Балка нагруженная продольной силой. Изгиб. Построение эпюр при растяжении-сжатии

Балка нагруженная продольной силой. Изгиб. Построение эпюр при растяжении-сжатии
Балка нагруженная продольной силой. Изгиб. Построение эпюр при растяжении-сжатии

УДК 539.52

ПРЕДЕЛЬНАЯ НАГРУЗКА ДЛЯ ЗАЩЕМЛЕННОЙ БАЛКИ, НАГРУЖЕННОЙ ПРОДОЛЬНОЙ СИЛОЙ, НЕСИММЕТРИЧНО РАСПРЕДЕЛЕННОЙ НАГРУЗКОЙ И ОПОРНЫМИ МОМЕНТАМИ

И.А. Монахов1, Ю.К. Басов2

кафедра строительного производства Строительный факультет Московский государственный машиностроительный университет ул. Павла Корчагина, 22, Москва, Россия, 129626

2Кафедра строительных конструкций и сооружений Инженерный факультет Российский университет дружбы народов ул. Орджоникидзе, 3, Москва, Россия, 115419

В статье разработана методика решения задач о малых прогибах балок из идеального жестко-пластического материала при действии несимметрично распределенных нагрузок с учетом предварительного растяжения-сжатия. Разработанная методика применена для исследования напряженно-деформированного состояния однопролетных балок, а также для вычисления предельной нагрузки балок.

Ключевые слова: балка, нелинейность, аналитическое.

В современном строительстве, судостроении, машиностроении, химической промышленности и в других отраслях техники наиболее распространенными видами конструкций являются стержневые, в частности балки. Естественно, что для определения реального поведения стержневых систем (в частности, балок) и ресурсов их прочности необходим учет пластических деформаций.

Расчет конструктивных систем при учете пластических деформаций с помощью модели идеального жесткопластического тела является наиболее простым, с одной стороны, и достаточно приемлемым с точки зрения требований практики проектирования - с другой. Если иметь в виду область малых перемещений конструктивных систем, то это объясняется тем, что несущая способность («предельная нагрузка») идеальных жесткопластических и упругопластических систем оказывается одной и той же.

Дополнительные резервы и более строгая оценка несущей способности конструкций выявляются в результате учета геометрической нелинейности при деформировании их. В настоящее время учет геометрической нелинейности в расчетах конструктивных систем является первоочередной задачей не только с точки зрения развития теории расчета, но и с точки зрения практики проектирования сооружений. Приемлемость решений задач о расчете конструкций в условиях малости

перемещений достаточно неопределенна, с другой стороны, практические данные и свойства деформируемых систем позволяют считать, что большие перемещения являются реально достижимыми. Достаточно указать на конструкции строительных, химических, судо- и машиностроительных объектов. Кроме того, модель жесткопластического тела означает пренебрежение упругими деформациями, т.е. пластические деформации намного превосходят упругие. Поскольку деформациям соответствуют перемещения, то учет больших перемещений жесткопластических систем является уместным.

Однако геометрически нелинейное деформирование конструкций в большинстве случаев неизбежно приводит и к возникновению пластических деформаций. Поэтому особое значение приобретает одновременный учет пластических деформаций и геометрической нелинейности в расчетах конструктивных систем и, конечно, стержневых.

В данной статье рассматриваются малые прогибы. Подобные задачи решались в работах .

Рассматривается балка с защемленными опорами, под действием ступенчатой нагрузки, краевых моментов и предварительно приложенной продольной силы (рис. 1).

Рис. 1. Балка под распределенной нагрузкой

Уравнения равновесия балки при больших прогибах в безразмерной форме имеет вид

d2 т / , ч d2 w dn

-- + (п ± щ)-- + р = ^ - = 0, dx ах ах

х 2w р12 М N ,г,

где х ==, w =-, р =--, т =--, п =-, N и М - внутренние нормальная

I к 5хЪк Ъ!!Ък 25!!Ък

сила и изгибающий момент, р - поперечная равномерно распределенная нагрузка, W - прогиб, х - продольная координата (начало координат на левой опоре), 2к - высота поперечного сечения, Ъ - ширина поперечного сечения, 21 - пролет балки, 5^ - предел текучести материала. Если N задано, то усилие N является следствием действия р при

имеющихся прогибах, 11 = = , черта над буквами означает размерность величин.

Рассмотрим первый этап деформирования - «малые» прогибы. Пластическое сечение возникает при х = х2, в нем т = 1 - п2.

Выражения для скоростей прогибов имеют вид - прогиб при х = х2):

(2-х), (х > Х2),

Решение задачи разбивается на два случая: х2 < 11 и х2 > 11.

Рассмотрим случай х2 < 11.

Для зоны 0 < х2 < 11 из (1) получаем:

Рх 111 1 Р11 к1р/1 т = + к1 р + р/1 -к1 р/1 -±4- +-^41

х -(1 -п2)±а,

(, 1 , р/2 к1 р12Л

Рх2 + к1 р + р11 - к1 р11 -+ 1 ^

Х2 = к1 +11 - к111 - + ^

Учитывая возникновение пластического шарнира при х = х2, получаем:

тх=х = 1 - п2 =- р

(12 к12 Л к +/ - к1 - ^ + к"А

к, + /, - к,/, -L +

(/ 2 к/ 2 Л к1 + /1 - к1/1 - ^ + М

Рассматривая случай х2 > /1, получаем:

для зоны 0 < х < /1 выражение для изгибающих моментов имеет вид

к р-р2 + кар/1+р/1 -к1 р/1 ^ х-(1-П12)±

а для зоны 11 < х < 2 -

^ р-рЦ + 1^ Л

х -(1 -п-)±а +

(. рг- к1 р1-Л

Кх рх2 + кх р+

0, и тогда

I2 12 1 ч ч х2 = 1 -- + -.

Из условия пластичности вытекает равенство

откуда получаем выражение для нагрузки:

к1 - 12 + М Л2

К1/12 - к2 ¡1

Таблица 1

к1 = 0 11 = 0,66

Таблица 2

к1 = 0 11 = 1,33

0 6,48 9,72 12,96 16,2 19,44

0,5 3,24 6,48 9,72 12,96 16,2

Таблица 3

к1 = 0,5 11 = 1,61

0 2,98 4,47 5,96 7,45 8,94

0,5 1,49 2,98 4,47 5,96 7,45

Таблица 5 к1 = 0,8 11 = 0,94

0 2,24 3,56 4,49 5,61 6,73

0,5 1,12 2,24 3,36 4,49 5,61

0 2,53 3,80 5,06 6,33 7,59

0,5 1,27 2,53 3,80 5,06 6,33

Таблица 3

к1 = 0,5 11 = 2,0

0 3,56 5,33 7,11 8,89 10,7

0,5 1,78 3,56 5,33 7,11 8,89

Таблица 6 к1 = 1 11 = 1,33

0 2,0 3,0 4,0 5,0 6,0

0,5 1,0 2,0 3,0 4,0 5,0

Таблица 7 Таблица 8

к, = 0,8 /, = 1,65 k, = 0,2 /, = 0,42

0 2,55 3,83 5,15 6,38 7,66

0,5 1,28 2,55 3,83 5,15 6,38

0 7,31 10,9 14,6 18,3 21,9

0,5 3,65 7,31 10,9 14,6 18,3

Задавая коэффициент нагрузки к1 от 0 до 1, изгибающий момент а от -1 до 1, значение продольной силы п1 от 0 до 1, расстояние /1 от 0 до 2, получим положение пластического шарнира по формулам (3) и (5), а затем получим значение предельной нагрузки по формулам (4) или (6). Численные результаты расчетов сведены в таблицы 1-8.

ЛИТЕРАТУРА

Басов Ю.К., Монахов И.А. Аналитическое решение задачи о больших прогибах жестко-пластической защемленной балки под действием локальной распределенной нагрузки, опорных моментов и продольной силы // Вестник РУДН. Серия «Инженерные исследования». - 2012. - № 3. - С. 120-125.

Савченко Л.В., Монахов И.А. Большие прогибы физически нелинейных круглых пластинок // Вестник ИНЖЕКОНА. Серия «Технические науки». - Вып. 8(35). - СПб., 2009. - С. 132-134.

Галилеев С.М., Салихова Е.А. Исследование частот собственных колебаний элементов конструкции из стеклопластика, углепластика и графена // Вестник ИНЖЕКОНА. Серия «Технические науки». - Вып. 8. - СПб., 2011. - С.102.

Ерхов М.И., Монахов А.И. Большие прогибы предварительно напряженной жесткопласти-ческой балки с шарнирными опорами при равномерно распределенной нагрузке и краевых моментах // Вестник отделения строительных наук Российской академии архитектуры и строительных наук. - 1999. - Вып. 2. - С. 151-154. .

THE LITTLE DEFLECTIONS OF THE PREVIOUSLY INTENSE IDEAL PLASTIC BEAMS WITH THE REGIONAL MOMENTS

I.A. Monakhov1, U.K. Basov2

"Department of Building production manufacture Building Faculty Moscow State Machine-building University Pavla Korchagina str., 22, Moskow, Russia,129626

Department of Bulding Structures and Facilities Enqineering Faculty Peoples" Friendship University of Russia Ordzonikidze str., 3, Moskow, Russia, 115419

In the work up the technique of the decision of problems about the little deflections of beams from ideal hard-plastic material, with various kinds of fastening, for want of action of the asymmetrically distributed loads with allowance for of preliminary stretching-compression is developed. The developed technique is applied for research of the strained-deformed condition of beams, and also for calculation of a deflection of beams with allowance for of geometrical nonlinearity.

Key words: beam, analytic, nonlinearity.

Основные понятия. Поперечная сила и изгибающий момент

При изгибе поперечные сечения, оставаясь плоскими, поворачиваются относительно друг друга вокруг некоторых осей, лежащих в их плоскостях. На изгиб работают балки, оси, валы и другие детали машин и элементы конструкций. В практике встречаются поперечный (прямой), косой и чистый виды изгиба.

Поперечным (прямым) (рис. 61, а) называется изгиб, когда внешние силы, перпендикулярные продольной оси балки, действуют в плоскости, проходящей через ось балки и одну из главных центральных осей её поперечного сечения.

Косой изгиб (рис. 61, б) это изгиб, когда силы действуют в плоскости, проходящей через ось балки, но не проходящей ни через одну из главных центральных осей её поперечного сечения.

В поперечных сечениях балок при изгибе возникают два вида внутренних сил - изгибающий момент М и и поперечная сила Q. В частном случае, когда поперечная сила равна нулю, а возникает только изгибающий момент, то имеет место чистый изгиб (рис. 61, в). Чистый изгиб возникает при нагружении распределенной нагрузкой или при некоторых нагружениях сосредоточенными силами, например, балка, нагруженная двумя симметричными равными силами.

Рис. 61. Изгиб: а - поперечный (прямой) изгиб; б - косой изгиб; в - чистый изгиб

При изучении деформации изгиба мысленно представляется, что балка состоит из бесконечного количества волокон, параллельных продольной оси. При чистом изгибе справедлива гипотеза плоских сечений: волокна, лежащие на выпуклой стороне растягиваются , лежащие на вогнутой стороне - сжимаются , а на границе между ними лежит нейтральный слой волокон (продольная ось), которые только искривляются , не изменяя своей длины; продольные волокна балки не оказывают друг на друга давления и, следовательно, испытывают только растяжение и сжатие.

Внутренние силовые факторы в сечениях балок - поперечная сила Q и изгибающий момент М и (рис. 62) зависят от внешних сил и изменяются по длине балки. Законы изменения поперечных сил и изгибающих моментов представляются некоторыми уравнениями, в которых аргументами являются координаты z поперечных сечений балок, а функциями - Q и М и. Для определения внутренних силовых факторов применим метод сечений.

Рис. 62.

Поперечная сила Q есть равнодействующая внутренних касательных сил в поперечном сечении балки. Следует иметь в виду, что поперечная сила имеет противоположное направление для левой и правой частей балки, что говорит о непригодности правила знаков статики.

Изгибающий момент М и есть результирующий момент относительно нейтральной оси внутренних нормальных сил, действующих в поперечном сечении балки. Изгибающий момент также, как и поперечная сила имеет разное направление для левой и правой части балки. Это говорит о непригодности правила знаков статики при определении изгибающего момента.

Рассматривая равновесие частей балки, расположенных слева и справа от сечения, видно, что в поперечных сечениях должны действовать изгибающий момент М и и поперечная сила Q. Таким образом, в рассматриваемом случае в точках поперечных сечений действуют не только нормальные напряжения, соответствующие изгибающему моменту", но и касательные, соответствующие поперечной силе.

Для наглядного изображения распределения вдоль оси балки поперечных сил Q и изгибающих моментов М и удобно представлять их в виде эпюр, ординаты которых для любых значений абсциссы z дают соответствующие значения Q и М и. Эпюры строятся аналогично построению эпюр продольных сил (см. 4.4) и крутящих моментов (см. 4.6.1.).

Рис. 63. Направление поперечных сил: а - положительное; б - отрицательное

Так как для установления знаков поперечных сил и изгибающих моментов правила знаков статики неприемлемы, установим для них другие правила знаков, а именно:

  • - если внешние сипы (рис.
  • 63, а), лежащие по левую сторону от сечения, стремятся приподнять левую часть балки или, лежащие по правую сторону от сечения, опустить правую часть балки, то поперечная сила Q положительна;
  • - если внешние силы (рис.
  • 63, б), лежащие по левую сторону от сечения, стремятся опустить левую часть балки или, лежащие по правую сторону от сечения, приподнять правую часть балки, то поперечная сила (Зотрицательна;

Рис. 64. Направление изгибающих моментов: а - положительное; б - отрицательное

  • - если внешняя нагрузка (сила и момент) (рис. 64, а), расположенная слева от сечения, даёт момент, направленный по ходу часовой стрелки или, расположенная справа от сечения, направленный против хода часовой стрелки, то изгибающий момент М и считается положительным;
  • - если внешняя нагрузка (рис. 64, б), расположенная слева от сечения, даёт момент, направленный против хода часовой стрелки или, расположенная справа от сечения, направленный по ходу часовой стрелки, то изгибающий момент М и считается отрицательным.

Правило знаков для изгибающих моментов связано с характером деформации балки. Изгибающий момент считается положительным, если балка изгибается выпуклостью вниз (растянутые волокна расположены внизу). Изгибающий момент считается отрицательным, если балка изгибается выпуклостью вверх (растянутые волокна расположены вверху).

Пользуясь правилами знаков, следует мысленно представлять себе сечение балки жёстко защемлённым, а связи - отброшенными и заменёнными их реакциями. Для определения реакций пользуются правилами знаков статики.

Все многообразие существующих опорных устройств схематизируется в виде ряда основных типов опор, из которых

наиболее часто встречаются: шарнирно-подвижная опора (возможные обозначения для нее представлены на рис.1,а), шарнирно-неподвижная опора (рис.1,б) и жесткое защемление , или заделка (рис.1,в).

В шарнирно-подвижной опоре возникает одна опорная реакция, перпендикулярная опорной плоскости. Такая опора лишает опорное сечение одной степени свободы, то есть препятствует смещению в направлении опорной плоскости, но допускает перемещение в перпендикулярном направлении и поворот опорного сечения.
В шарнирно-неподвижной опоре возникают вертикальная и горизонтальная реакции. Здесь невозможны перемещения по направлениям опорных стержней, но допускается поворот опорного сечения.
В жесткой заделке возникают вертикальная и горизонтальная реакции и опорный (реактивный) момент. При этом опорное сечение не может смещаться и поворачиваться.При расчете систем, содержащих жесткую заделку, возникающие опорные реакции можно не определять, выбирая при этом отсеченную часть так, чтобы заделка с неизвестными реакциями в нее не попадала. При расчете систем на шарнирных опорах реакции опор должны быть определены обязательно. Уравнения статики, используемые для этого, зависят от вида системы (балка, рама и др.) и будут приведены в соответствующих разделах настоящего пособия.

2. Построение эпюр продольных сил Nz

Продольная сила в сечении численно равна алгебраической сумме проекций всех сил, приложенных по одну сторону от рассматриваемого сечения, на продольную ось стержня.

Правило знаков для Nz: условимся считать продольную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части стержня, вызывает растяжение и отрицательной - в противном случае.

Пример 1. Построить эпюру продольных сил для жестко защемленной балки (рис.2).

Порядок расчета:

1. Намечаем характерные сечения, нумеруя их от свободного конца стержня к заделке.
2. Определяем продольную силу Nz в каждом характерном сечении. При этом рассматриваем всегда ту отсеченную часть, в которую не попадает жесткая заделка.

По найденным значениям строим эпюру Nz. Положительные значения откладываются (в выбранном масштабе) над осью эпюры, отрицательные - под осью.

3. Построение эпюр крутящих моментов Мкр .

Крутящий момент в сечении численно равен алгебраической сумме внешних моментов, приложенных по одну сторону от рассматриваемого сечения, относительно продольной оси Z.

Правило знаков для Мкр : условимся считать крутящий момент в сечении положительным, если при взгляде на сечение со стороны рассматриваемой отсеченной части внешний момент виден направленным против движения часовой стрелки и отрицательным - в противном случае.

Пример 2. Построить эпюру крутящих моментов для жестко защемленного стержня (рис.3,а).

Порядок расчета.

Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил .

1.Намечаем характерные сечения.
2.Определяем крутящий момент в каждом характерном сечении.

По найденным значениям строимэпюру Мкр (рис.3,б).

4. Правила контроля эпюр Nz и Мкр .

Для эпюр продольных сил и крутящих моментов характерны определенные закономерности, знание которых позволяет оценить правильность выполненных построений.

1. Эпюры Nz и Мкр всегда прямолинейные.

2. На участке, где нет распределенной нагрузки, эпюра Nz(Мкр) - прямая, параллельная оси, а на участке под распределенной нагрузкой - наклонная прямая.

3. Под точкой приложения сосредоточенной силы на эпюре Nz обязательно должен быть скачок на величину этой силы, аналогично под точкой приложения сосредоточенного момента на эпюре Мкр будет скачок на величину этого момента.

5. Построение эпюр поперечных сил Qy и изгибающих моментов Mx в балках

Стержень, работающий на изгиб, называется балкой . В сечениях балок, загруженных вертикальными нагрузками, возникают, как правило, два внутренних силовых фактора - Qy и изгибающий момент Mx .

Поперечная сила в сечении численно равна алгебраической сумме проекций внешних сил, приложенных по одну сторону от рассматриваемого сечения, на поперечную (вертикальную) ось.

Правило знаков для Qy: условимся считать поперечную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, стремится повернуть данное сечение по часовой стрелке и отрицательной - в противном случае.

Схематически это правило знаков можно представить в виде

Изгибающий момент Mx в сечении численно равен алгебраической сумме моментов внешних сил, приложенных по одну сторону от рассматриваемого сечения, относительно оси x , проходящей через данное сечение.

Правило знаков для Mx: условимся считать изгибающий момент в сечении положительным, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, приводит к растяжению в данном сечении нижних волокон балки и отрицательной - в противном случае.

Схематически это правило знаков можно представить в виде:

Следует отметить, что при использовании правила знаков для Mx в указанном виде, эпюра Mx всегда оказывается построенной со стороны сжатых волокон балки.

6. Консольные балки

При построении эпюр Qy и Mx в консольных, или жестко защемленных, балках нет необходимости (как и в рассмотренных ранее примерах) вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала.

Пример 3. Построить эпюры Qy и Mx (рис.4).

Порядок расчета .

1. Намечаем характерные сечения.

Между изгибающим моментом, поперечной силой и интенсивностью распределенной нагрузки легко установить определенную зависимость. Рассмотрим балку, нагруженную произвольной нагрузкой (рисунок 5.10). Определим поперечную силу в произвольном сечении, отстоящем от левой опоры на расстоянии Z.

Проецируя на вертикаль силы, расположенные левее сечения, получаем

Вычисляем поперечную силу в сечении, рас­положенном на расстоянии z + dz от левой опоры.

Рисунок 5.8.

Вычитая (5.1) из (5.2) получаем dQ = qdz , откуда

то есть производная от поперечной силы по абсциссе сечения балки равна интенсивности распределенной нагрузки .

Вычислим теперь изгибающий момент в сечении с абсциссой z , взяв сумму моментов сил, приложенных слева от сечения. Для этого распределенную нагрузку на участке длиной z заменяем ее равнодействующей, равной qz и приложенной в середине участка, на расстоянии z/2 от сечения:

(5.3)

Вычитая (5.3) из (5.4), получаем приращение изгибающего момента

Выражение в скобках представляет собой поперечную силу Q . Тогда . Отсюда получаем формулу

Таким образом, производная от изгибающего момента по абсциссе сечения балки равна поперечной силе (теорема Журавского).

Взяв производную от обеих частей равенства (5.5), получим

т. е. вторая производная от изгибающего момента по абсциссе сечения балки равна интенсивности распределенной нагрузки. Полученные зависимости будем использовать при проверке правильности построения эпюр изгибающих моментов и поперечных сил.

Построение эпюр при растяжении-сжатии

Пример 1.

Круглая колонна диаметра d сжимается силой F . Определить увеличение диаметра , зная модуль упругости Е и коэффициент Пуассона материала колонны.

Р е ш е н и е.

Продольная деформация по закону Гука равна

Используя закон Пуассона, находим поперечную деформацию

С другой стороны, .

Следовательно, .

Пример 2.

Построить эпюры продольной силы, напряжения и перемещения для ступенчатого бруса.

Р е ш е н и е.

1. Определение опорной реакции. Составляем уравнение равновесия в проекции на ось z :

откуда R E = 2qa .

2. Построение эпюр N z , , W .

Э п ю р а N z . Она строится по формуле

,

Э п ю р а . Напряжение равно . Как следует из этой формулы, скачки на эпюре будут обусловлены не только скачками N z , но также резкими изменениями площади поперечных сечений. Определяем значения в характерных точках:

На практике очень часто встречаются случаи совместной работы стержня на изгиб и на растяжение или сжатие. Подобного рода деформация может вызываться или совместным действием на балку продольных и поперечных сил, или только одними продольными силами.

Первый случай изображен на Рис.1. На балку АВ действуют равномерно распределенная нагрузка q и продольные сжимающие силы Р.

Рис.1.

Предположим, что прогибами балки по сравнению с размерами поперечного сечения можно пренебречь; тогда с достаточной для практики степенью точности можно считать, что и после деформации силы Р будут вызывать лишь осевое сжатие балки.

Применяя способ сложения действия сил, мы можем найти нормальное напряжение в любой точке каждого поперечного сечения балки как алгебраическую сумму напряжений, вызванных силами Р и нагрузкой q.

Сжимающие напряжения от сил Р равномерно распределены по площади F поперечного сечения и одинаковы для всех сечений

нормальные напряжения от изгиба в вертикальной плоскости в сечении с абсциссой х, которая отсчитана, скажем, от левого конца балки, выражаются формулой

Таким образом, полное напряжение в точке с координатой z (считая от нейтральной оси) для этого сечения равно

На Рис.2 изображены эпюры распределения напряжений в рассматриваемом сечении от сил Р, нагрузки q и суммарная эпюра.

Наибольшее напряжение в этом сечении будет в верхних волокнах, где оба вида деформации вызывают сжатие; в нижних волокнах может быть или сжатие или растяжение в зависимости от числовых величин напряжений и. Для составления условия прочности найдем наибольшее нормальное напряжение.

Рис.2.

Так как напряжения от сил Р во всех сечениях одинаковы и равномерно распределены, то опасными будут волокна, наиболее напряженные от изгиба. Такими являются крайние волокна в сечении с наибольшим изгибающим моментом; для них

Таким образом, напряжения в крайних волокнах 1 и 2 среднего сечения балки выражаются формулой

и расчетное напряжение будет равно

Если бы силы Р были растягивающими, то знак первого слагаемого изменился бы, опасными были бы нижние волокна балки.

Обозначая буквой N сжимающую или растягивающую силу, можем написать общую формулу для проверки прочности

Описанный ход расчета применяется и при действии на балку наклонных сил. Такую силу можно разложить на нормальную к оси, изгибающую балку, и продольную, сжимающую или растягивающую.

балка изгиб сила сжатие