Вычисление математического ожидания и дисперсии. Дискретные случайные величины

Вычисление математического ожидания и дисперсии. Дискретные случайные величины
Вычисление математического ожидания и дисперсии. Дискретные случайные величины

Случайные величины помимо законов распределения могут описываться также числовыми характеристиками .

Математическим ожиданием М (x) случайной величины называется ее среднее значение.

Математическое ожидание дискретной случайной величины вычисляется по формуле

где значения случайной величины, р i - ихвероятности.

Рассмотрим свойства математического ожидания:

1. Математическое ожидание константы равно самой константе

2. Если случайную величину умножить на некоторое число k, то и математическое ожидание умножится на это же число

М (kx) = kМ (x)

3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий

М (x 1 + x 2 + … + x n) = М (x 1) + М (x 2) +…+ М (x n)

4. М (x 1 - x 2) = М (x 1) - М (x 2)

5. Для независимых случайных величин x 1 , x 2 , … x n математическое ожидание произведения равно произведению их математических ожиданий

М (x 1 , x 2 , … x n) = М (x 1) М (x 2) … М (x n)

6. М (x - М (x)) = М (x) - М (М(x)) = М (x) - М (x) = 0

Вычислим математическое ожидание для случайной величины из Примера 11.

М (x) = = .

Пример 12. Пусть случайные величины x 1 , x 2 заданы соответственно законами распределения:

x 1 Таблица 2

x 2 Таблица 3

Вычислим М (x 1) и М (x 2)

М (x 1) = (- 0,1) 0,1 + (- 0,01) 0,2 + 0 · 0,4 + 0,01 · 0,2 + 0,1 · 0,1 = 0

М (x 2) = (- 20) 0,3 + (- 10) 0,1 + 0 · 0,2 + 10 · 0,1 + 20 · 0,3 = 0

Математические ожидания обеих случайных величин одинаковы- они равны нулю. Однако характер их распределения различный. Если значения x 1 мало отличаются от своего математического ожидания, то значения x 2 в большой степени отличаются от своего математического ожидания, и вероятности таких отклонений не малы. Эти примеры показывают, что по среднему значению нельзя определить, какие отклонения от него имеют место как в меньшую, так и в большую сторону. Так при одинаковой средней величине выпадающих в двух местностях осадков за год нельзя сказать, что эти местности одинаково благоприятны для сельскохозяйственных работ. Аналогично по показателю средней заработной платы не возможно судить об удельном весе высоко- и низкооплачиваемых работниках. Поэтому, вводится числовая характеристика – дисперсия D (x) , которая характеризует степень отклонения случайной величины от своего среднего значения:

D (x) = M (x - M (x)) 2 . (2)

Дисперсия –это математическое ожидание квадрата отклонения случайной величины от математического ожидания. Для дискретной случайной величины дисперсия вычисляется по формуле:

D (x) = = (3)

Из определения дисперсии следует, что D (x) 0.

Свойства дисперсии:

1. Дисперсия константы равна нулю

2. Если случайную величину умножить на некоторое число k , то дисперсия умножится на квадрат этого числа

D (kx) = k 2 D (x)

3. D (x) = М (x 2) – М 2 (x)

4. Для попарно независимых случайных величин x 1 , x 2 , … x n дисперсия суммы равна сумме дисперсий.

D (x 1 + x 2 + … + x n) = D (x 1) + D (x 2) +…+ D (x n)

Вычислим дисперсию для случайной величины из Примера 11.

Математическое ожидание М (x) = 1. Поэтому по формуле (3) имеем:

D (x) = (0 – 1) 2 ·1/4 + (1 – 1) 2 ·1/2 + (2 – 1) 2 ·1/4 =1·1/4 +1·1/4= 1/2

Отметим, что дисперсию вычислять проще, если воспользоваться свойством 3:

D (x) = М (x 2) – М 2 (x).

Вычислим дисперсии для случайных величин x 1 , x 2 из Примера 12 по этой формуле. Математические ожидания обеих случайных величин равны нулю.

D (x 1) = 0,01· 0,1 + 0,0001· 0,2 + 0,0001· 0,2 + 0,01· 0,1 = 0,001 + 0,00002 + 0,00002 + 0,001 = 0,00204

D (x 2) = (-20) 2 · 0,3 + (-10) 2 · 0,1 + 10 2 · 0,1 + 20 2 · 0,3 = 240 +20 = 260

Чем ближе значение дисперсии к нулю, тем меньше разброс случайной величины относительно среднего значения.

Величина называется среднеквадратическим отклонением . Модой случайной величины x дискретного типа Md называется такое значение случайной величины, которому соответствует наибольшая вероятность.

Модой случайной величины x непрерывного типа Md , называется действительное число, определяемое как точка максимума плотности распределения вероятностей f(x).

Медианой случайной величины x непрерывного типа Mn называется действительное число, удовлетворяющее уравнению

Случайной величиной называют переменную величину, которая в результате каждого испытания принимает одно заранее неизвестное значение, зависящее от случайных причин. Случайные величины обозначают заглавными латинскими буквами: $X,\ Y,\ Z,\ \dots $ По своему типу случайные величины могут быть дискретными и непрерывными .

Дискретная случайная величина - это такая случайная величина, значения которой могут быть не более чем счетными, то есть либо конечными, либо счетными. Под счетностью имеется ввиду, что значения случайной величины можно занумеровать.

Пример 1 . Приведем примеры дискретных случайных величин:

а) число попаданий в мишень при $n$ выстрелах, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

б) число выпавших гербов при подкидывании монеты, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

в) число прибывших кораблей на борт (счетное множество значений).

г) число вызовов, поступающих на АТС (счетное множество значений).

1. Закон распределения вероятностей дискретной случайной величины.

Дискретная случайная величина $X$ может принимать значения $x_1,\dots ,\ x_n$ с вероятностями $p\left(x_1\right),\ \dots ,\ p\left(x_n\right)$. Соответствие между этими значениями и их вероятностями называется законом распределения дискретной случайной величины . Как правило, это соответствие задается с помощью таблицы, в первой строке которой указывают значения $x_1,\dots ,\ x_n$, а во второй строке соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$.

$\begin{array}{|c|c|}
\hline
X_i & x_1 & x_2 & \dots & x_n \\
\hline
p_i & p_1 & p_2 & \dots & p_n \\
\hline
\end{array}$

Пример 2 . Пусть случайная величина $X$ - число выпавших очков при подбрасывании игрального кубика. Такая случайная величина $X$ может принимать следующие значения $1,\ 2,\ 3,\ 4,\ 5,\ 6$. Вероятности всех этих значений равны $1/6$. Тогда закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline

\hline
\end{array}$

Замечание . Поскольку в законе распределения дискретной случайной величины $X$ события $1,\ 2,\ \dots ,\ 6$ образуют полную группу событий, то в сумме вероятности должны быть равны единице, то есть $\sum{p_i}=1$.

2. Математическое ожидание дискретной случайной величины.

Математическое ожидание случайной величины задает ее «центральное» значение. Для дискретной случайной величины математическое ожидание вычисляется как сумма произведений значений $x_1,\dots ,\ x_n$ на соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$, то есть: $M\left(X\right)=\sum^n_{i=1}{p_ix_i}$. В англоязычной литературе используют другое обозначение $E\left(X\right)$.

Свойства математического ожидания $M\left(X\right)$:

  1. $M\left(X\right)$ заключено между наименьшим и наибольшим значениями случайной величины $X$.
  2. Математическое ожидание от константы равно самой константе, т.е. $M\left(C\right)=C$.
  3. Постоянный множитель можно выносить за знак математического ожидания: $M\left(CX\right)=CM\left(X\right)$.
  4. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: $M\left(X+Y\right)=M\left(X\right)+M\left(Y\right)$.
  5. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: $M\left(XY\right)=M\left(X\right)M\left(Y\right)$.

Пример 3 . Найдем математическое ожидание случайной величины $X$ из примера $2$.

$$M\left(X\right)=\sum^n_{i=1}{p_ix_i}=1\cdot {{1}\over {6}}+2\cdot {{1}\over {6}}+3\cdot {{1}\over {6}}+4\cdot {{1}\over {6}}+5\cdot {{1}\over {6}}+6\cdot {{1}\over {6}}=3,5.$$

Можем заметить, что $M\left(X\right)$ заключено между наименьшим ($1$) и наибольшим ($6$) значениями случайной величины $X$.

Пример 4 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=2$. Найти математическое ожидание случайной величины $3X+5$.

Используя вышеуказанные свойства, получаем $M\left(3X+5\right)=M\left(3X\right)+M\left(5\right)=3M\left(X\right)+5=3\cdot 2+5=11$.

Пример 5 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=4$. Найти математическое ожидание случайной величины $2X-9$.

Используя вышеуказанные свойства, получаем $M\left(2X-9\right)=M\left(2X\right)-M\left(9\right)=2M\left(X\right)-9=2\cdot 4-9=-1$.

3. Дисперсия дискретной случайной величины.

Возможные значения случайных величин с равными математическими ожиданиями могут по-разному рассеиваться вокруг своих средних значений. Например, в двух студенческих группах средний балл за экзамен по теории вероятностей оказался равным 4, но в одной группе все оказались хорошистами, а в другой группе - только троечники и отличники. Поэтому возникает необходимость в такой числовой характеристике случайной величины, которая бы показывала разброс значений случайной величины вокруг своего математического ожидания. Такой характеристикой является дисперсия.

Дисперсия дискретной случайной величины $X$ равна:

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}.\ $$

В англоязычной литературе используются обозначения $V\left(X\right),\ Var\left(X\right)$. Очень часто дисперсию $D\left(X\right)$ вычисляют по формуле $D\left(X\right)=\sum^n_{i=1}{p_ix^2_i}-{\left(M\left(X\right)\right)}^2$.

Свойства дисперсии $D\left(X\right)$:

  1. Дисперсия всегда больше или равна нулю, т.е. $D\left(X\right)\ge 0$.
  2. Дисперсия от константы равна нулю, т.е. $D\left(C\right)=0$.
  3. Постоянный множитель можно выносить за знак дисперсии при условии возведения его в квадрат, т.е. $D\left(CX\right)=C^2D\left(X\right)$.
  4. Дисперсия суммы независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X+Y\right)=D\left(X\right)+D\left(Y\right)$.
  5. Дисперсия разности независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X-Y\right)=D\left(X\right)+D\left(Y\right)$.

Пример 6 . Вычислим дисперсию случайной величины $X$ из примера $2$.

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}={{1}\over {6}}\cdot {\left(1-3,5\right)}^2+{{1}\over {6}}\cdot {\left(2-3,5\right)}^2+\dots +{{1}\over {6}}\cdot {\left(6-3,5\right)}^2={{35}\over {12}}\approx 2,92.$$

Пример 7 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=2$. Найти дисперсию случайной величины $4X+1$.

Используя вышеуказанные свойства, находим $D\left(4X+1\right)=D\left(4X\right)+D\left(1\right)=4^2D\left(X\right)+0=16D\left(X\right)=16\cdot 2=32$.

Пример 8 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=3$. Найти дисперсию случайной величины $3-2X$.

Используя вышеуказанные свойства, находим $D\left(3-2X\right)=D\left(3\right)+D\left(2X\right)=0+2^2D\left(X\right)=4D\left(X\right)=4\cdot 3=12$.

4. Функция распределения дискретной случайной величины.

Способ представления дискретной случайной величины в виде ряда распределения не является единственным, а главное он не является универсальным, поскольку непрерывную случайную величину нельзя задать с помощью ряда распределения. Существует еще один способ представления случайной величины - функция распределения.

Функцией распределения случайной величины $X$ называется функция $F\left(x\right)$, которая определяет вероятность того, что случайная величина $X$ примет значение, меньшее некоторого фиксированного значения $x$, то есть $F\left(x\right)=P\left(X < x\right)$

Свойства функции распределения :

  1. $0\le F\left(x\right)\le 1$.
  2. Вероятность того, что случайная величина $X$ примет значения из интервала $\left(\alpha ;\ \beta \right)$, равна разности значений функции распределения на концах этого интервала: $P\left(\alpha < X < \beta \right)=F\left(\beta \right)-F\left(\alpha \right)$
  3. $F\left(x\right)$ - неубывающая.
  4. ${\mathop{lim}_{x\to -\infty } F\left(x\right)=0\ },\ {\mathop{lim}_{x\to +\infty } F\left(x\right)=1\ }$.

Пример 9 . Найдем функцию распределения $F\left(x\right)$ для закона распределения дискретной случайной величины $X$ из примера $2$.

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\
\hline
\end{array}$

Если $x\le 1$, то, очевидно, $F\left(x\right)=0$ (в том числе и при $x=1$ $F\left(1\right)=P\left(X < 1\right)=0$).

Если $1 < x\le 2$, то $F\left(x\right)=P\left(X=1\right)=1/6$.

Если $2 < x\le 3$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)=1/6+1/6=1/3$.

Если $3 < x\le 4$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)=1/6+1/6+1/6=1/2$.

Если $4 < x\le 5$, то $F\left(X\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)=1/6+1/6+1/6+1/6=2/3$.

Если $5 < x\le 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)=1/6+1/6+1/6+1/6+1/6=5/6$.

Если $x > 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)+P\left(X=6\right)=1/6+1/6+1/6+1/6+1/6+1/6=1$.

Итак, $F(x)=\left\{\begin{matrix}
0,\ при\ x\le 1,\\
1/6,при\ 1 < x\le 2,\\
1/3,\ при\ 2 < x\le 3,\\
1/2,при\ 3 < x\le 4,\\
2/3,\ при\ 4 < x\le 5,\\
5/6,\ при\ 4 < x\le 5,\\
1,\ при\ x > 6.
\end{matrix}\right.$

Математическое ожидание - это, определение

Мат ожидание - это одно из важнейших понятий в математической статистике и теории вероятностей, характеризующее распределение значений или вероятностей случайной величины. Обычно выражается как средневзвешенное значение всех возможных параметров случайной величины. Широко применяется при проведении технического анализа, исследовании числовых рядов, изучении непрерывных и продолжительных процессов. Имеет важное значение при оценке рисков, прогнозировании ценовых показателей при торговле на финансовых рынках, используется при разработке стратегий и методов игровой тактики в теории азартных игр .

Мат ожидание - это среднее значение случайной величины, распределение вероятностей случайной величины рассматривается в теории вероятностей.

Мат ожидание - это мера среднего значения случайной величины в теории вероятности. Мат ожидание случайной величины x обозначается M(x) .

Математическое ожидание (Population mean) - это

Мат ожидание - это

Мат ожидание - это в теории вероятности средневзвешенная величина всех возможных значений, которые может принимать эта случайная величина.

Мат ожидание - это сумма произведений всех возможных значений случайной величины на вероятности этих значений.

Математическое ожидание (Population mean) - это

Мат ожидание - это средняя выгода от того или иного решения при условии, что подобное решение может быть рассмотрено в рамках теории больших чисел и длительной дистанции.

Мат ожидание - это в теории азартных игр сумма выигрыша, которую может заработать или проиграть спекулянт, в среднем, по каждой ставке. На языке азартных спекулянтов это иногда называется «преимуществом спекулянта » (если оно положительно для спекулянта) или «преимуществом казино» (если оно отрицательно для спекулянта).

Математическое ожидание (Population mean) - это


Wir verwenden Cookies für die beste Präsentation unserer Website. Wenn Sie diese Website weiterhin nutzen, stimmen Sie dem zu. OK

Каждая, отдельно взятая величина полностью определяется своей функцией распределения. Также, для решения практических задач хватает знать несколько числовых характеристик, благодаря которым появляется возможность представить основные особенности случайной величины в краткой форме.

К таким величинам относят в первую очередь математическое ожидание и дисперсия .

Математическое ожидание — среднее значение случайной величины в теории вероятностей. Обозначается как .

Самым простым способом математическое ожидание случайной величины Х(w) , находят как интеграл Лебега по отношению к вероятностной мере Р исходном вероятностном пространстве

Еще найти математическое ожидание величины можно как интеграл Лебега от х по распределению вероятностей Р Х величины X :

где - множество всех возможных значений X .

Математическое ожидание функций от случайной величины X находится через распределение Р Х . Например , если X - случайная величина со значениями в и f(x) - однозначная борелевская функция Х , то:

Если F(x) - функция распределения X , то математическое ожидание представимо интегралом Лебега - Стилтьеса (или Римана - Стилтьеса):

при этом интегрируемость X в смысле (* ) соответствует конечности интеграла

В конкретных случаях, если X имеет дискретное распределение с вероятными значениями х k , k=1, 2 , . , и вероятностями , то

если X имеет абсолютно непрерывное распределение с плотностью вероятности р(х) , то

при этом существование математического ожидания равносильно абсолютной сходимости соответствующего ряда или интеграла.

Свойства математического ожидания случайной величины.

  • Математическое ожидание постоянной величины равно этой величине:

C - постоянная;

  • M=C.M[X]
  • Математическое ожидание суммы случайно взятых величин равно сумме их математических ожиданий:

  • Математическое ожидание произведения независимых случайно взятых величин = произведению их математических ожиданий:

M=M[X]+M[Y]

если X и Y независимы.

если сходится ряд:

Алгоритм вычисления математического ожидания.

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению приравнять отличную от нуля вероятность.

1. По очереди перемножаем пары: x i на p i .

2. Складываем произведение каждой пары x i p i .

Напрмер , для n = 4 :

Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых имеют положительный знак.

Пример: Найти математическое ожидание по формуле.

Математическим ожиданием случайной величины X называется среднее значение .

1. M(C) = C

2. M(CX) = CM(X) , где C = const

3. M(X ± Y) = M(X) ± M(Y)

4. Если случайные величины X и Y независимы, то M(XY) = M(X)·M(Y)

Дисперсия

Дисперсией случайной величины X называется

D(X) = S(x – M(X)) 2 p = M(X 2 ) – M 2 (X) .

Дисперсия представляет собой мерой отклонения значений случайной величины от своего среднего значения.

1. D(C) = 0

2. D(X + C) = D(X)

3. D(СX) = C 2 D(X) , где C = const

4. Для независимых случайных величин

D(X ± Y) = D(X) + D(Y)

5. D(X ± Y) = D(X) + D(Y) ± 2Cov(x, y)

Квадратный корень из дисперсии случайной величины X называется средним квадратичным отклонением .

@ Задача 3 : Пусть случайная величина X принимает всего два значения (0 или 1) с вероятностями q, p , где p + q = 1 . Найти математическое ожидание и дисперсию.

Решение:

M(X) = 1·p + 0·q = p; D(X) = (1 – p) 2 p + (0 – p) 2 q = pq.

@ Задача 4 : Математическое ожидание и дисперсия случайной величины X равны 8. Найти математическое ожидание и дисперсия случайных величин: а) X – 4 ; б) 3X – 4 .

Решение: M(X – 4) = M(X) – 4 = 8 – 4 = 4; D(X – 4) = D(X) = 8; M(3X – 4) = 3M(X) – 4 = 20; D(3X – 4) = 9D(X) = 72.

@ Задача 5 : Совокупность семей имеет следующее распределение по числу детей:

x i x 1 x 2
p i 0,1 p 2 0,4 0,35

Определить x 1 , x 2 и p 2 , если известно, что M(X) = 2; D(X) = 0,9 .

Решение: Вероятность p 2 равна p 2 = 1 – 0,1 – 0,4 – 0,35 = 0,15. Неизвестные x находятся из уравнений: M(X) = x 1 ·0,1 + x 2 ·0,15 + 2·0,4 + 3·0,35 = 2; D(X) = ·0,1 + ·0,15 + 4·0,4 + 9·0,35 – 4 = 0,9. x 1 = 0; x 2 = 1.

Генеральная совокупность и выборка. Оценки параметров

Выборочное наблюдение

Статистическое наблюдение можно организовать сплошное и не сплошное. Сплошное наблюдение предусматривает обследование всех единиц изучаемой совокупности (генеральной совокупности). Генеральная совокупность это множество физических или юридических лиц, которую исследователь изучает согласно своей задачи. Это часто экономически невыгодно, а иногда и невозможно. В связи с этим изучается только часть генеральной совокупности – выборочная совокупность .

Результаты, полученные на основе выборочной совокупности, можно распространить на генеральную совокупность, если следовать следующим принципам:



1. Выборочная совокупность должна определяться случайным образом.

2. Число единиц выборочной совокупности должно быть достаточным.

3. Должна обеспечиваться репрезентативность ( представительность) выборки. Репрезентативная выборка представляет собой меньшую по размеру, но точную модель той генеральной совокупности, которую она должна отражать.

Типы выборок

В практике применяются следующие типы выборок:

а) собственно-случайная, б) механическая, в) типическая, г) серийная, д) комбинированная.

Собственно-случайная выборка

При собственно-случайной выборке отбор единиц выборочной совокупности производится случайным образом, например, посредством жеребьевки или генератора случайных чисел.

Выборки бывают повторные и бесповторные. При повторной выборке единица, попавшая в выборку, возвращается и сохраняет равную возможность снова попасть в выборку. При бесповторной выборке единица совокупности, попавшая в выборку, в дальнейшем в выборке не участвует.

Ошибкиприсущие выборочному наблюдению, возникающие в силу того, что выборочная совокупность не полностью воспроизводит генеральную совокупность, называются стандартными ошибками . Они представляют собой среднее квадратичное расхождение между значениями показателей, полученных по выборке, и соответствующими значениями показателей генеральной совокупности.

Расчетные формулы стандартной ошибки при случайном повторном отборе следующая: , а при случайном бесповторном отборе следующая: , где S 2 – дисперсия выборочной совокупности, n/N – доля выборки, n, N - количества единиц в выборочной и генеральной совокупности. При n = N стандартная ошибка m = 0.

Механическая выборка

При механической выборке генеральная совокупность разбивается на равные интервалы и из каждого интервала случайным образом отбирается по одной единице.

Например, при 2%-ной доли выборки из списка генеральной совокупности отбирается каждая 50-я единица.

Стандартная ошибка механической выборки определяется как ошибка собственно-случайной бесповторной выборки.

Типическая выборка

При типической выборке генеральная совокупность разбивается на однородные типические группы, затем из каждой группы случайным образом производится отбор единиц.

Типической выборкой пользуются в случае неоднородной генеральной совокупности. Типическая выборка дает более точные результаты, потому что обеспечивается репрезентативность.

Например, учителя, как генеральная совокупность, разбиваются на группы по следующим признакам: пол, стаж, квалификация, образование, городские и сельские школы и т.д.

Стандартные ошибки типической выборки определяются как ошибки собственно-случайной выборки, с той лишь разницей, что S 2 заменяется средней величиной от внутригрупповых дисперсий.

Серийная выборка

При серийной выборке генеральная совокупность разбивается на отдельные группы (серии), затем случайным образом выбранные группы подвергаются сплошному наблюдению.

Стандартные ошибки серийной выборки определяются как ошибки собственно-случайной выборки, с той лишь разницей, что S 2 заменяется средней величиной от межгрупповых дисперсий.

Комбинированная выборка

Комбинированная выборка является комбинацией двух или более типов выборок.

Точечная оценка

Конечной целью выборочного наблюдения является нахождение характеристик генеральной совокупности. Так как этого невозможно сделать непосредственно, то на генеральную совокупность распространяют характеристики выборочной совокупности.

Принципиальная возможность определения средней арифметической генеральной совокупности по данным средней выборки доказывается теоремой Чебышева . При неограниченном увеличении n вероятность того, что отличие выборочной средней от генеральной средней будет сколь угодно мало, стремится к 1.

Это означает, что характеристика генеральной совокупности с точностью . Такая оценка называется точечной .

Интервальная оценка

Базисом интервальной оценки является центральная предельная теорема .

Интервальная оценка позволяет ответить на вопрос: внутри какого интервала и с какой вероятностью находится неизвестное, искомое значение параметра генеральной совокупности?

Обычно говорят о доверительной вероятности p = 1 a, с которой будет находиться в интервале D < < + D, где D = t кр m > 0 предельная ошибка выборки, a - уровень значимости (вероятность того, что неравенство будет неверным), t кр - критическое значение, которое зависит от значений n и a. При малой выборке n < 30 t кр задается с помощью критического значения t-распределения Стъюдента для двустороннего критиерия с n – 1 степенями свободы с уровнем значимости a (t кр (n – 1, a) находится из таблицы «Критические значения t–распределения Стъюдента», приложение 2). При n > 30, t кр - это квантиль нормального закона распределения (t кр находится из таблицы значений функции Лапласа F(t) = (1 a)/2 как аргумент). При p = 0,954 критическое значение t кр = 2 при p = 0,997 критическое значение t кр = 3. Это означает, что предельная ошибка обычно больше стандартной ошибки в 2-3 раза.

Таким образом, суть метода выборки заключается в том, что на основании статистических данных некоторой малой части генеральной совокупности удается найти интервал, в котором с доверительной вероятностью p находится искомая характеристика генеральной совокупности (средняя численность рабочих, средний балл, средняя урожайность, среднее квадратичное отклонение и т.д.).

@ Задача 1. Для определения скорости расчетов с кредиторами предприятий корпорации в коммерческом банке была проведена случайная выборка 100 платежных документов, по которым средний срок перечисления и получения денег оказался равным 22 дням ( = 22) со стандартным отклонением 6 дней (S = 6). С вероятностью p = 0,954 определить предельнуюошибку выборочной средней и доверительный интервал средней продолжительности расчетов предприятий данной корпорации.

Решение: Предельнаяошибка выборочной средней согласно (1) равна D = 2· 0,6 = 1,2, а доверительный интервал определяется как (22 – 1,2; 22 + 1,2), т.е. (20,8; 23,2).

§6.5 Корреляция и регрессия