Простейшие преобразования графиков функций. Преобразование графиков

Простейшие преобразования графиков функций. Преобразование графиков
Простейшие преобразования графиков функций. Преобразование графиков










Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: Определить закономерности преобразования графиков функций.

Задачи:

Образовательная:

  • Научить обучающихся строить графики функций путем преобразования графика данной функции, применяя параллельный перенос, сжатие (растяжение), различные виды симметрии.

Воспитательная:

  • Воспитывать личностные качества обучающихся (умение слушать), доброжелательность по отношению к окружающим, внимательность, аккуратность, дисциплинированность, умение работать в группе.
  • Воспитывать интерес к предмету и потребности в приобретении знаний.

Развивающая:

  • Развивать пространственное воображение и логическое мышление обучающихся, умение быстро ориентироваться в обстановке; развивать сообразительность, находчивость, тренировать память.

Оборудование:

  • Мультимедийная установка: компьютер, проектор.

Литература:

  1. Башмаков, М. И. Математика [Текст]: учебник для учреждений нач. и сред. проф. образования/ М. И. Башмаков.- 5-е изд., испр. – М.: Издательский центр “Академия”, 2012. – 256 с.
  2. Башмаков, М. И. Математика. Задачник [Текст]: учеб. пособие для образоват. учреждений нач. и сред. проф. образования/ М. И. Башмаков.– М.: Издательский центр “Академия”, 2012. – 416 с.

План урока:

  1. Организационный момент (3 мин).
  2. Актуализация знаний (7 мин).
  3. Объяснение нового материала (20 мин).
  4. Закрепление нового материала (10 мин).
  5. Итог урока (3 мин).
  6. Домашнее задание (2 мин).

Ход урока

1. Орг. момент (3 мин).

Проверка присутствующих.

Сообщение цели урока.

Основные свойства функций как зависимостей между переменными величинами не должны существенно меняться при изменении способа измерения этих величин, т. е. при изменении масштаба измерения и начала отсчета. Однако за счет более рационального выбора способа измерения переменных величин обычно удается упростить запись зависимости между ними, привести эту запись к некоторому стандартному виду. На геометрическом языке изменение способа измерения величин означает некоторые простые преобразования графиков, к изучению которых мы сегодня и перейдем.

2. Актуализация знаний (7 мин).

Прежде чем будем говорить о преобразованиях графиков, повторим пройденный материал.

Устная работа. (Слайд 2).

Даны функции:

3. Охарактеризуйте графики функций: , , , .

3. Объяснение нового материала (20 мин).

Простейшие преобразования графиков – это их параллельный перенос, сжатие (растяжение) и некоторые виды симметрии. Некоторые преобразования представлены в таблице (Приложение 1) , (Слайд 3).

Работа в группах.

Каждая группа строит графики заданных функций и представляет результат для обсуждения.

Функция Преобразование графика функции Примеры функций Слайд
Оу на А единиц вверх, если A >0, и на |A| единиц вниз, если А <0. , (Слайд 4)

Параллельный перенос его вдоль оси Ох на а единиц вправо, если а >0, и на -а единиц влево, если а <0. , (Слайд 5)

Преобразование графиков функций

В этой статье я познакомлю вас с линейными преобразованиями графиков функций и покажу, как с помощью этих преобразований из графика функции получить график функции

Линейным преобразованием функции называется преобразование самой функции и/или ее аргумента к виду , а также преобразование, содержащее модуль аргумента и/или функции.

Наибольшие затруднения при построении графиков с помощью линейных преобразований вызывают следующие действия:

  1. Вычленение базовой функции, собственно, график которой мы и преобразовываем.
  2. Определения порядка преобразований.

И менно на этих моментах мы и остановимся подробнее.

Рассмотрим внимательно функцию

В ее основе лежит функция . Назовем ее базовой функцией .

При построении графика функции мы совершаем преобразования графика базовой функции .

Если бы мы совершали преобразования функции в том же порядке, в каком находили ее значение при определенном значении аргумента, то

Рассмотрим какие виды линейных преобразований аргумента и функции существуют, и как их выполнять.

Преобразования аргумента.

1. f(x) f(x+b)

1. Строим график фунции

2. Сдвигаем график фунции вдоль оси ОХ на |b| единиц

  • влево, если b>0
  • вправо, если b<0

Построим график функции

1. Строим график функции

2. Сдвигаем его на 2 единицы вправо:


2. f(x) f(kx)

1. Строим график фунции

2. Абсциссы точек графика делим на к, ординаты точек оставляем без изменений.

Построим график функции .

1. Строим график функции

2. Все абсциссы точек графика делим на 2, ординаты оставляем без изменений:


3. f(x) f(-x)

1. Строим график фунции

2. Отображаем его симметрично относительно оси OY.

Построим график функции .

1. Строим график функции

2. Отображаем его симметрично относительно оси OY:


4. f(x) f(|x|)

1. Строим график функции

2. Часть графика, расположенную левее оси ОY стираем, часть графика, расположенную правее оси ОY Достраиваем симметрично относительно оси OY:

График функции выглядит так:


Построим график функции

1. Строим график функции (это график функции , смещенный вдоль оси ОХ на 2 единицы влево):


2. Часть графика, расположенную левее оси OY (x<0) стираем:

3. Часть графика, расположенную правее оси OY (x>0) достраиваем симметрично относительно оси OY:


Важно! Два главных правила преобразования аргумента.

1. Все преобразования аргумента совершаются вдоль оси ОХ

2. Все преобразования аргумента совершаются "наоборот" и "в обратном порядке".

Например, в функции последовательность преобразований аргумента такая:

1. Берем модуль от х.

2. К модулю х прибавляем число 2.

Но построение графика мы совершали в обратном порядке:

Сначала выполнили преобразование 2. - сместили график на 2 единицы влево (то есть абсциссы точек уменьшили на 2, как бы "наоборот")

Затем выполнили преобразование f(x) f(|x|).

Коротко последовательность преобразований записывается так:



Теперь поговорим о преобразовании функции . Преобразования совершаются

1. Вдоль оси OY.

2. В той же последовательности, в какой выполняются действия.

Вот эти преобразования:

1. f(x)f(x)+D

2. Смещаем его вдоль оси OY на |D| единиц

  • вверх, если D>0
  • вниз, если D<0

Построим график функции

1. Строим график функции

2. Смещаем его вдоль оси OY на 2 единицы вверх:


2. f(x)Af(x)

1. Строим график функции y=f(x)

2. Ординаты всех точек графика умножаем на А, абсциссы оставляем без изменений.

Построим график функции

1. Построим график функции

2. Ординаты всех точек графика умножим на 2:


3. f(x)-f(x)

1. Строим график функции y=f(x)

Построим график функции .

1. Строим график функции .

2. Отображаем его симметрично относительно оси ОХ.


4. f(x)|f(x)|

1. Строим график функции y=f(x)

2. Часть графика, расположенную выше оси ОХ оставляем без изменений, часть графика, расположенную ниже оси OX, отображаем симметрично относительно этой оси.

Построим график функции

1. Строим график функции . Он получается смещением графика функции вдоль оси OY на 2 единицы вниз:


2. Теперь часть графика, расположенную ниже оси ОХ, отобразим симметрично относительно этой оси:


И последнее преобразование, которое, строго говоря, нельзя назвать преобразованием функции, поскольку результат этого преобразования функцией уже не является:

|y|=f(x)

1. Строим график функции y=f(x)

2. Часть графика, расположенную ниже оси ОХ стираем, затем часть графика, расположенную выше оси ОХ достраиваем симметрично относительно этой оси.

Построим график уравнения

1. Строим график функции :


2. Часть графика, расположенную ниже оси ОХ стираем:


3. Часть графика, расположенную выше оси ОХ достраиваем симметрично относительно этой оси.

И, наконец, предлагаю вам посмотреть ВИДЕОУРОК в котором я показываю пошаговый алгоритм построения графика функции

График этой функции выглядит так:


Гипотеза: Если изучить движение графика при образовании уравнения функций то можно заметить что все графики подчиняются общим закономерностям поэтому можно сформулировать общие законы вне зависимости от функций, что позволит не только облегчить построение графиков различных функций, но и использовать их при решении задач.

Цель: Изучить движение графиков функций:

1)Задача изучение литературы

2) Научится строить графики различных функций

3) Научится преобразовывать графики линейных функций

4) Рассмотреть вопрос применения графиков при решении задач

Объект исследования: Графики функций

Предмет исследования: Движения графиков функций

Актуальность: Построение графиков функций, как правило занимает очень много времени и требует внимательности со стороны ученика, но зная правила преобразования графиков функций и графики основных функций можно достаточно быстро и легко построить графики функций что позволит не только выполнять задания на построения графиков функций, но и решать связанные с ним задачи (на нахождения максимально (минимально высоты времени и точки встречи))

Данный проект полезен всем ученикам школы.

Обзор литературы :

В литературе рассматриваются способы построения графика различных функций, а так же приведены примеры преобразования графиков этих функций. Графики практически всех основных функций используются в различных технических процессах, что позволяет более наглядно представить течение процесса и спрограммировать результат

Постоянная функция. Эта функция задана формулой у = b, где b – некоторое число. Графиком постоянной функции является прямая, параллельная оси абсцисс и проходящая через точку (0; b) на оси ординат. Графиком функции у = 0 является ось абсцисс.

Виды функции 1Прямая пропорциональность. Эта функция задана формулой у = kx, где коэффициент пропорциональности k ≠ 0. Графиком прямой пропорциональности является прямая, проходящая через начало координат.

Линейная функция. Такая функция задана формулой у = kx + b, где k и b – действительные числа. Графиком линейной функции является прямая.

Графики линейных функций могут пересекаться или быть параллельными.

Так, прямые графиков линейных функций у = k 1 x + b 1 и у = k 2 x + b 2 пересекаются, если k 1 ≠ k 2 ; если же k 1 = k 2 , то прямые параллельны.

2Обратная пропорциональность – это функция, которая задана формулой у = k/x, где k ≠ 0. K называется коэффициентом обратной пропорциональности. Графиком обратной пропорциональности является гипербола.

Функция у = х 2 представлена графиком, получившим название парабола: на промежутке [-~; 0] функция убывает, на промежутке функция возрастает.

Функция у = х 3 возрастает на всей числовой прямой и графически представлена кубической параболой.

Степенная функция с натуральным показателем. Эта функция задана формулой у = х n , где n – натуральное число. Графики степенной функции с натуральным показателем зависят от n. Например, если n = 1, то графиком будет прямая (у = х), если n = 2, то графиком будет парабола и т.д.

Степенная функция с целым отрицательным показателем представлена формулой у = х -n , где n – натуральное число. Данная функция определена при всех х ≠ 0. График функции также зависит от показателя степени n.

Степенная функция с положительным дробным показателем. Эта функция представлена формулой у = х r , где r – положительная несократимая дробь. Данная функция также не является ни четной, ни нечетной.

График-линия которая отображает взаимосвязь зависимой и независимой переменных на координатной плоскости. График служит для наглядного отображения этих элементов

Независимая переменная это переменная которая может принимать любые значения в области определения функций (где данная функция имеет смысл(нельзя делить на нуль))

Чтобы построить график функций необходимо

1)Найти ОДЗ (область допустимых значений)

2)взять несколько произвольных значений для независимой переменной

3)Найти значен6ие зависимой переменной

4)Построить координатную плоскость отметить на ней данные точки

5) Соединить их линии при необходимости исследовать полученный график Преобразование графиков элементарных функций.

Преобразование графиков

В чистом виде основные элементарные функции встречаются, к сожалению, не так часто. Гораздо чаще приходится иметь дело с элементарными функциями, полученными из основных элементарных при помощи добавления констант и коэффициентов. Графики таких функций можно строить, применяя геометрические преобразования к графикам соответствующих основных элементарных функций (или переходить к новой системе координат). К примеру, квадратичная функция формула представляет собой квадратичную параболу формула, сжатую втрое относительно оси ординат, симметрично отображенную относительно оси абсцисс, сдвинутую против направления этой оси на 2/3 единицы и сдвинутую по направлению оси ординат на 2 единицы.

Давайте разберемся в этих геометрических преобразованиях графика функции пошагово на конкретных примерах.

С помощью геометрических преобразований графика функции f(x) может быть построен график любой функции вида формула, где формула - коэффициенты сжатия или растяжения вдоль осей oy и ox соответственно, знаки «минус» перед коэффициентами формула и формула указывают на симметричное отображение графика относительно координатных осей, а и b определяют сдвиг относительно осей абсцисс и ординат соответственно.

Таким образом, различают три вида геометрических преобразований графика функции:

Первый вид - масштабирование (сжатие или растяжение) вдоль осей абсцисс и ординат.

На необходимость масштабирования указывают коэффициенты формулы отличные от единицы, если число меньше 1 , то происходит сжатие графика относительно oy и растяжение относительно ox , если число больше 1, то производим растяжение вдоль оси ординат и сжатие вдоль оси абсцисс.

Второй вид - симметричное (зеркальное) отображение относительно координатных осей.

На необходимость этого преобразования указывают знаки «минус» перед коэффициентами формулы (в этом случае симметрично отображаем график относительно оси ox) и формула (в этом случае симметрично отображаем график относительно оси oy). Если знаков «минус» нет, то этот шаг пропускается.

Параллельный перенос.

ПЕРЕНОС ВДОЛЬ ОСИ ОРДИНАТ

f(x) => f(x) - b
Пусть требуется построить график функции у = f(х) - b. Нетрудно заметить, что ординаты этого графика для всех значений x на |b| единиц меньше соответствующих ординат графика функций у = f(х) при b>0 и на |b| единиц больше - при b 0 или вверх при b Для построения графика функции y + b = f(x) следует построить график функции y = f(x) и перенести ось абсцисс на |b| единиц вверх при b>0 или на |b| единиц вниз при b

ПЕРЕНОС ВДОЛЬ ОСИ АБСЦИСС

f(x) => f(x + a)
Пусть требуется построить график функции у = f(x + a). Рассмотрим функцию y = f(x), которая в некоторой точке x = x1 принимает значение у1 = f(x1). Очевидно, функция у = f(x + a) примет такое же значение в точке x2, координата которой определяется из равенства x2 + a = x1, т.е. x2 = x1 - a, причем рассматриваемое равенство справедливо для совокупности всех значений из области определения функции. Следовательно, график функции у = f(x + a) может быть получен параллельным перемещением графика функции y = f(x) вдоль оси абсцисс влево на |a| единиц при a > 0 или вправо на |a| единиц при a Для построения графика функции y = f(x + a) следует построить график функции y = f(x) и перенести ось ординат на |a| единиц вправо при a>0 или на |a| единиц влево при a

Примеры:

1.y=f(x+a)

2.y=f(x)+b

Отражение.

ПОСТРОЕНИЕ ГРАФИКА ФУНКЦИИ ВИДА Y = F(-X)

f(x) => f(-x)
Очевидно, что функции y = f(-x) и y = f(x) принимают равные значения в точках, абсциссы которых равны по абсолютной величине, но противоположны по знаку. Иначе говоря, ординаты графика функции y = f(-x) в области положительных (отрицательных) значений х будут равны ординатам графика функции y = f(x) при соответствующих по абсолютной величине отрицательных (положительных) значениях х. Таким образом, получаем следующее правило.
Для построения графика функции y = f(-x) следует построить график функции y = f(x) и отразить его относительно оси ординат. Полученный график является графиком функции y = f(-x)

ПОСТРОЕНИЕ ГРАФИКА ФУНКЦИИ ВИДА Y = - F(X)

f(x) => - f(x)
Ординаты графика функции y = - f(x) при всех значениях аргумента равны по абсолютной величине, но противоположны по знаку ординатам графика функции y = f(x) при тех же значениях аргумента. Таким образом, получаем следующее правило.
Для построения графика функции y = - f(x) следует построить график функции y = f(x) и отразить его относительно оси абсцисс.

Примеры:

1.y=-f(x)

2.y=f(-x)

3.y=-f(-x)

Деформация.

ДЕФОРМАЦИЯ ГРАФИКА ВДОЛЬ ОСИ ОРДИНАТ

f(x) => k f(x)
Рассмотрим функцию вида y = k f(x), где k > 0. Нетрудно заметить, что при равных значениях аргумента ординаты графика этой функции будут в k раз больше ординат графика функции у = f(x) при k > 1 или 1/k раз меньше ординат графика функции y = f(x) при k Для построения графика функции y = k f(x) следует построить график функции y = f(x) и увеличить его ординаты в k раз при k > 1(произвести растяжение графика вдоль оси ординат) или уменьшить его ординаты в 1/k раз при k
k > 1 - растяжение от оси Ох
0 - сжатие к оси OX


ДЕФОРМАЦИЯ ГРАФИКА ВДОЛЬ ОСИ АБСЦИСС

f(x) => f(k x)
Пусть требуется построить график функции y = f(kx), где k>0. Рассмотрим функцию y = f(x), которая в произвольной точке x = x1 принимает значение y1 = f(x1). Очевидно, что функция y = f(kx) принимает такое же значение в точке x = x2, координата которой определяется равенством x1 = kx2, причем это равенство справедливо для совокупности всех значений х из области определения функции. Следовательно, график функции y = f(kx) оказывается сжатым (при k 1) вдоль оси абсцисс относительно графика функции y = f(x). Таким образом, получаем правило.
Для построения графика функции y = f(kx) следует построить график функции y = f(x) и уменьшить его абсциссы в k раз при k>1 (произвести сжатие графика вдоль оси абсцисс) или увеличить его абсциссы в 1/k раз при k
k > 1 - сжатие к оси Оу
0 - растяжение от оси OY




Работу выполнили Чичканов Александр, Леонов Дмитрий под руководством Ткач Т.В, Вязовова С.М, Островерховой И.В.
©2014