Дайте определение четной функции. Как определять четные и нечетные функции

Дайте определение четной функции. Как определять четные и нечетные функции
Дайте определение четной функции. Как определять четные и нечетные функции

Для этого воспользуйтесь миллиметровкой или графическим калькулятором. Выберите несколько любых числовых значений независимой переменной x {\displaystyle x} и подставьте их в функцию, чтобы вычислить значения зависимой переменной y {\displaystyle y} . Найденные координаты точек нанесите на координатную плоскость, а затем соедините эти точки, чтобы построить график функции.

  • В функцию подставьте положительные числовые значения x {\displaystyle x} и соответствующие отрицательные числовые значения. Например, дана функция . Подставьте в нее следующие значения x {\displaystyle x} :
    • f (1) = 2 (1) 2 + 1 = 2 + 1 = 3 {\displaystyle f(1)=2(1)^{2}+1=2+1=3} (1 , 3) {\displaystyle (1,3)} .
    • f (2) = 2 (2) 2 + 1 = 2 (4) + 1 = 8 + 1 = 9 {\displaystyle f(2)=2(2)^{2}+1=2(4)+1=8+1=9} . Получили точку с координатами (2 , 9) {\displaystyle (2,9)} .
    • f (− 1) = 2 (− 1) 2 + 1 = 2 + 1 = 3 {\displaystyle f(-1)=2(-1)^{2}+1=2+1=3} . Получили точку с координатами (− 1 , 3) {\displaystyle (-1,3)} .
    • f (− 2) = 2 (− 2) 2 + 1 = 2 (4) + 1 = 8 + 1 = 9 {\displaystyle f(-2)=2(-2)^{2}+1=2(4)+1=8+1=9} . Получили точку с координатами (− 2 , 9) {\displaystyle (-2,9)} .
  • Проверьте, симметричен ли график функции относительно оси Y. Под симметрией подразумевается зеркальное отображение графика относительно оси ординат. Если часть графика справа от оси Y (положительные значения независимой переменной) совпадает с частью графика слева от оси Y (отрицательные значения независимой переменной), график симметричен относительно оси Y. Если функция симметрична относительно оси ординат, такая функция четная.

    • Проверить симметричность графика можно по отдельным точкам. Если значение y {\displaystyle y} x {\displaystyle x} , совпадает со значением y {\displaystyle y} , которое соответствует значению − x {\displaystyle -x} , функция является четной. В нашем примере с функцией f (x) = 2 x 2 + 1 {\displaystyle f(x)=2x^{2}+1} мы получили следующие координаты точек:
      • (1,3) и (-1,3)
      • (2,9) и (-2,9)
    • Обратите внимание, что при x=1 и x=-1 зависимая переменная у=3, а при x=2 и x=-2 зависимая переменная у=9. Таким образом, функция четная. На самом деле, чтобы точно выяснить вид функции, нужно рассмотреть более двух точек, но описанный способ является хорошим приближением.
  • Проверьте, симметричен ли график функции относительно начала координат. Начало координат – это точка с координатами (0,0). Симметрия относительно начала координат означает, что положительному значению y {\displaystyle y} (при положительном значении x {\displaystyle x} ) соответствует отрицательное значение y {\displaystyle y} (при отрицательном значении x {\displaystyle x} ), и наоборот. Нечетные функции обладают симметрией относительно начала координат.

    • Если в функцию подставить несколько положительных и соответствующих отрицательных значений x {\displaystyle x} , значения y {\displaystyle y} будут различаться по знаку. Например, дана функция f (x) = x 3 + x {\displaystyle f(x)=x^{3}+x} . Подставьте в нее несколько значений x {\displaystyle x} :
      • f (1) = 1 3 + 1 = 1 + 1 = 2 {\displaystyle f(1)=1^{3}+1=1+1=2} . Получили точку с координатами (1,2).
      • f (− 1) = (− 1) 3 + (− 1) = − 1 − 1 = − 2 {\displaystyle f(-1)=(-1)^{3}+(-1)=-1-1=-2}
      • f (2) = 2 3 + 2 = 8 + 2 = 10 {\displaystyle f(2)=2^{3}+2=8+2=10}
      • f (− 2) = (− 2) 3 + (− 2) = − 8 − 2 = − 10 {\displaystyle f(-2)=(-2)^{3}+(-2)=-8-2=-10} . Получили точку с координатами (-2,-10).
    • Таким образом, f(x) = -f(-x), то есть функция нечетная.
  • Проверьте, имеет ли график функции какую-нибудь симметрию. Последний вид функции – это функция, график которой не имеет симметрии, то есть зеркальное отображение отсутствует как относительно оси ординат, так и относительно начала координат. Например, дана функция .

    • В функцию подставьте несколько положительных и соответствующих отрицательных значений x {\displaystyle x} :
      • f (1) = 1 2 + 2 (1) + 1 = 1 + 2 + 1 = 4 {\displaystyle f(1)=1^{2}+2(1)+1=1+2+1=4} . Получили точку с координатами (1,4).
      • f (− 1) = (− 1) 2 + 2 (− 1) + (− 1) = 1 − 2 − 1 = − 2 {\displaystyle f(-1)=(-1)^{2}+2(-1)+(-1)=1-2-1=-2} . Получили точку с координатами (-1,-2).
      • f (2) = 2 2 + 2 (2) + 2 = 4 + 4 + 2 = 10 {\displaystyle f(2)=2^{2}+2(2)+2=4+4+2=10} . Получили точку с координатами (2,10).
      • f (− 2) = (− 2) 2 + 2 (− 2) + (− 2) = 4 − 4 − 2 = − 2 {\displaystyle f(-2)=(-2)^{2}+2(-2)+(-2)=4-4-2=-2} . Получили точку с координатами (2,-2).
    • Согласно полученным результатам, симметрии нет. Значения y {\displaystyle y} для противоположных значений x {\displaystyle x} не совпадают и не являются противоположными. Таким образом, функция является ни четной, ни нечетной.
    • Обратите внимание, что функцию f (x) = x 2 + 2 x + 1 {\displaystyle f(x)=x^{2}+2x+1} можно записать так: f (x) = (x + 1) 2 {\displaystyle f(x)=(x+1)^{2}} . Будучи записанной в такой форме, функция кажется четной, потому что присутствует четный показатель степени. Но этот пример доказывает, что вид функции нельзя быстро определить, если независимая переменная заключена в скобки. В этом случае нужно раскрыть скобки и проанализировать полученные показатели степени.















  • Назад Вперёд

    Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

    Цели:

    • сформировать понятие чётности и нечётности функции, учить умению определять и использовать эти свойства при исследовании функций, построении графиков;
    • развивать творческую активность учащихся, логическое мышление, умение сравнивать, обобщать;
    • воспитывать трудолюбие, математическую культуру; развивать коммуникативные качества.

    Оборудование: мультимедийная установка, интерактивная доска, раздаточный материал.

    Формы работы: фронтальная и групповая с элементами поисково-исследовательской деятельности.

    Информационные источники:

    1.Алгебра9класс А.Г Мордкович. Учебник.
    2.Алгебра 9класс А.Г Мордкович. Задачник.
    3.Алгебра 9 класс. Задания для обучения и развития учащихся. Беленкова Е.Ю. Лебединцева Е.А

    ХОД УРОКА

    1. Организационный момент

    Постановка целей и задач урока.

    2. Проверка домашнего задания

    №10.17 (Задачник 9кл. А.Г. Мордкович).

    а) у = f (х ), f (х ) =

    б) f (–2) = –3; f (0) = –1; f (5) = 69;

    в) 1. D(f ) = [– 2; + ∞)
    2. Е(f ) = [– 3; + ∞)
    3. f (х ) = 0 при х ~ 0,4
    4. f (х ) >0 при х > 0,4 ; f (х ) < 0 при – 2 < х < 0,4.
    5. Функция возрастает при х € [– 2; + ∞)
    6. Функция ограничена снизу.
    7. у наим = – 3, у наиб не существует
    8. Функция непрерывна.

    (Вы использовали алгоритм исследования функции?) Слайд.

    2. Таблицу, которую вам задавалась, проверим по слайду.

    Заполните таблицу

    Область определения

    Нули функции

    Промежутки знакопостоянства

    Координаты точек пересечения графика с Оу

    х = –5,
    х = 2

    х € (–5;3) U
    U (2; ∞)

    х € (–∞;–5) U
    U (–3;2)

    х ∞ –5,
    х ≠ 2

    х € (–5;3) U
    U (2; ∞)

    х € (–∞;–5) U
    U (–3;2)

    х ≠ –5,
    х ≠ 2

    х € (–∞; –5) U
    U (2; ∞)

    х € (–5; 2)

    3. Актуализация знаний

    – Даны функции.
    – Указать область определения для каждой функции.
    – Сравнить значение каждой функции для каждой пары значения аргумента: 1 и – 1; 2 и – 2.
    – Для каких из данных функций в области определения выполняются равенства f (– х ) = f (х ), f (– х ) = – f (х )? (полученные данные занести в таблицу) Слайд

    f (1) и f (– 1) f (2) и f (– 2) графики f (– х ) = –f (х ) f (– х ) = f (х )
    1. f (х ) =
    2. f (х ) = х 3
    3. f (х ) = | х |
    4. f (х ) = 2х – 3
    5. f (х ) =

    х ≠ 0

    6. f (х )= х > –1

    и не опред.

    4. Новый материал

    – Выполняя данную работу, ребята мы выявили ещё одно свойство функции, незнакомое вам, но не менее важное, чем остальные – это чётность и нечетность функции. Запишите тему урока: «Чётные и нечётные функции», наша задача – научиться определять чётность и нечётность функции, выяснить значимость этого свойства в исследовании функций и построении графиков.
    Итак, найдём определения в учебнике и прочитаем (стр. 110). Слайд

    Опр. 1 Функция у = f (х ), заданная на множестве Х называется чётной , если для любого значения х Є Х выполняется равенство f(–х)= f(х). Приведите примеры.

    Опр. 2 Функция у = f (х) , заданная на множестве Х называется нечётной , если для любого значения х Є Х выполняется равенство f(–х)= –f(х). Приведите примеры.

    Где мы встречались с терминами «четные» и «нечётные»?
    Какие из данных функций будут чётными, как вы думаете? Почему? Какие нечётными? Почему?
    Для любой функции вида у = х n , где n – целое число можно утверждать, что функция нечётна при n – нечётном и функция чётна при n – чётном.
    – Функции вида у = и у = 2х – 3 не являются ни чётным, ни нечётными, т.к. не выполняются равенства f (– х ) = – f (х ), f (– х ) = f (х )

    Изучение вопроса о том, является ли функция чётной или нечётной называют исследованием функции на чётность. Слайд

    В определениях 1 и 2 шла речь о значениях функции при х и – х, тем самым предполагается, что функция определена и при значении х , и при – х .

    Опр 3. Если числовое множество вместе с каждым своим элементом х содержит и противоположный элемент –х, то множество Х называют симметричным множеством.

    Примеры:

    (–2;2), [–5;5]; (∞;∞) – симметричные множества, а , [–5;4] – несимметричные.

    – У чётных функций область определения – симметричное множество? У нечётных?
    – Если же D(f ) – несимметричное множество, то функция какая?
    – Таким образом, если функция у = f (х ) – чётная или нечётная, то её область определения D(f ) – симметричное множество. А верно ли обратное утверждение, если область определения функции симметричное множество, то она чётна, либо нечётна?
    – Значит наличие симметричного множества области определения – это необходимое условие, но недостаточное.
    – Так как же исследовать функцию на четность? Давайте попробуем составить алгоритм.

    Слайд

    Алгоритм исследования функции на чётность

    1. Установить, симметрична ли область определения функции. Если нет, то функция не является ни чётной, ни нечётной. Если да, то перейти к шагу 2 алгоритма.

    2. Составить выражение для f (– х ).

    3. Сравнить f (– х ).и f (х ):

    • если f (– х ).= f (х ), то функция чётная;
    • если f (– х ).= – f (х ), то функция нечётная;
    • если f (– х ) ≠ f (х ) и f (– х ) ≠ –f (х ), то функция не является ни чётной, ни нечётной.

    Примеры:

    Исследовать на чётность функцию а) у = х 5 +; б) у = ; в) у = .

    Решение.

    а) h(х) = х 5 +,

    1) D(h) = (–∞; 0) U (0; +∞), симметричное множество.

    2) h (– х) = (–х) 5 + – х5 –= – (х 5 +),

    3) h(– х) = – h (х) => функция h(х) = х 5 + нечётная.

    б) у =,

    у = f (х ), D(f) = (–∞; –9)? (–9; +∞), несимметричное множество, значит функция ни чётная, ни нечётная.

    в) f (х ) = , у = f (х),

    1) D(f ) = (–∞; 3] ≠ ; б) (∞; –2), (–4; 4]?

    Вариант 2

    1. Является ли симметричным заданное множество: а) [–2;2]; б) (∞; 0], (0; 7) ?


    а); б) у = х· (5 – х 2). 2. Исследуйте на чётность функцию:

    а) у = х 2 · (2х – х 3), б) у =

    3. На рис. построен график у = f (х ), для всех х , удовлетворяющих условию х ? 0.
    Постройте график функции у = f (х ), если у = f (х ) – чётная функция.

    3. На рис. построен график у = f (х ), для всех х, удовлетворяющих условию х? 0.
    Постройте график функции у = f (х ), если у = f (х ) – нечётная функция.

    Взаимопроверка по слайду.

    6. Задание на дом: №11.11, 11.21,11.22;

    Доказательство геометрического смысла свойства чётности.

    ***(Задание варианта ЕГЭ).

    1. Нечётная функция у = f(х) определена на всей числовой прямой. Для всякого неотрицательного значения переменной х значение этой функции совпадает со значением функции g(х ) = х (х + 1)(х + 3)(х – 7). Найдите значение функции h(х ) = при х = 3.

    7. Подведение итогов

    Скрыть Показать

    Способы задания функции

    Пусть функция задается формулой: y=2x^{2}-3 . Назначая любые значения независимой переменной x , можно вычислить, пользуясь данной формулой соответствующие значения зависимой переменной y . Например, если x=-0,5 , то, пользуясь формулой, получаем, что соответствующее значение y равно y=2 \cdot (-0,5)^{2}-3=-2,5 .

    Взяв любое значение, принимаемое аргументом x в формуле y=2x^{2}-3 , можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:

    x −2 −1 0 1 2 3
    y −4 −3 −2 −1 0 1

    Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

    Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x . Наиболее часто, это будет приближенное значение функции.

    Четная и нечетная функция

    Функция является четной функцией , когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy .

    Функция является нечетной функцией , когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0) .

    Функция является ни четной , ни нечетной и называется функцией общего вида , когда она не обладает симметрией относительно оси или начала координат.

    Исследуем на четность нижеприведенную функцию:

    f(x)=3x^{3}-7x^{7}

    D(f)=(-\infty ; +\infty) с симметричной областью определения относительно начала координат. f(-x)= 3 \cdot (-x)^{3}-7 \cdot (-x)^{7}= -3x^{3}+7x^{7}= -(3x^{3}-7x^{7})= -f(x) .

    Значит, функция f(x)=3x^{3}-7x^{7} является нечетной.

    Периодическая функция

    Функция y=f(x) , в области определения которой для любого x выполняется равенство f(x+T)=f(x-T)=f(x) , называется периодической функцией с периодом T \neq 0 .

    Повторение графика функции на любом отрезке оси абсцисс, который имеет длину T .

    Промежутки, где функция положительная, то есть f(x) > 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих выше оси абсцисс.

    f(x) > 0 на (x_{1}; x_{2}) \cup (x_{3}; +\infty)

    Промежутки, где функция отрицательная, то есть f(x) < 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих ниже оси абсцисс.

    f(x) < 0 на (-\infty; x_{1}) \cup (x_{2}; x_{3})

    Ограниченность функции

    Ограниченной снизу принято называть функцию y=f(x), x \in X тогда, когда существует такое число A , для которого выполняется неравенство f(x) \geq A для любого x \in X .

    Пример ограниченной снизу функции: y=\sqrt{1+x^{2}} так как y=\sqrt{1+x^{2}} \geq 1 для любого x .

    Ограниченной сверху называется функция y=f(x), x \in X тогда, когда существует такое число B , для которого выполняется неравенство f(x) \neq B для любого x \in X .

    Пример ограниченной снизу функции: y=\sqrt{1-x^{2}}, x \in [-1;1] так как y=\sqrt{1+x^{2}} \neq 1 для любого x \in [-1;1] .

    Ограниченной принято называть функцию y=f(x), x \in X тогда, когда существует такое число K > 0 , для которого выполняется неравенство \left | f(x) \right | \neq K для любого x \in X .

    Пример ограниченной функции: y=\sin x ограничена на всей числовой оси, так как \left | \sin x \right | \neq 1 .

    Возрастающая и убывающая функция

    О функции, что возрастает на рассматриваемом промежутке принято говорить как о возрастающей функции тогда, когда большему значению x будет соответствовать большее значение функции y=f(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_{1} и x_{2} , причем x_{1} > x_{2} , будет y(x_{1}) > y(x_{2}) .

    Функция, что убывает на рассматриваемом промежутке, называется убывающей функцией тогда, когда большему значению x будет соответствовать меньшее значение функции y(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_{1} и x_{2} , причем x_{1} > x_{2} , будет y(x_{1}) < y(x_{2}) .

    Корнями функции принято называть точки, в которых функция F=y(x) пересекает ось абсцисс (они получаются в результате решения уравнения y(x)=0 ).

    а) Если при x > 0 четная функция возрастает, то убывает она при x < 0

    б) Когда при x > 0 четная функция убывает, то возрастает она при x < 0

    в) Когда при x > 0 нечетная функция возрастает, то возрастает она и при x < 0

    г) Когда нечетная функция будет убывать при x > 0 , то она будет убывать и при x < 0

    Экстремумы функции

    Точкой минимума функции y=f(x) принято называть такую точку x=x_{0} , у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняться неравенство f(x) > f(x_{0}) . y_{min} - обозначение функции в точке min.

    Точкой максимума функции y=f(x) принято называть такую точку x=x_{0} , у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняется неравенство f(x) < f(x^{0}) . y_{max} - обозначение функции в точке max.

    Необходимое условие

    Согласно теореме Ферма: f"(x)=0 тогда, когда у функции f(x) , что дифференцируема в точке x_{0} , появится экстремум в этой точке.

    Достаточное условие

    1. Когда у производной знак меняется с плюса на минус, то x_{0} будет точкой минимума;
    2. x_{0} - будет точкой максимума только тогда, когда у производной меняется знак с минуса на плюс при переходе через стационарную точку x_{0} .

    Наибольшее и наименьшее значение функции на промежутке

    Шаги вычислений:

    1. Ищется производная f"(x) ;
    2. Находятся стационарные и критические точки функции и выбирают принадлежащие отрезку ;
    3. Находятся значения функции f(x) в стационарных и критических точках и концах отрезка. Меньшее из полученных результатов будет являться наименьшим значением функции , а большее — наибольшим .

    Функция называется четной (нечетной), если для любогои выполняется равенство

    .

    График четной функции симметричен относительно оси
    .

    График нечетной функции симметричен относительно начала координат.

    Пример 6.2. Исследовать на четность или нечетность функции

    1)
    ; 2)
    ; 3)
    .

    Решение .

    1) Функция определена при
    . Найдем
    .

    Т.е.
    . Значит, данная функция является четной.

    2) Функция определена при

    Т.е.
    . Таким образом, данная функция нечетная.

    3) функция определена для , т.е. для

    ,
    . Поэтому функция не является ни четной, ни нечетной. Назовем ее функцией общего вида.

    3. Исследование функции на монотонность.

    Функция
    называется возрастающей (убывающей) на некотором интервале, если в этом интервале каждому большему значению аргумента соответствует большее (меньшее) значение функции.

    Функции возрастающие (убывающие) на некотором интервале называются монотонными.

    Если функция
    дифференцируема на интервале
    и имеет положительную (отрицательную) производную
    , то функция
    возрастает (убывает) на этом интервале.

    Пример 6.3 . Найти интервалы монотонности функций

    1)
    ; 3)
    .

    Решение .

    1) Данная функция определена на всей числовой оси. Найдем производную .

    Производная равна нулю, если
    и
    . Область определения – числовая ось, разбивается точками
    ,
    на интервалы. Определим знак производной в каждом интервале.

    В интервале
    производная отрицательна, функция на этом интервале убывает.

    В интервале
    производная положительна, следовательно, функция на этом интервале возрастает.

    2) Данная функция определена, если
    или

    .

    Определяем знак квадратного трехчлена в каждом интервале.

    Таким образом, область определения функции

    Найдем производную
    ,
    , если
    , т.е.
    , но
    . Определим знак производной в интервалах
    .

    В интервале
    производная отрицательна, следовательно, функция убывает на интервале
    . В интервале
    производная положительна, функция возрастает на интервале
    .

    4. Исследование функции на экстремум.

    Точка
    называется точкой максимума (минимума) функции
    , если существует такая окрестность точки, что для всех
    из этой окрестности выполняется неравенство

    .

    Точки максимума и минимума функции называются точками экстремума.

    Если функция
    в точкеимеет экстремум, то производная функции в этой точке равна нулю или не существует (необходимое условие существования экстремума).

    Точки, в которых производная равна нулю или не существует называются критическими.

    5. Достаточные условия существования экстремума.

    Правило 1 . Если при переходе (слева направо) через критическую точку производная
    меняет знак с «+» на «–», то в точкефункция
    имеет максимум; если с «–» на «+», то минимум; если
    не меняет знак, то экстремума нет.

    Правило 2 . Пусть в точке
    первая производная функции
    равна нулю
    , а вторая производная существует и отлична от нуля. Если
    , то– точка максимума, если
    , то– точка минимума функции.

    Пример 6.4 . Исследовать на максимум и минимум функции:

    1)
    ; 2)
    ; 3)
    ;

    4)
    .

    Решение.

    1) Функция определена и непрерывна на интервале
    .

    Найдем производную
    и решим уравнение
    , т.е.
    .Отсюда
    – критические точки.

    Определим знак производной в интервалах ,
    .

    При переходе через точки
    и
    производная меняет знак с «–» на «+», поэтому по правилу 1
    – точки минимума.

    При переходе через точку
    производная меняет знак с «+» на «–», поэтому
    – точка максимума.

    ,
    .

    2) Функция определена и непрерывна в интервале
    . Найдем производную
    .

    Решив уравнение
    , найдем
    и
    – критические точки. Если знаменатель
    , т.е.
    , то производная не существует. Итак,
    – третья критическая точка. Определим знак производной в интервалах.

    Следовательно, функция имеет минимум в точке
    , максимум в точках
    и
    .

    3) Функция определена и непрерывна, если
    , т.е. при
    .

    Найдем производную

    .

    Найдем критические точки:

    Окрестности точек
    не принадлежат области определения, поэтому они не являются т. экстремума. Итак, исследуем критические точки
    и
    .

    4) Функция определена и непрерывна на интервале
    . Используем правило 2. Найдем производную
    .

    Найдем критические точки:

    Найдем вторую производную
    и определим ее знак в точках

    В точках
    функция имеет минимум.

    В точках
    функция имеет максимум.

    Исследование функции.

    1) D(y) – Область опрделения: множество всех тех значений переменной х. при которых алгебраические выражения f(x) и g(x) имеют смысл.

    Если функция задана формулой, то область определения состоит из всех значений независимой переменной, при которых формула имеет смысл.

    2) Свойства функции: четность/нечетность, периодичность:

    Нечётными и чётными называются функции, графики которых обладают симметрией относительно изменения знака аргумента.

      Нечётная функция - функция, меняющая значение на противоположное при изменении знака независимой переменной (симметричная относительно центра координат).

      Чётная функция - функция, не изменяющая своего значения при изменении знака независимой переменной (симметричная относительно оси ординат).

      Ни чётная ни нечётная функция (функция общего вида) - функция, не обладающая симметрией. В эту категорию относят функции, не подпадающие под предыдущие 2 категории.

      Функции, не принадлежащие ни одной из категорий выше, называются ни чётными ни нечётными (или функциями общего вида).

    Нечётные функции

    Нечётная степень где - произвольное целое число.

    Чётные функции

    Чётная степень где - произвольное целое число.

    Периоди́ческая фу́нкция ― функция, повторяющая свои значения через некоторый регулярный интервал аргумента, то есть не меняющая своего значения при добавлении к аргументу некоторого фиксированного ненулевого числа (пери́ода функции) на всей области определения.

    3) Нули (корни) функции - точки, где она обращается в ноль.

    Нахождение точки пересечения графика с осью Oy . Для этого нужно вычислить значение f (0). Найти также точки пересечения графика с осью Ox , для чего найти корни уравнения f (x ) = 0 (или убедиться в отсутствии корней).

    Точки, в которых график пересекает ось , называют нулями функции . Чтобы найти нули функции нужно решить уравнение , то есть найти те значения «икс» , при которых функция обращается в ноль.

    4) Промежутки постоянства знаков, знаки в них.

    Промежутки, где функция f(x) сохраняет знак.

    Интервал знакопостоянства – это интервал, в каждой точке которого функция положительна либо отрицательна.

    ВЫШЕ оси абсцисс.

    НИЖЕ оси .

    5) Непрерывность (точки разрыва, характер разрыва, ассимптоты).

    Непрерывная функция - функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

    Устранимые точки разрыва

    Если предел функции существует , но функция не определена в этой точке, либо предел не совпадает со значением функции в данной точке:

    ,

    то точка называется точкой устранимого разрыва функции (в комплексном анализе -устранимая особая точка).

    Если «поправить» функцию в точке устранимого разрыва и положить , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением функции до непрерывной или доопределением функции по непрерывности , что и обосновывает название точки, как точки устранимого разрыва.

    Точки разрыва первого и второго рода

    Если функция имеет разрыв в данной точке (то есть предел функции в данной точке отсутствует или не совпадает со значением функции в данной точке), то для числовых функций возникает два возможных варианта, связанных с существованием у числовых функций односторонних пределов :

      если оба односторонних предела существуют и конечны, то такую точку называют точкой разрыва первого рода . Точки устранимого разрыва являются точками разрыва первого рода;

      если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода .

    Аси́мпто́та - прямая , обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви вбесконечность.

    Вертикальная

    Вертикальная асимптота - прямая предела .

    Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

    Горизонтальная

    Горизонтальная асимптота - прямая вида при условии существования предела

    .

    Наклонная

    Наклонная асимптота - прямая вида при условии существования пределов

    Замечание: функция может иметь не более двух наклонных (горизонтальных) асимптот.

    Замечание: если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует.

    если в п. 2.), то , и предел находится по формуле горизонтальной асимптоты, .

    6) Нахождение промежутков монотонности. Найти интервалы монотонности функции f (x )(то есть интервалы возрастания и убывания). Это делается с помощью исследования знака производной f (x ). Для этого находят производную f (x ) и решают неравенство f (x )0. На промежутках, где это неравенство выполнено, функция f (x )возрастает. Там, где выполнено обратное неравенство f (x )0, функция f (x )убывает.

    Нахождение локального экстремума. Найдя интервалы монотонности, мы можем сразу определить точки локального экстремума там, где возрастание сменяется убыванием, располагаются локальные максимумы, а там, где убывание сменяется возрастанием - локальные минимумы. Вычислить значение функции в этих точках. Если функция имеет критические точки, не являющиеся точками локального экстремума, то полезно вычислить значение функции и в этих точках.

    Нахождение наибольшего и наименьшего значений функции y = f(x) на отрезке (продолжение)

    1. Найти производную функции: f (x ).

    2. Найти точки, в которых производная равна нулю: f (x )=0x 1, x 2 ,...

    3. Определить принадлежность точек х 1 , х 2 ,отрезку [a ; b ]: пусть x 1a ;b , а x 2a ;b .