Удельная теплота парообразования воды в ккал. Что такое кипение? Удельная теплота парообразования

Удельная теплота парообразования воды в ккал. Что такое кипение? Удельная теплота парообразования
Удельная теплота парообразования воды в ккал. Что такое кипение? Удельная теплота парообразования

Из §§ 2.5 и 7.2 следует, что при парообразовании внутренняя энергия вещества увеличивается, а при конденсации - уменьшается. Поскольку при этих процессах температуры жидкости и ее пара могут быть равными, изменение внутренней энергии вещества происходит только за счет изменения потенциальной энергии молекул. Итак, при одной и той же температуре единица массы жидкости имеет меньшую внутреннюю энергию, чем единица массы ее пара.

Опыт показывает, что плотность вещества в процессе парообразования сильно уменьшается, а объем, занятый веществом, увеличивается. Следовательно, при парообразовании должна совершаться работа против сил внешнего давления. Поэтому энергия, которую нужно сообщить жидкости для превращения ее в пар при неизменной температуре, частично идет на увеличение внутренней энергии вещества и частично - на выполнение работы против внешних сил в процессе его расширения.

На практике для превращения жидкости в пар в процессе теплообмена к ней подводится теплота. Количество теплоты необходимое для превращения жидкости в пар при неизменной температуре, называется теплотой парообразования. При превращении пара в жидкость от него необходимо отвести количество теплоты которое называют теплотой конденсации. Если внешние условия одинаковы, то при равных массах одинакового вещества теплота парообразования равна теплоте конденсации.

С помощью калориметра было установлено, что теплота парообразования прямо пропорциональна превращенной в пар массе жидкости

Здесь - коэффициент пропорциональности, величина которого зависит от рода жидкости и внешних условий.

Величина которая характеризует зависимость теплоты парообразования от рода вещества и от внешних условий, называется удельной теплотой парообразования. Удельная теплота парообразования измеряется количеством теплоты, необходимым для превращения в пар единицы массы жидкости при неизменной температуре:

В СИ за единицу принимают удельную теплоту парообразования такой жидкости, для превращения в пар 1 кг которой при неизменной температуре требуется 1 Дж теплоты. (Покажите это с помощью формулы (7.1а).)

В качестве примера отметим, что удельная теплота парообразования воды при температуре (100°С) равна

Поскольку парообразование может происходить при различных температурах, возникает вопрос: будет ли при этом изменяться удельная теплота парообразования вещества? Опыт показывает, что при повышении температуры удельная теплота парообразования уменьшается. Происходит это потому, что все жидкости при нагревании расширяются. Расстояние между молекулами при этом возрастает и силы молекулярного взаимодействия уменьшаются. Кроме того, чем выше температура, тем больше среднее значение энергии У молекул жидкости и тем меньше энергии им нужно добавить, чтобы они могли вылететь за пределы поверхности жидкости.

Кипение - это интенсивное парообразование, которое происходит при нагревании жидкости не только с поверхности, но и внутри неё.

Кипение происходит с поглощением теплоты.
Большая часть подводимой теплоты расходуется на разрыв связей между частицами вещества, остальная часть - на работу, совершаемую при расширении пара.
В результате энергия взаимодействия между частицами пара становится больше, чем между частицами жидкости, поэтому внутренняя энергия пара больше, чем внутренняя энергия жидкости при той же температуре.
Количество теплоты, необходимое для перевода жидкости в пар в процессе кипения можно расчитать по формуле:

где m - масса жидкости (кг),
L - удельная теплота парообразования.

Удельная теплота парообразования показывает, какое количество теплоты необходимо, чтобы превратитъ в пар 1 кг данного вещества при температуре кипения. Единица удельной теплоты парообразования в системе СИ:
[ L ] = 1 Дж/ кг
С ростом давления температура кипения жидкости повышается, а удельная теплота парообразования уменьшается и наоборот.

Во время кипения температура жидкости не меняется.
Температура кипения зависит от давления, оказываемого на жидкость.
Каждое вещество при одном и том же давлении имеет свою температуру кипения.
С увеличением атмосферного давления кипение начинается при более высокой температуре, при уменьшении давления - наоборот..
Так, например, вода кипит при 100 °С лишь при нормальном атмосферном давлении.

ЧТО ЖЕ ПРОИСХОДИТ ВНУТРИ ЖИДКОСТИ ПРИ КИПЕНИИ?

Кипение представляет собой переход жидкости в пар с непрерывным образованием и ростом в жидкости пузырьков пара, внутрь которых происходит испарение жидкости. В начале нагревания вода насыщена воздухом и имеет комнатную температуру. При нагревании воды, растворенный в ней газ выделяется на дне и стенках сосуда, образуя воздушные пузырьки. Они начинают появляться задолго до кипения. В эти пузырьки испаряется вода. Пузырек, наполненный паром, при достаточно высокой температуре начинает раздуваться.

Достигнув определенных размеров он отрывается от дна, поднимается к поверхности воды и лопается. При этом пар покидает жидкость. Если вода прогрета недостаточно, то пузырек пара, поднимаясь в холодные слои, схлопывается. Возникающие при этом колебания воды приводят к появлению во всем объеме воды огромного количества мелких пузырьков воздуха: так называемый "белый ключ".

На воздушный пузырек объемом на дне сосуда действует подъемная сила:
Fпод = Fархимеда - Fтяжести
Пузырек прижат ко дну, поскольку на нижнюю поверхность силы давления не действуют. При нагреве пузырек увеличивается за счет выделения в него газа и отрывается от дна, когда подъемная сила будет немного больше прижимающей. Размер пузырька, способного оторваться от дна, зависит от его формы. Форма пузырьков на дне определяется смачиваемостью дна сосуда.

Неоднородность смачивания и слияние пузырьков на дне приводили к увеличению их размеров. При больших размерах пузырька при подъеме сзади него образуются пустоты, разрывы и завихрения.

Когда пузырек лопается, вся окружающая его жидкость устремляется внутрь, и возникает кольцевая волна. Смыкаясь, она выбрасывает вверх столбик воды.

При схлопывании лопающихся пузырьков в жидкости распространяются ударные волны ультразвуковых частот, сопровождаемые слышимым шумом. Для начальных стадий кипения характерны самые громкие и высокие звуки (на стадии "белого ключа" чайник "поет").

(источник: virlib.eunnet.net)


ТЕМПЕРАТУРНЫЙ ГРАФИК ИЗМЕНЕНИЯ АГРЕГАТНЫХ СОСТОЯНИЙ ВОДЫ


ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ!


ИНТЕРЕСНО

Зачем в крышке чайника делают дырочку?
Для выхода пара. Без дырочки в крышке пар может выплеснуть воду через носик чайника.
___

Продолжительность варки картофеля, начиная с момента кипения, не зависит от мощности нагревателя. Продолжительность определяется временем пребывания продукта при температуре кипения.
Мощность нагревателя не влияет на температуру кипения, а влияет только на скорость испарения воды.

Кипением можнозаставить воду замерзнуть. Для этого надо производить откачку воздуха и водяного пара из сосуда, где находится вода, так, чтобы вода все время кипела.


«Горшки легко закипают через край – к ненастью!»
Падение атмосферного давления, сопровождающее ухудшение погоды, является причиной того, что молоко быстрее «убегает».
___

Очень горячий кипяток можно получить на дне глубоких шахт, где давление воздуха значительно больше, чем на поверхности Земли. Так на глубине 300 м вода закипит при 101 ͦ С. При давлении воздуха в 14 атмосфер вода закипает при 200 ͦ С.
Под колоколом воздушного насоса можно получить «кипяток» при 20 ͦ С.
На Марсе мы пили бы «кипяток» при 45 ͦ С.
Соленая вода кипит при температуре выше 100 ͦ C. ___

В горных районах на значительной высоте при пониженном атмосферном давлении вода кипит при температурах ниже, чем 100 ͦ Цельсия.

Ждать, пока сварится такой обед, приходится дольше.


Польем холодненькой… и закипит!

Обычно вода кипит при 100 градусах Цельсия. Нагреем воду в колбе на горелке до кипения. Погасим горелку. Вода перестает кипеть. Закроем колбу пробкой и начнем осторожно лить на пробку струйкой холодную воду. Каково? Вода опять закипела!

..............................

Под струей холодной воды водичка в колбе, а вместе с ней и водяные пары начинают остывать.
Объем паров уменьшается, и давление над поверхностью воды меняется...
А как ты думаешь, в какую сторону?
... Температура кипения воды при пониженном давлении меньше 100 градусов, и вода в колбе вскипает вновь!
____

При приготовлении пищи давление внутри кастрюли - "скороварки" - около 200 кПа, и суп в такой кастрюле сварится значительно быстрее.

Можно набрать в шприц воду примерно до половины, закрыть той же пробочкой и резко потянуть за поршень. В воде возникнет масса пузырьков, говорящих, что начался процесс кипения воды (и это при комнатной температуре!).
___

При переходе вещества в газообразное состояние его плотность уменьшается примерно в 1000 раз.
___

У первых электрочайников нагреватели находились под донышком. Вода не вступала в контакт с нагревателем и закипала очень долго. В 1923 году Артур Лардж сделал открытие: он поместил нагреватель в особую медную трубку и поместил её внутрь чайника. Вода быстро закипала.

В США разработаны самоохлаждающиеся банки для прохладительных напитков. В банку вмонтирован отсек с легкокипящей жидкостью. Если в жаркий день раздавить капсулу, жидкость начнет бурно кипеть, отнимая тепло у содержимого банки, и за 90 секунд температура напитка понижается на 20–25 градусов Цельсия.


НУ, ПОЧЕМУ ЖЕ?

А как ты думаешь, можно ли сварить яйцо вкрутую, если вода закипает при температуре ниже, чем 100 градусов Цельсия?
____

Будет ли кипеть вода в кастрюле, которая плавает в другой кастрюле с кипящей водой?
Почему? ___

Можно ли заставить кипеть воду, не нагревая ее?

Для того чтобы поддерживать кипение воды (или иной жидкости), к ней нужно непрерывно подводить теплоту, например подогревать ее горелкой. При этом температура воды и сосуда не повышается, но за каждую единицу времени образуется определенное количество пара. Из этого следует вывод, что для превращения воды в пар требуется приток теплоты, подобно тому как это имеет место при превращении кристалла (льда) в жидкость (§ 269). Количество теплоты, необходимое для превращения единицы массы жидкости в пар той же температуры, называют удельной теплотой парообразования данной жидкости. Она выражается в джоулях на килограмм .

Нетрудно сообразить, что при конденсации пара в жидкость должно выделяться такое же количество теплоты. Действительно, опустим в стакан с водой трубку, соединенную с кипятильником (рис. 488). Через некоторое время после начала нагревания из конца трубки, опущенной в воду, начнут выходить пузыри воздуха. Этот воздух мало повышает температуру воды. Затем вода в кипятильнике закипит, после чего мы увидим, что пузыри, выходящие из конца трубки, уже не поднимаются вверх, а быстро уменьшаются и с резким звуком исчезают. Это - пузыри пара, конденсирующиеся в воду. Как только вместо воздуха из кипятильника пойдет пар, вода начнет быстро нагреваться. Так как удельная теплоемкость пара примерно такая же, как и воздуха, то из этого наблюдения следует, что столь быстрое нагревание воды происходит именно вследствие конденсации пара.

Рис. 488. Пока из кипятильника идет воздух, термометр показывает почти одну и ту же температуру. Когда вместо воздуха пойдет пар и начнет конденсироваться в стаканчике, столбик термометра быстро поднимется, показывая повышение температуры

При конденсации единицы массы пара в жидкость той же температуры выделяется количество теплоты, равное удельной теплоте парообразования. Это можно было предвидеть на основании закона сохранения энергии. Действительно, если бы это было не так, то можно было бы построить машину, в которой жидкость сначала испарялась, а затем конденсировалась: разность между теплотой парообразования и теплотой конденсации представляла бы приращение полной энергии всех тел, участвующих в рассматриваемом процессе. А это противоречит закону сохранения энергии.

Удельную теплоту парообразования можно определить с помощью калориметра, подобно тому, как это делается при определении удельной теплоты плавления (§ 269). Нальем в калориметр определенное количество воды и измерим ее температуру. Затем некоторое время будем вводить в воду пар испытуемой жидкости из кипятильника, приняв меры к тому, чтобы шел только пар, без капелек жидкости. Для этого пар пропускают сквозь сухопарник (рис. 489). После этого вновь измерим температуру воды в калориметре. Взвесив калориметр, мы можем по увеличению его массы судить о количестве пара, сконденсировавшегося в жидкость.

Рис. 489. Сухопарник - приспособление для задержания капелек воды, движущихся вместе с паром

Пользуясь законом сохранения энергии, можно составить для этого процесса уравнение теплового баланса, позволяющее определить удельную теплоту парообразования воды. Пусть масса воды в калориметре (включая водяной эквивалент калориметра) равна масса пара - , теплоемкость воды - , начальная и конечная температура воды в калориметре - и , температура кипения воды - и удельная теплота парообразования - . Уравнение теплового баланса имеет вид

.

Результаты определения удельной теплоты парообразования некоторых жидкостей при нормальном давлении приведены в табл. 20. Как видно, эта теплота довольно велика. Большая теплота парообразования воды играет исключительно важную роль в природе, так как процессы парообразования совершаются в природе в грандиозных масштабах.

Таблица 20. Удельная теплота парообразования некоторых жидкостей

Вещество

Вещество

Спирт (этиловый)

Отметим, что содержащиеся в таблице значения удельной теплоты парообразования относятся к температуре кипения при нормальном давлении. Если жидкость кипит или просто испаряется при иной температуре, то ее удельная теплота парообразования иная. При повышении температуры жидкости теплота парообразования всегда уменьшается. Объяснение этого мы рассмотрим позже.

295.1. Определите количество теплоты, необходимое для нагревания до температуры кипения и для превращения в пар 20 г воды при .

295.2. Какая получится температура, если в стакан, содержащий 200 г воды при , впустить 3 г пара при ? Теплоемкостью стакана пренебречь.


















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Вид урока: комбинированный.

Тип урока: изучение нового материала.

Цель: сформировать понятие кипения, как парообразования, выявить и объяснить особенности кипения;

Задачи:

Образовательные:

  • формирование понятий “кипение” и “удельная теплота парообразования и конденсации”;
  • выявление основных особенностей кипения: образование пузырьков, шум, предшествующий кипению, постоянство температуры кипения и зависимости температуры кипения от внешнего давления.
  • формирование умения применять имеющиеся знания для объяснения явлений испарения и кипения.

Развивающие:

  • формирование интеллектуальных умений: анализировать, сравнивать, выделять главное и делать выводы;
  • развитие логического мышления и познавательного интереса.

Воспитательные:

  • развитие интереса к предмету и позитивного отношения к учебе;
  • формирование научного мировоззрения.
  • воспитание товарищества, взаимопомощи.

Демонстрации:

  1. наблюдение этапов кипения;
  2. наблюдение зависимости температуры кипения от внешнего давления;
  3. наблюдение кипения при пониженном давлении;
  4. видеоролик “Кипение азота”

Оборудование: спиртовка, колба с водой, термометр для измерения температуры жидкости, штатив, пробка для колбы с вставленной в нее стеклянной трубкой, резиновая трубка, спринцовка, насос Комовского, компьютер и мультимедийный проектор, презентация.

Ход урока

1. Организационный момент.

2. Мотивация.

Учитель: Ребята, я не сомневаюсь, что каждое ваше утро начинается с чашечки горячего, хорошо заваренного чая. Чай полезный напиток - так гласит древняя мудрость. И вы, конечно знаете, что перед тем, как заварить чай, нужно вскипятить воду. Обратите пожалуйста внимание на эпиграф (слайд 2):

“Существуют явления, на которые никогда не надоедает смотреть. Кипение воды - наслаждение зрелищем воды и огня, таинством их взаимодействия. Эта изменчивая картина завораживает. Закипая, чайник начинает разговаривать”. Таллина Адамовская

Сегодня мы с вами посмотрим на этот процесс с физической точки зрения и постараемся найти ответы на множество загадок, сопровождающих это явление. Тема урока – “Кипение. Удельная теплота парообразования и конденсации”

Учащиеся записывают в тетрадь тему урока.

Учитель: Для исследования кипения проведем эксперимент. Поставим на спиртовку колбу с водопроводной водой. Измерим начальную температуру воды термометром.

3. Актуализация знаний.

Учитель : Пока вода будет нагреваться, вспомним, что называется парообразованием.

Ученик : Парообразование – это явление превращения жидкости в пар.

Учитель : Какие два способа парообразования существуют?

Ученик : Испарение и кипение.

Учитель : Какое явление называется испарением?

Ученик : Парообразование, происходящее с поверхности жидкости, называется испарением.

Учитель : Объясните механизм испарения с молекулярной точки зрения.

Ученик : Все тела состоят из молекул, которые движутся непрерывно и хаотично, причем с различными скоростями. Если “быстрая” молекула окажется у поверхности жидкости, то она может преодолеть притяжение соседних молекул и вылететь из жидкости. Все вылетевшие молекулы образуют пар.

Учитель : Есть ли у веществ фиксированная температура, при которой начинается процесс испарения?

Ученик : Такой температуры у веществ нет. Испарение происходит при любой температуре, так как молекулы движутся при любой температуре.

Учитель : От чего зависит скорость испарения жидкости?

Ученик : От рода вещества, температуры, площади поверхности и движения воздуха над поверхностью жидкости.

Учитель : Почему испарение происходит быстрее, при более высокой температуре жидкости?

Ученик : Чем выше температура, тем больше скорость молекул.

Учитель : Как зависит скорость испарения от площади поверхности жидкости?

Ученик : Чем больше площадь поверхности, тем большее количество молекул может вылететь из жидкости.

Учитель : Почему испарение при движении воздуха происходит быстрее?

Ученик : Испарившиеся молекулы не могут возвратиться обратно в жидкость.

Учитель : Что называется конденсацией пара?

Ученик : Конденсация – это явление превращения пара в жидкость.

Учитель : При каких условиях происходит конденсация пара?

Ученик : Когда пар становится насыщенным, то есть находится в динамическом равновесии со своей жидкостью.

4. Изучение нового материала.

Учитель : Вернемся к нашему эксперименту и измерим температуру воды. Что вы сейчас наблюдаете?

Ученик : На дне и стенках сосуда появились пузырьки воздуха. (Слайд 3)

Учитель : Почему пузырьки воздуха появляются на дне и стенках сосуда?

Ученик : В воде всегда есть растворенный воздух. При нагревании пузырьки воздуха расширяются и становятся видимыми.

Учитель : Почему пузырьки воздуха начинают увеличиваться в объеме?

Ученик : Потому что вода начинает испаряться внутрь этих пузырьков.

Учитель : Какие силы действуют на пузырьки?

Ученик : Сила тяжести и Архимедова сила.

Учитель : Какое направление они имеют?

Ученик : Сила тяжести направлена вниз, а Архимедова – вверх. (Слайд 4)

Учитель : Когда пузырьки смогут оторваться от дна и стенок сосуда и начать свое движение вверх?

Ученик : Пузырьки отрываются, когда Архимедова сила станет больше силы тяжести.

Учитель : Произведем измерение температуры воды. Сейчас вы слышите характерный шум. Поясним это явление. При достаточно большом объеме пузырька он под действием

Архимедовой силы начинает подниматься вверх. Так как жидкость прогревается способом конвекции, то температура нижних слоев больше температуры верхних слоев воды. Когда пузырек попадает в верхний менее прогретый слой воды, водяной пар внутри него будет конденсироваться, а объем пузырька уменьшаться. Пузырек будет захлопываться (Слайд 5). Связанный с этим процессом шум мы слышим перед кипением. При определенной температуре, то есть когда в результате конвекции прогреется вся жидкость, с приближением к поверхности объем пузырьков резко возрастает, так как давление внутри пузырька станет равным внешнему давлению (атмосферы и столба жидкости). На поверхности пузырьки лопаются, и над жидкостью образуется много пара. Вода кипит.

Сейчас мы измерим температуру кипящей воды. Вода кипит при температуре 100 o С.

Учитель: Итак, условие кипения: давление внутри пузырька равно внешнему давлению и признаки кипения:

Много пузырьков лопается на поверхности;

Много пара.

Что же такое кипение?

Ученик : Кипение – это парообразование, которое происходит в объеме всей жидкости при определенной температуре.

Учитель : Запишем определение кипения (Слайд 6).

Кипение – это интенсивное парообразование, происходящее по всему объему жидкости при определенной температуре.

Учитель : Какая температура называется температурой кипения?

Ученик : Температура, при которой жидкость кипит, называется температурой кипения.

Учитель : Как вы считаете, будет ли меняться температура в процессе кипения?

Ученик : Я думаю, она не будет меняться (Слайд 7).

Учитель : Давайте еще раз измерим температуру кипящей воды. Температура не меняется. Но спиртовка продолжает работать и отдавать энергию. На что же расходуется эта энергия, если дальнейшего роста температуры нет?

Ученик : Она расходуется на образование пузырьков пара.

Учитель : Обратимся к таблице на странице 45. Найдите температуру кипения воды.

Ученик : Температура кипения воды 100 o С.

Учитель : Какая жидкость имеет такую же температуру кипения?

Ученик : Молоко.

Учитель : Какую температуру кипения имеют эфир и спирт?

Ученик : Эфир кипит при 35 o С, спирт – при 78 o С.

Учитель : Некоторые вещества, которые при обычных условиях являются газами, при достаточном охлаждении превращаются в жидкости, кипящие при очень низкой температуре. Какие из этих веществ есть в таблице?

Ученик : Это водород и кислород. Жидкий водород кипит при -253 o С, а кислород – при -183 o С.

Учитель : Сейчас мы посмотрим видеоролик “Кипение азота” (Слайд 8).

Учитель : В таблице есть несколько веществ, которые в обычных условиях твердые. Если их расплавить, то в жидком состоянии они будут кипеть при очень высокой температуре. Приведите примеры.

Ученик : Например, жидкая медь кипит при 2567 o С, а железо – при 2750 o С.

Учитель : Обратили ли вы внимание на информацию, указанную в скобках заголовка этой таблицы?

Ученик : Температура кипения некоторых веществ при нормальном атмосферном давлении.

Учитель : Как вы думаете, зачем указано это условие?

Ученик : Потому что температура кипения зависит от внешнего давления.

Учитель : Исследуем зависимость температуры кипения от внешнего давления.

Демонстрация: колбу с кипящей жидкостью снимем со спиртовки и закроем ее пробкой с вставленной в нее грушей. При нажатии на грушу кипение в колбе прекращается. Почему?

Ученик : При нажатии на грушу мы увеличили давление в колбе, и условие кипения нарушилось.

Учитель : Таким образом, мы показали, что с увеличением давления температура кипения увеличивается. Многие хозяйки используют для приготовления пищи кастрюлю – скороварку, которая имеет массу преимуществ по сравнению с обычными кастрюлями. Процесс приготовления пищи в скороварке происходит при температуре 120 o С и давлении 200кПа, поэтому время приготовления значительно сокращается (Слайд 9).

Учитель : Давайте вспомним, как меняется атмосферное давление с увеличением высоты над уровнем моря?

Ученик : Атмосферное давление уменьшается.

Учитель : Как изменится температура кипения воды при подъеме в гору?

Ученик : Она уменьшится (Слайд 10).

Учитель : Совершенно верно. Например, на самой высокой горе Джомолунгме в Гималаях, высота которой 8848 м, вода будет кипеть при температуре около 70 o С. Сварить, например, мясо в таком кипятке просто невозможно.

А как вы думаете, можно ли заставить воду кипеть при комнатной температуре?

Демонстрация: стакан с холодной водой помещаем под стеклянный колокол. С помощью насоса Комовского откачиваем воздух. По мере уменьшения давления в стакане наблюдаем этапы закипания жидкости, при этом температура остается низкой.

Учитель : Какой вывод можно сделать из опытов?

Ученик : Температура кипения жидкости зависит от давления.

Учитель : Мы познакомились с процессом кипения. Как вы считаете, одинаковое ли количество теплоты потребуется на кипение разных жидкостей равной массы, взятых при температуре кипения?

Ученик : Я думаю, потребуется разное количество теплоты.

Учитель : Правильно (Слайд 11). На диаграмме мы видим, что для обращения в пар разных жидкостей требуется разное количество теплоты. Это количество теплоты характеризует физическая величина, называемая удельной теплотой парообразования. Эта величина обозначается буквой L, ее единица измерения в системе СИ Дж/кг. Удельная теплота парообразования – это физическая величина, показывающая, какое количество теплоты необходимо, чтобы жидкость массой 1кг обратить в пар при температуре кипения. Посмотрим в таблицу на странице 49. Например, удельная теплота парообразования воды 2,3*10 6 Дж/кг. Это значит, что для обращения в пар 1кг воды при температуре кипения нужно затратить 2,3*10 6 Дж энергии. Чему равна удельная теплота парообразования спирта?

Ученик : Удельная теплота парообразования спирта 0,9*10 6 Дж/кг.

Учитель : Что означает это число?

Ученик : Это значит, что для обращения в пар 1 кг спирта при температуре кипения нужно затратить 0,9*10 6 Дж энергии.

Учитель : Следовательно, при температуре кипения внутренняя энергия вещества в парообразном состоянии больше внутренней энергии такой же массы вещества в жидком состоянии. Вот почему ожег паром при температуре 100 o С опаснее, чем ожег кипятком (Слайд 12).

Теперь ответьте на вопрос: если снять крышку с кипящего чайника, что можно на ней увидеть?

Ученик : Мы увидим там капельки воды.

Учитель : Как вы объясните их появление?

Ученик : Пар, соприкасаясь с крышкой, конденсируется (Слайд 13).

Учитель : При конденсации пара энергия выделяется. Опыты показывают, что пар, конденсируясь, выделяется точно такое же количество теплоты, какое было затрачено на его образование. Освобождающаяся при конденсации пара энергия может быть использована. На тепловых электростанциях отработанным в турбинах паром нагревают воду, затем ее используют для отопления зданий и на предприятиях бытового обслуживания: банях, прачечных и т.п.

Чтобы вычислить количество теплоты, необходимое для превращения жидкости любой массы в пар при температуре кипения, нужно удельную теплоту парообразования умножить на массу. Запишем формулу: Q = Lm. Количество теплоты, которое выделяет пар любой массы, конденсируясь при температуре кипения, определяется этой же формулой.

5. Закрепление.

Учитель : Итак, теперь вы знаете два способа парообразования: испарение и кипение. Кто скажет, чем отличаются эти процессы?

Ученик : Испарение происходит с поверхности жидкости, а кипение по всему объему жидкости.

Ученик : Испарение происходит при любой температуре, а кипение – при определенной температуре. У каждой жидкости своя температура кипения.

Ученик : При испарении температура жидкости уменьшается, а при кипении не изменяется.

Учитель : Как вы думаете, где кипящая вода горячее: на уровне моря, на вершине горы или в глубокой шахте?

Ученик : Я думаю, вода будет горячее в глубокой шахте, так как атмосферное давление на глубине будет выше, следовательно, вода будет кипеть при более высокой температуре.

Учитель : По какой формуле можно рассчитать количество теплоты, затраченное на парообразование или выделяющееся при конденсации пара?

Учитель : Попробуем устно вычислить количество теплоты для следующих случаев (Слайд 15):

Ученик : Для эфира Q = 2*10 6 Дж, для спирта – 9*10 6 Дж, для воды – 4,6*10 6 Дж.

Учитель : На графике показаны процессы нагревания и кипения двух жидкостей одинаковой массы (слайд 16). Пользуясь таблицей на странице 45, определите, для каких веществ построены графики.

Ученик : Верхний - для воды, нижний - для спирта, так как температура кипения воды 100 o С, а спирта - 78 o С.

Учитель : Какова была начальная температура жидкостей?

Ученик : Начальная температура обеих жидкостей 20?С.

Учитель : Назовите участки графика, соответствующие нагреванию жидкостей.

Ученик : АВ для спирта и АD для воды.

Учитель : Назовите участки графика, соответствующие кипению жидкостей.

Ученик : ВС для спирта и DE для воды.

6. Подведение итогов урока.

Учитель : Откройте дневники и запишите домашнее задание: параграфы 18, 20. Упр.10(4) (Слайд 17).

Для желающих следующее экспериментальное задание.

Возьмите большую кастрюлю с водой. Поместите в нее маленькую кастрюлю с водой так, чтобы она плавала, не касаясь дна большой кастрюли. Поставьте их на плиту и начните нагревать. Что будет с водой в маленькой кастрюле, когда в большой кастрюле она будет кипеть? Почему? Насыпьте в большую кастрюлю столовую ложку соли. Что после этого произойдет с водой в маленькой кастрюле? Объясните наблюдаемое явление. Что можно сказать о температуре кипения соленой воды?

7. Рефлексия .

Учитель : Наш урок подходит к концу. Мне бы хотелось знать, с каким настроением вы уходите. У вас на партах есть три цветных стикера, которые отражают следующие настроения: зеленый – мне очень понравился урок, синий – мне было интересно, красный – мне было скучно. Уходя, прикрепите на доску стикер, отражающий ваше настроение (Слайд 18).

Урок окончен. Спасибо за внимание!

Источники

  1. А.В. Перышкин. Физика. 8 класс. - М.; Дрофа
  2. Е.М. Гутник, Е,В. Рыбакова, Е.В. Шаронина. Методические материалы для учителя. Физика. 8 класс. - М.; Дрофа
  3. Л.А. Горев. Занимательные опыты по физике. – М.; Просвещение
  4. Единая коллекция цифровых образовательных ресурсов:
  5. Видеоролик “Кипение азота”
  6. Рисунки из флеш-презентации

На этом уроке мы уделим внимание такому виду парообразования, как кипение, обсудим его отличия от рассмотренного ранее процесса испарения, введем такую величину, как температура кипения, и обсудим, от чего она зависит. В конце урока введем очень важную величину, описывающую процесс парообразования - удельную теплоту парообразования и конденсации.

Тема: Агрегатные состояния вещества

Урок: Кипение. Удельная теплота парообразования и конденсации

На прошлом уроке мы уже рассмотрели один из видов парообразования - испарение - и выделили свойства этого процесса. Сегодня мы обсудим такой вид парообразования, как процесс кипения, и введем величину, которая численно характеризует процесс парообразования - удельная теплота парообразования и конденсации.

Определение. Кипение (рис. 1) - это процесс интенсивного перехода жидкости в газообразное состояние, сопровождающийся образованием пузырьков пара и происходящий по всему объему жидкости при определенной температуре, которую называют температурой кипения.

Сравним два вида парообразования между собой. Процесс кипения более интенсивен, чем процесс испарения. Кроме того, как мы помним, процесс испарения протекает при любой температуре выше температуры плавления, а процесс кипения - строго при определенной температуре, которая является различной для каждого из веществ и называется температурой кипения. Еще следует отметить, что испарение происходит только со свободной поверхности жидкости, т. е. с области, разграничивающей ее с окружающими газами, а кипение - сразу со всего объема.

Более подробно рассмотрим протекание процесса кипения. Представим ситуацию, с которой многие из нас неоднократно сталкивались, - это нагревание и кипячение воды в некотором сосуде, например, в кастрюле. В ходе нагревания воде будет передаваться определенное количество теплоты, что будет приводить к увеличению ее внутренней энергии и увеличению активности движения молекул. Этот процесс будет протекать до определенного этапа, пока энергия движения молекул не станет достаточной для начала кипения.

В воде присутствуют растворенные газы (или другие примеси), которые выделяются в ее структуре, что приводит к так называемому возникновению центров парообразования. Т. е. именно в этих центрах начинает происходить выделение пара, и по всему объему воды образовываются пузырьки, которые наблюдаются при кипении. Важно понимать, что в этих пузырьках находится не воздух, а именно пар, который образовывается в процессе кипения. После образования пузырьков количество пара в них растет, и они начинают увеличиваться в размерах. Зачастую, изначально пузырьки образуются вблизи стенок сосуда и не сразу поднимаются на поверхность; сначала они, увеличиваясь в размерах, оказываются под воздействием нарастающей силы Архимеда, а затем отрываются от стенки и поднимаются на поверхность, где лопаются и высвобождают порцию пара.

Стоит отметить, что далеко не сразу все пузырьки пара достигают свободной поверхности воды. В начале процесса кипения вода прогрета еще далеко не равномерно и нижние слои, вблизи которых происходит непосредственно процесс теплопередачи, еще горячее верхних, даже с учетом процесса конвекции. Это приводит к тому, что поднимающиеся снизу пузырьки пара схлопываются из-за явления поверхностного натяжения, еще не доходя до свободной поверхности воды. При этом пар, который находился внутри пузырьков, переходит в воду, тем самым дополнительно нагревая ее и ускоряя процесс равномерного прогрева воды по всему объему. В результате, когда вода прогревается практически равномерно, почти все пузырьки пара начинают достигать поверхности воды и начинается процесс интенсивного парообразования.

Важно выделить тот факт, что температура, при которой проходит процесс кипения, остается неизменной даже в том случае, если увеличивать интенсивность подвода тепла к жидкости. Простыми словами, если в процессе кипения прибавить газ на конфорке, которая разогревает кастрюлю с водой, то это приведет только к увеличению интенсивности кипения, а не к увеличению температуры жидкости. Если углубляться более серьезно в процесс кипения, то стоит отметить, что в воде возникают области, в которых она может быть перегрета выше температуры кипения, но величина такого перегрева, как правило, не превышает одного-пары градусов и незначительна в общем объеме жидкости. Температура кипения воды при нормальном давлении составляет 100°С.

В процессе кипения воды можно заметить, что он сопровождается характерными звуками так называемого бурления. Эти звуки возникают как раз из-за описанного процесса схлопывания пузырьков пара.

Процессы кипения других жидкостей протекают аналогичным образом, что и кипение воды. Основное отличие в этих процессах составляют различные температуры кипения веществ, которые при нормальном атмосферном давлении являются уже измеренными табличными величинами. Укажем основные значения этих температур в таблице.

Интересен тот факт, что температура кипения жидкостей зависит от величины атмосферного давления, поэтому мы и указывали, что все значения в таблице приведены при нормальном атмосферном давлении. При возрастании давления воздуха возрастает и температура кипения жидкости, при уменьшении, наоборот, уменьшается.

На этой зависимости температуры кипения от давления окружающей среды основан принцип работы такого известного кухонного прибора, как скороварка (рис. 2). Она представляет собой кастрюлю с плотно закрывающейся крышкой, под которой в процессе парообразования воды давление воздуха с паром достигает значения до 2 атмосферных давлений, что приводит к увеличению температуры кипения воды в ней до . Из-за этого вода с продуктами в ней имеют возможность нагреться до температуры выше, чем обычно (), и процесс приготовления ускоряется. Из-за такого эффекта устройство и получило свое название.

Рис. 2. Скороварка ()

Ситуация с уменьшением температуры кипения жидкости с понижением атмосферного давления также имеет пример из жизни, но уже не повседневной для многих людей. Относится такой пример к путешествиям альпинистов в высокогорных районах. Оказывается, что в местности, находящейся на высоте 3000-5000 м, температура кипения воды из-за уменьшения атмосферного давления снижается до и более низких значений, что приводит к сложностям при приготовлении пищи в походах, т. к. для эффективной термической обработки продуктов в таком случае требуется значительно большее время, чем при нормальных условиях. На высотах около 7000 м температура кипения воды доходит до , что приводит к невозможности приготовления многих продуктов в таких условиях.

На том, что температуры кипения различных веществ отличаются, основаны некоторые технологии разделения веществ. Например, если рассматривать нагревание нефти, которая представляет собой сложную жидкость, состоящую из множества компонентов, то в процессе кипения ее можно будет разделить на несколько различных веществ. В данном случае, благодаря тому, что температуры кипения керосина, бензина, лигроина и мазута различны, их можно отделить друг от друга путем парообразования и конденсации при различных температурах. Такой процесс, как правило, называют разделением на фракции (рис. 3).

Рис. 3 Разделение нефти на фракции ()

Как и любой физический процесс, кипение необходимо характеризовать с помощью какой-то численной величины, такую величину называют удельной теплотой парообразования.

Для того чтобы понять физический смысл этой величины, рассмотрим следующий пример: возьмем 1 кг воды и доведем ее до температуры кипения, затем замерим, какое количество теплоты необходимо для того, чтобы полностью испарить эту воду (без учета тепловых потерь) - эта величина и будет равна удельной теплоте парообразования воды. Для другого вещества это значение теплоты будет другим и будет являться удельной теплотой парообразования этого вещества.

Удельная теплота парообразования оказывается очень важной характеристикой в современных технологиях производства металлов. Оказывается, что, например, при плавлении и испарении железа с его последующей конденсацией и затвердеванием образуется кристаллическая решетка с такой структурой, которая обеспечивает более высокую прочность, чем исходный образец.

Обозначение : удельная теплота парообразования и конденсации (иногда обозначается ).

Единица измерения : .

Удельная теплота парообразования веществ определяется с помощью экспериментов в лабораторных условиях, и ее значения для основных веществ занесены в соответствующую таблицу.

Вещество