Коэффициент теплопроводности воды при различных температурах. Большая энциклопедия нефти и газа

Коэффициент теплопроводности воды при различных температурах. Большая энциклопедия нефти и газа

Вода обладает высокой теплоемкость. Большая теплоемкость воды играет значительную роль в процессе охлаждения и нагревания водоемов, а также в формировании климатических условий прилагающих районов. Вода медленно охлаждается и нагревается как во время суток так и при смене сезонов. Максимальное колебание температуры в Мировом океане не превышает 40°С, в то время как в воздухе эти колебания могут достигать 100-120°С. Теплопроводность (или перенос тепловой энергии) воды незначителен. Поэтому вода снег и лед плохо проводят тепло. В водоемах передача тепла на глубины происходит очень медленно.

Вязкость воды. Поверхностное натяжение

С увеличением солености вязкость воды несколько возрастает. Вязкость или внутреннее трение - свойство текучих (жидких или газообразных) веществ оказывать сопротивление собственному течению. Вязкость жидкостей зависит от температуры н давления. Она уменьшается как с повышением температуры, так и с увеличением давления. Поверхностное натяжение воды определяет силу сцепления между молекулами, а также форму поверхности жидкости. Из всех жидкостей, кроме ртути, у воды самое большое поверхностное натяжение. При повышении температуры оно уменьшается.

Ламинарное и турбулентное, установившееся и неустановившееся, равномерное и неравномерное движение воды

Ламинарное движение – параллельноструйное течение, при постоянном расходе воды скорость каждой точки потока не изменяется во времени ни по величине, ни по направлению. Турбулентное – форма течения, при которой элементы потока совершают неупорядоченные движения по сложным траекториям. При равномерном движении поверхность параллельна выровненной поверхности дна. при неравномерном движении уклон скорости течения живого сечения постоянный в длине сечения, но изменяется по длине потока. Неустановившееся движение характеризуется тем, что все гидравлические элементы потока на рассматриваемом участке изменяются по длине и во времени. Установившееся – наоборот.

Круговорот воды, его материковые и океанические звенья, внутриматериковый круговорот

В круговороте выделяют три звена – океаническое, атмосферное и материковое. Материковое включает в себя литогенное, почвенное, речное, озерное, ледниковое, биологическое и хозяйственное звенья. Атмосферное звено характеризуется переносом влаги в циркуляции воздуха и образования осадков. Для океанического звена характерно испарение воды, в процессе которого непрерывно восстанавливается содержание водяного пара в атмосфере. Внутриматериковый круговорот характерен для областей внутреннего стока.

Водный баланс мирового океана, земного шара, суши

Глобальный влагооборот Земли находит свое выражение в водном балансе Земли, который математически выражается уравнением водного баланса (для Земного шара в целом и для его отдельных частей). Все компоненты (составляющие) водного баланса можно разбить на 2 части: приходную и расходную. Баланс - это количественная характеристика круговорота воды. Метод расчета водного баланса применяется для изучения приходных и расходных элементов крупных частей земного шара - суши, Океана и Земли в целом, отдельных материков, больших и малых речных бассейнов и озер, наконец, больших участков полей и леса. Этот метод позволяет гидрологам решать многие теоретические и практические задачи. В основе изучения водного баланса лежит сравнение приходных и расходных его частей. Например, для суши приходной частью баланса служат атмосферные осадки, а расходной - испарение. Пополнение Океана водой происходит за счет стока речных вод с суши, а расход - за счет испарения.


Похожая информация:

  1. Kaк вы сможете купить небо или тепло земли? Эта мысль нам непонятна. Если мы не распоряжаемся свежестью воздуха и всплесками воды, то как вы можете купить их у нас?

Cтраница 1


Теплопроводность воды примерно в 5 раз выше теплопроводности масла. Она увеличивается с увеличением давления, но при давлениях, имеющих место в гидродинамических передачах, ее можно принять постоянной.  

Теплопроводность воды приблизительно в 28 раз превышает теплопроводность воздуха. В соответствии с этим увеличивается скорость теплопотери при погружении тела в воду или соприкосновении с ней, а это в значительной мере определяет теплоощущение человека на воздухе и в воде. Так, например, при - (- 33 воздух кажется нам теплым, а такая же температура воды - безразличной. Температура воздуха 23 кажется нам безразличной, а вода такой же температуры - прохладной. При - (- 12 воздух кажется прохладным, а вода - холодной.  

Теплопроводность воды и водяного пара г несомненно, изучена лучше всех других веществ.  

Динамическая вязкость (х (Па-с некоторых водных растворов.| Изменение массовой теплоемкости водных растворов некоторых солей в зависимости от концентрации раствора.| Теплопроводность некоторых растворов в зависимости от концентрации при 20 С.  

Теплопроводность воды имеет положительный температурный ход, поэтому при малых концентрациях теплопроводность водных растворов многих солей, кислот и щелочей с повышением температуры растет.  

Теплопроводность воды значительно больше, чем у других жидкостей (кроме металлов) и изменяется тоже аномально: до 150 С возрастая и лишь затем начиная уменьшаться. Электропроводность воды очень мала, но заметно возрастает при повышении и температуры, и давления. Критическая температура воды равна 374 С, критическое давление 218 атм.  


Теплопроводность воды значительно больше, чем у других жидкостей (кроме металлов), и изменяется тоже аномально: до 150 С возрастает и лишь затем начинает уменьшаться. Электропроводность воды очень мала, но заметно возрастает при повышении и температуры, и давления. Критическая температура воды равна 374 С, критическое давление 218 атм.  

Динамическая вязкость ц (Па-с некоторых водных растворов.| Изменение массовой теплоемкости водных растворов некоторых солей в зависимости от концентрации раствора.| Теплопроводность некоторых растворов в зависимости от концентрации при 20 С.  

Теплопроводность воды имеет положительный температурный ход, поэтому при малых концентрациях теплопровод-кость водных растворов многих солей, кислот и щелочей с повышением температуры растет.  

Теплопроводность воды, водных растворов солей, спиртоводных растворов и некоторых других жидкостей (например, гликолей) возрастает с повышением температуры.  

Теплопроводность воды очень незначительна по сравнению с теплопроводностью других веществ; так, теплопроводность пробки - 0 1; асбеста - 0 3 - 0 6; бетона - 2 - 3; дерева - 0 3 - 1 0; кирпича-1 5 - 2 0; льда - 5 5 кал / см сек град.  

Теплопроводность воды X при 24 равна 0 511, теплоемкость ее с 1 ккал кг С.  

Теплопроводность воды прн 25 равна 1 43 - 10 - 3 кал / см-сек.  

Поскольку теплопроводность воды (Я 0 5 ккал / м - ч - град) примерно в 25 раз больше, чем у неподвижного воздуха, вытеснение воздуха водой повышает теплопроводность пористого материала. При быстром замораживании и образовании в порах строительных материалов уже не льда, а снега (Я 0 3 - 0 4), как показали наши наблюдения, теплопроводность материала, наоборот, несколько уменьшается. Правильный учет влажности материалов имеет большое значение для теплотехнических расчетов сооружений как надземных, так и подземных, например водоканализационных.  

Теории явлений переноса, основанные на статистическом методе Гиббса, ставят перед собой задачу получить кинетические уравнения, из которых можно найти конкретный вид неравновесных функций распределения. Предполагается, что неравновесная функция распределения системы имеет квазиравновесную форму, причем температура, плотность числа частиц и их средняя скорость зависят от

пространственно-временных координат. Корреляция последовательных столкновений достигается тем, что учитываются не только жесткие столкновения (обусловленные отталкиванием), но и так называемые мягкие столкновения (обусловленные притяжением), в результате чего частицы движутся по искривленным траекториям.

Наибольшей известностью пользуется метод Кирквуда, в котором мягкие соударения определяют коэффициент трения. Согласно Эйнштейну - Смолуховскому коэффициент трения

где постоянная Больцмана, Т - абсолютная температура и коэффициент самодиффузии.

Корреляция взаимодействия окружающих частиц с данной частицей по Кирквуду осуществляется на протяжении характерного времени та, по прошествии которого силы, действующие со стороны других частиц на данную, рассматриваются как некоррелированные Причем величина времени корреляции взаимодействия должна быть меньше характеристического времени релаксации макроскопических характеристик вещества.

Для коэффициента теплопроводности Кирквуд получает следующее выражение

где число частиц в единице объема, радиальная равновесная функция распределения частиц, -потенциал парных сил.

Кроме того, что для вычисления № по эгой формуле необходимо знать с большой точностью не только но и ее производные, а также (что само по себе представляет пракшчески неразрешимую в настоящий момент задачу) Недавно было показано, что кинетические коэффициенты нельзя непосредственно разлагать в ряд по степеням плотности, как целает Кирквуд, а необходимо использовать более сложное разложение. Это связано с необходимостью учитывав повторные соударения частиц, уже скоррелированные в

результат предыдущих столкновений с другими частицами. В связи с перечисленными трудностями приходится прибегать к модельным методам исследования.

Среди модельных работ представляют интерес работы, основанные на представлениях о характере теплового движения в жидкостях, при котором перенос тепла определяется посредством гиперакустических колебаний среды (фононов). Такой подход учитывает коллективный характер движения молекул в жидкости. При этом теплопроводность К определяется, например, следующим образом (формула Сакиадиса и Котеса)

где - скорость гиперзвука; теплоемкость при постоянном давлении, среднее расстояние между молекулами, плотность.

Помимо модельного подхода имеют место и полуэмпирические соотношения для теплопроводности (Филиппов,

Теплопроводность примерно в 5 раз меньше теплопроводности (табл. 43). Четыреххлористый углерод - обычная жидкость, для которой имеет место, как и для всех других жидкостей, уменьшение скорости звука с ростом температуры, уменьшение теплопроводности и рост теплоемкости. У воды при малых температурах все наоборот. Характер изменения всех этих свойств в воде напоминает характер их изменения для обычных веществ в газообразном состоянии. В самом деле, теплопроводность газа растет с ростом температуры

Средняя скорость молекул, теплоемкость и длина свободного пробега).

Для примера ниже приводится зависимость теплопроводности воздуха при атмосферном давлении для ряда температур.

Изменение теплопроводности при плавлении льда I и дальнейшее изменение Т с ростом температуры жидкой воды представлено на рис. 57, откуда видно, что теплопроводность при плавлении льда I уменьшается приблизительно в

Таблица 43 (см. скан) Температурные зависимости теплопроводностей воды и четыреххлористого углерода

4 раза. Исследование изменения теплопроводности переохлажденной воды вплоть до -40°С показывает, что переохлажденная вода не имеет никаких особенностей при 0°С (табл. 43). Для иллюстрации нормального температурного хода теплопроводности представлена зависимость теплопроводности от температуры. Теплопроводность монотонно уменьшается с ростом температуры.

Все нормальные жидкости с ростом давления изменяют знак изменения теплопроводности с температурой. Для большого класса жидкостей это изменение имеет место при давлении Теплопроводность воды не изменяет характера температурной зависимости под давлением. Относительная величина увеличения теплопроводности воды при давлении составляет -50%, в то время как для

других нормальных жидкостей это увеличение при том же давления составляет (рис. 58).

Зависимость К от давления для воды представлена на рис. 58. Такое маленькое относительное увеличение теплопроводности воды с ростом давления связано с малой сжимаемостью воды по сравнению с другими жидкостями, которая определяется характером сил межмолекулярного взаимодействия.

Рис. 57. Зависимость теплопроводности воды и от температуры

Рис. 58. Зависимость от температуры теплопроводности и силиконового масла для ряда давлений

В разделе на вопрос что такое коэффициент теплопроводности (например воды) ?? (у воды чему равен?) заданный автором Европеоидный лучший ответ это Коэффициент теплопроводности - численная характеристика теплопроводности материала, равная количеству теплоты (в килокалориях) , проходящей через материал толщиной 1 м и площадью 1 кв. м за час при разности температур на двух противоположных поверхностях в 1 град. C. Наибольшую теплопроводность имеют металлы, наименьшую - газы.
А вот про воду.. .
"Коэффициент теплопроводности большинства жидкостей с повышением температуры убывает. Вода в этом отношении является исключением. С увеличением температуры от 0 до 127°С коэффициент теплопроводности воды увеличивается, а при дальнейшем возрастании температуры - уменьшается (рис. 3.2). При 0°С коэффициент теплопроводности воды равен 0,569 Вт/(м·°С). С увеличением минерализации воды коэффициент ее теплопроводности уменьшается, но очень незначительно"... См.
Источник: Cловарь по естественным наукам. Глоссарий. ру

Ответ от Александр Тюкин [гуру]
То, что сказал Фесс ХХ - это не коэффициент теплопроводности, а объемная теплоемкость.
Коэффициент теплопроводности какого-либо вещества - это величина, которая показывает, какое количество теплоты требуется приложить к одному концу бесконечно тонкой проволоки из этого вещества, чтобы точка этой проволоки на расстоянии 1 м от этого конца за одну секунду увеличилась на 1 градус (при условии нулевой теплоотдачи в пространство). Майк все грамотно написал.



Ответ от Майк [гуру]
Теплопрово́дность - это способность вещества переносить тепловую энергию, а также количественная оценка этой способности (также называется коэффициентом теплопроводности).
Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передается из более нагретых областей тела к менее нагретым областям
Вещество Коэффициент теплопроводности
Вт/(м*град)
Алюминий 209,3
Железо 74,4
Золото 312,8
Латунь 85,5
Медь 389,6
Ртуть 29,1
Серебро 418,7
Сталь 45,4
Чугун 62,8
воды, 2,1

Теплопроводность воды – свойство, которым мы все, того не подозревая, очень часто пользуемся в быту.

Кратко про это свойство мы уже писали в нашей статье ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА ВОДЫ В ЖИДКОМ СОСТОЯНИИ → , в данном же материале дадим более развернутое определение.

Вначале рассмотрим значение термина теплопроводность в общем.

Теплопроводность, это …

Справочник технического переводчика

Теплопроводность — теплообмен, при котором перенос теплоты в неравномерно нагретой среде имеет атомно-молекулярный характер

[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

Теплопроводность — способность материала пропускать тепловой поток

[СТ СЭВ 5063-85]

Справочник технического переводчика

Толковый словарь Ушакова

Теплопроводность, теплопроводности, мн. нет, жен. (физ.) — свойство тел распространять тепло от более нагретых частей к менее нагретым.

Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940

Большой Энциклопедический словарь

Теплопроводность — перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц. Приводит к выравниванию температуры тела. Обычно количество переносимой энергии, определяемое как плотность теплового потока, пропорционально градиенту температуры (закон Фурье). Коэффициент пропорциональности называют коэффициентом теплопроводности.

Большой Энциклопедический словарь. 2000

Теплопроводность воды

Для более объемного понимания общей картины отметим несколько фактов:

  • Теплопроводность воздуха приблизительно в 28 раз меньше теплопроводности воды;
  • У масла теплопроводность ориентировочно в 5 раз меньше чем у воды;
  • При повышении давления теплопроводность повышается;
  • В большинстве случаях, при повышении температуры, теплопроводность слабо концентрированных растворов солей, щелочей и кислот так же растет.

В качестве примера, приведем динамику изменений значений теплопроводности воды в зависимости от температуры, при давлении 1 бар:

0°С – 0,569 Вт/(м град);
10°С – 0,588 Вт/(м град);
20°С – 0,603 Вт/(м град);
30°С – 0,617 Вт/(м град);
40°С – 0,630 Вт/(м град);
50°С – 0,643 Вт/(м град);
60°С – 0,653 Вт/(м град);
70°С – 0,662 Вт/(м град);
80°С – 0,669 Вт/(м град);
90°С – 0,675 Вт/(м град);

100°С – 0,0245 Вт/(м град);
110°С – 0,0252 Вт/(м град);
120°С – 0,026 Вт/(м град);
130°С – 0,0269 Вт/(м град);
140°С – 0,0277 Вт/(м град);
150°С – 0,0286 Вт/(м град);
160°С – 0,0295 Вт/(м град);
170°С – 0,0304 Вт/(м град);
180°С – 0,0313 Вт/(м град).

Теплопроводность, впрочем, как и все остальные, является весьма важным для всех нас свойством воды. Например мы очень часто, сами того не зная, пользуемся им в быту — используем воду для быстрого охлаждения нагретых предметов, а грелку для аккумулирования тепла и его хранения.