Но известно, что граниты содержат в среднем в 3 раза больше радиоактивных элементов, чем базальты, и соответственно должны больше вырабатывать тепла. Поскольку гранитный слой имеется в земной коре под материками и отсутствует под океанами, можно было бы предполагать, что поток тепла на материках должен быть больше, чем на дне океана. В действительности это не так, в общем поток везде одинаков, но на дне океанов имеются зоны с ненормально высоким тепловым Потоком. В дальнейшем мы попытаемся объяснить эту аномалию.

Форма Земли, как известно, - шар, немного сплюснутый у полюсов. Благодаря сплюснутости радиус от центра Земли к полюсу на 1/300 долю короче радиуса, направленного от центра к экватору. Эта разница составляет примерно 21 км. На глобусе диаметром в 1 м она составит немного больше полутора миллиметров и практически незаметна. Было высчитано, что такую форму должен был бы принять жидкий шар, размером с Землю, вращающийся с той же скоростью. Это значит, что благодаря свойству ползучести, о чем мы говорили выше, материал Земли, подвергаемый очень длительному воздействию центробежной силы, деформировался и принял такую равновесную форму, которую (конечно, гораздо быстрее) приняла бы жидкость.

Интересна противоречивость свойств вещества Земли. Упругие колебания, вызванные землетрясениями, распространяются в нем как в очень твердом теле, а перед лицом длительно действующей центробежной силы то же вещество ведет себя как очень подвижная жидкость. Такая противоречивость обычна для многих тел: они оказываются твердыми, когда на них действует кратковременная сила, удар, подобный сейсмическому толчку, и становятся пластичными, когда сила воздействует на них медленно,-исподволь. Об этом свойстве уже говорилось при описании смятия слоев твердых горных пород в складки. Впрочем, за последнее время появились данные, позволяющие думать, что вещество Земли приспосабливается к действию центробежной силы с некоторым опозданием. Дело в том, что Земля постепенно замедляет свое вращение. Причиной этому служат морские приливы, вызываемые притяжением Луны. На поверхности Мирового океана всегда существуют две выпуклости, одна из которых обращена к Луне, а другая - в противоположную сторону. Эти выпуклости перемещаются по поверхности в связи с вращением Земли. Но вследствие инерции и вязкости воды гребень выпуклости, обращенной к Луне, всегда немного опаздывает, всегда немного смещен по направлению вращения Земли. Поэтому Луна притягивает волну не по перпендикуляру к земной поверхности, а по несколько наклонной линии. Вот этот наклон и приводит к тому, что притяжение Луны все время немного тормозит вращение Земли. Торможение это очень мало. Благодаря ому сутки увеличиваются на две тысячные доли секунды каждые 100 лет. Если такой темп замедления сохранялся в течение геологического времени неизменным, то в юрском периоде сутки были короче на один час, а два миллиарда лет назад - в конце архейской эры - Земля вращалась вдвое быстрее.

Вместе с замедлением вращения должна уменьшаться и центробежная сила; следовательно, должна изменяться форма Земли - постепенно уменьшаться ее сплюснутость. Однако расчеты показывают, что наблюдаемая сейчас форма Земли отвечает не теперешней скорости ее вращения, а той, которая была приблизительно 10 млн. лет назад. Вещество Земли хотя и текуче в условиях длительных давлений, но обладает значительной вязкостью, большим внутренним трением и поэтому подчиняется новым механическим условиям с заметным опозданием.

В заключение укажем на некоторые интересные последствия землетрясений. Колебания, вызываемые обычными землетрясениями, имеют разные периоды. У некоторых землетрясений период короткий - около секунды. Регистрация таких колебаний крайне важна для изучения землетрясений, происшедших недалеко от сейсмической станции, т. е. землетрясений местных. С удалением от очага землетрясения такие колебания быстро затухают. Наоборот, колебания с длинным периодом (18-20 сек.) распространяются далеко; при землетрясении большой силы они могут пройти земной шар насквозь или обойти его по поверхности. Такие колебания регистрируются на многих сейсмических станциях и удобны для изучения далеких землетрясений. Именно с помощью длиннопериодных колебаний сейсмическая станция «Москва» может регистрировать землетрясения, происходящие в Южной Америке или на Филиппинах.

В последние годы были обнаружены колебания, вызванные землетрясениями, с очень длинным периодом, равным приблизительно часу. Сверхдлинные сейсмические волны были, например, образованы сильнейшим землетрясением в Чили в 1960 г. Такие волны, раньше чем угаснуть, обходят вокруг земного шара семь-восемь раз, а то и больше.

Расчеты показывают, что сверхдлинные волны вызваны колебаниями всего земного шара. Энергия некоторых землетрясений настолько велика, что они как бы раскачивают весь земной шар, заставляя его целиком, пульсировать. Правда, амплитуда таких колебаний незначительна: вдали от очага землетрясения она может быть замечена только чувствительными приборами и полностью угасает в течение нескольких суток. Однако все же явление «дрожания» всей Земли в целом не может не производить впечатления. Общие колебания всей Земли оказались полезными для определения некоторых физических свойств земного шара.

Характерная черта эволюции Земли — дифференциация вещества, выражением которой служит оболочечное строение нашей планеты. Литосфера, гидросфера, атмосфера, биосфера образуют основные оболочки Земли, отличающиеся химическим составом, мощностью и состоянием вещества.

Внутреннее строение Земли

Химический состав Земли (рис. 1) схож с составом других планет земной группы, например Венеры или Марса.

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см 3 .

О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.

Рис. 1. Химический состав Земли

Рис. 2. Внутреннее строение Земли

Ядро

Ядро (рис. 3) расположено в центре Земли, его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см 3 (сравните: вода — 1 г/см 3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.

Мантия

Мантия — геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты (см. рис. 3). Нижняя ееграница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр — смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.

Рис. 3. Строение Земли: ядро, мантия и земная кора

Земная кора

Земная кора - внешняя оболочка литосферы (см. рис. 3). Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см 3 .

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

Состав и строение земной коры

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

Рис. 4. Строение земной коры

Рис. 5. Состав земной коры

Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы - глина, известняк, мел, песчаник и др. — образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков

Название породы

Размер облом кон (частиц)

Более 50 см

5 мм — 1 см

1 мм — 5 мм

Песок и песчаники

0,005 мм — 1 мм

Менее 0,005 мм

Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.

В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.

Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.

В строении земной коры выделяют три слоя: осадочный, «гранитный», «базальтовый».

Осадочный слой (см. рис. 8) образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения. Например, каменный уголь -это продукт преобразования растений древних времен. Мощность осадочного слоя колеблется в широких пределах — от полного отсутствия в некоторых районах суши до 20-25 км в глубоких впадинах.

Рис. 7. Классификация горных пород по происхождению

«Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

«Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.

Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.

Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия

Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.

Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.

Рис. 9. Строение материковой и океанической земной коры

Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.

Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.

Субконтинентальная кора расположена, например, на вулканических островных дугах.

По материалам сейсмического зондирования - скорости прохождения сейсмических волн — мы получаем данные о глубинном строении земной коры. Так, Кольская сверхглубокая скважина, впервые позволившая увидеть образцы пород с глубины более 12 км, принесла много неожиданного. Предполагалось, что на глубине 7 км должен начаться «базальтовый» слой. В действительности же он обнаружен не был, а среди горных пород преобладали гнейсы.

Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.

Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.

Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.

Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.

Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.

Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.

Тепло земной коры — важный энергетический источник.

Часть земной коры, простирающаяся ло глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.

Как часто в поисках ответов на свои вопросы, о том, как устроен мир, мы смотрим вверх на небо, солнце, звезды, заглядываем далеко-далеко за сотни световых лет в поисках новых галактик. А ведь, если посмотреть под ноги, то под ногами существует целый подземный мир из которого состоит наша планета - Земля!

Недра Земли это тот самый загадочный мир под ногами, подземный организм нашей Земли, на которой мы живем, строим дома, прокладываем дороги, мосты и многие тысячи лет осваиваем территории родной планеты.

Этот мир - тайные глубины недр Земли!

Строение Земли

Наша планета относится к планетам земной группы, и так же, как и другие планеты, состоит из слоёв. Поверхность Земли состоит из твердой оболочки земной коры, глубже находится крайне вязкая мантия, а в центре расположено металлическое ядро, которое состоит из двух частей, внешняя - жидкая, внутренняя - твердая.

Интересно, многие объекты Вселенной настолько хорошо изучены, что о них знает каждый школьник, в космос на далекие сотни тысяч километров отправляются космические аппараты, но в самые глубинные недра нашей планеты по прежнему забраться остается непосильной задачей, поэтому то что находится под поверхностью Земли по прежнему остается большой загадкой.

Астрономы изучают космос, получают инфор-мацию о планетах и звездах несмотря на их огром-ную удалённость. При этом на самой Земле не меньше тайн, чем во Вселенной. И сегодня учёные не знают, что внутри нашей планеты. Наблюдая, как выливается лава при извержении вулкана, можно подумать, что внутри Земля тоже расплав-ленная. Но это не так.

Ядро. Центральная часть земного шара называ-ется ядром (рис. 83). Его радиус составляет около 3 500 км. Учёные полагают, что внешняя часть ядра находится в расплавленно-жидком состоя-нии, а внутренняя — в твёрдом. Температура в нём достигает +5 000 °С. От ядра к поверхности Земли температура и давление постепенно снижаются.

Мантия. Ядро Земли покрыто мантией. Её толща составляет приблизительно 2 900 км. Мантию, как и ядро, никто никогда не видел. Но предполага-ют, что чем ближе к центру Земли, тем давление в ней выше, а температура — от нескольких сотен до -2 500 °С. Считают, что мантия твёрдая, но одно-временно раскалённая.

Земная кора. Поверх мантии наша планета покрыта корой. Это верхний твёрдый слой Зем-ли. По сравнению с ядром и мантией земная кора очень тонкая. Её толща составляет лишь 10-70 км. Но это та земная твердь, по которой мы ходим, те-кут реки, на ней построены города.

Земная кора образована различными вещества-ми. Она состоит из минералов и горных пород. Не-которые из них вам уже известны (гранит, песок, глина, торф и др.). Минералы и горные породы раз-личаются по цвету, твёрдости, строению, темпе-ратуре плавления, растворимости в воде и другим свойствам. Многие из них человек широко исполь-зует, например как топливо, в строительстве, для получения металлов. Материал с сайта

Гранит
Песок
Торф

Верхний слой земной коры видно в отложениях на склонах гор, крутых берегах рек, карьерах (рис. 84). А заглянуть в глубь коры помогают шахты и буровые скважины, которые используют для добычи полез-ных ископаемых, например, нефти и газа.

Земля входит в состав Солнечной системы наряду с остальными планетами и Солнцем. Она относится к классу каменных твердых планет, отличающихся большой плотностью и состоящих из горных пород, в отличие от газовых гигантов, имеющих большие размеры и сравнительно невысокую плотность. При этом состав планеты обусловливает внутреннее строение земного шара.

Основные параметры планеты

Прежде чем узнать, какие слои выделяются в строении земного шара, поговорим об основных параметрах нашей планеты. Земля находится на расстоянии от Солнца, примерно равном 150 млн км. Ближайшее небесное тело - это естественный спутник планеты - Луна, который располагается на дистанции 384 тыс. км. Система Земля-Луна считается уникальной, так как является единственной, где планета имеет настолько крупный спутник.

Земная масса равна 5,98 х 10 27 кг, примерный объем - 1,083 х 10 27 куб. см. Планета обращается вокруг Солнца, а также вокруг собственной оси, причем имеет наклон относительно плоскости, который обусловливает смену времен года. Период обращения вокруг оси равен примерно 24 часам, вокруг Солнца - чуть более 365 суток.

Загадки внутреннего строения

До того как был изобретен метод исследования недр при помощи сейсмических волн, ученые могли делать только предположения относительно того, как устроена Земля внутри. Со временем ими был разработан ряд геофизических методов, которые позволили узнать о некоторых особенностях строения планеты. В частности, широкое применение нашли сейсмические волны, которые фиксируются в результате землетрясений и подвижек земной коры. В некоторых случаях такие волны генерируются искусственным путем, чтобы по характеру их отражений ознакомиться с ситуацией на глубине.

Стоит отметить, что данный метод позволяет получать данные косвенным путем, так как напрямую попасть в глубины недр нет возможности. В результате было установлено, что планета состоит из нескольких слоев, отличающихся температурой, составом и давлением. Итак, каково внутреннее строение земного шара?

Земная кора

Верхняя твердая оболочка планеты носит название Ее толщина варьируется от 5 до 90 км, в зависимости от типа, которых насчитывается 4. Средняя плотность данного слоя равна 2,7 г/см куб. Наибольшую мощность имеет кора материкового типа, толщина которой доходит до 90 км под некоторыми горными системами. Также различают расположенную под океаном, толщина которой доходит до 10 км, переходную и рифтогенную. Переходная отличается тем, что находится на границе материковой и океанической коры. Рифтогенная кора встречается там, где имеются срединно-океанические хребты, и отличается небольшой толщиной, которая достигает всего 2 км.

Кора любого типа состоит из пород 3 типов - осадочных, гранитных и базальтовых, которые отличаются по плотности, химическому составу и характеру происхождения.

Нижняя граница коры носит название в честь ее открывателя по фамилии Мохоровичич. Она отделяет кору от нижележащего слоя и характеризуется резкой сменой фазового состояния вещества.

Мантия

Данный слой следует за твердой корой и является самым крупным - его объем равен примерно 83% от общего объема планеты. Мантия начинается сразу после границы Мохо и простирается до глубины 2900 км. Данный слой дополнительно подразделяется на верхнюю, среднюю и нижнюю мантию. Особенностью верхнего слоя является наличие астеносферы - особого слоя, где вещество находится в состоянии низкой твердости. Наличием этого вязкого слоя объясняется перемещение континентов. Кроме того, при извержении вулканов жидкое расплавленное вещество, изливаемое ими, поступает именно из данной области. Верхняя мантия заканчивается на глубине примерно 900 км, где начинается средняя.

Отличительными чертами данного слоя можно назвать высокие температуры и давление, которые увеличиваются по мере нарастания глубины. Это обусловливает особое состояние вещества мантии. Несмотря на то что в глубинах породы имеют высокую температуру, они находятся в твердом состоянии из-за воздействия большого давления.

Процессы, происходящие в мантии

Недра планеты имеют очень высокую температуру, благодаря тому что в ядре непрерывно происходит процесс термоядерной реакции. Однако на поверхности сохраняются комфортные для жизни условия. Это возможно благодаря наличию мантии, которая обладает теплоизолирующими свойствами. Таким образом, тепло, выделяющееся ядром, поступает в нее. Нагретое вещество поднимается вверх, постепенно охлаждаясь, тогда как из верхних слоев мантии погружается вниз более холодная материя. Данный круговорот носит название конвекция, он происходит безостановочно.

Строение земного шара: ядро (внешнее)

Центральная часть планеты представляет собой ядро, которое начинается на глубине примерно 2900 км, сразу после мантии. При этом оно четко делится на 2 слоя - внешнее и внутреннее. Толщина внешнего слоя равна 2200 км.

Характерные признаки внешнего слоя ядра - это преобладание в составе железа и никеля, в отличие от соединений железа и кремния, из которых преимущественно состоит мантия. Вещество во внешнем ядре находится в жидком агрегатном состоянии. Вращение планеты вызывает движение жидкого вещества ядра, из-за чего образуется мощное магнитное поле. Поэтому внешнее ядро планеты можно назвать генератором магнитного поля планеты, которое отклоняет опасные виды космического излучения, благодаря чему на смогла зародиться жизнь.

Внутреннее ядро

Внутри жидкой металлической оболочки располагается твердое внутреннее ядро, диаметр которого достигает 2,5 тыс. км. В настоящее время оно все еще доподлинно не изучено, а относительно процессов, происходящих в нем, идут споры между учеными. Это обусловлено трудностью получения данных и возможностью использования только косвенных методов исследований.

Доподлинно известно, что температура вещества во внутреннем ядре не менее 6 тыс. градусов, однако, несмотря на это, оно находится в твердом состоянии. Это объясняется очень высоким давлением, которое не дает веществу перейти в жидкое состояние - во внутреннем ядре оно предположительно равно 3 млн атм. В подобных условиях возможно возникновение особого состояния вещества - металлизации, когда даже такие элементы, как газы, могут приобретать свойства металлов и становиться твердыми и плотными.

Что касается химического состава, в исследовательской среде до сих пор ведутся споры о том, какие элементы составляют внутреннее ядро. Одни ученые предполагают, что основными компонентами являются железо и никель, другие - что среди компонентов могут быть также и сера, кремний, кислород.

Соотношение элементов в разных слоях

Земной состав отличается большим разнообразием - в нем содержатся почти все элементы периодической системы, однако их содержание в разных слоях неоднородно. Так, наименьшую плотность, поэтому она состоит из наиболее легких элементов. Самые же тяжелые элементы находятся в ядре в центре планеты, при высокой температуре и давлении, обеспечивая процесс ядерного распада. Такое соотношение образовалось в течение определенного времени - сразу после формирования планеты ее состав предположительно был более однородным.

На уроках географии ученикам могут предложить нарисовать строение земного шара. Чтобы справится с этой задачей, нужно придерживаться определенной последовательности расположения слоев (она описана в статье). Если последовательность будет нарушена, или один из слоев упущен - тогда работа будет выполнена неверно. Также последовательность расположения слоев вы можете увидеть на фото, представленных вашему вниманию в статье.