Типы портативных переносных газоанализаторов. Устройства для определения состояния газа в помещении. Анализ состава отработанных газов

Типы портативных переносных газоанализаторов. Устройства для определения состояния газа в помещении. Анализ состава отработанных газов
Типы портативных переносных газоанализаторов. Устройства для определения состояния газа в помещении. Анализ состава отработанных газов

Приборы, с помощью которых производят анализ смесей газов с целью установления их качественного и количественного состава, называют газоанализаторами .

По принципу действия они могут быть разделены на три основных группы.

1. Приборы, действие которых основано на физических методах анализа, включающих вспомогательные химические реакции. При помощи таких газоанализаторов определяют изменение объёма или давления газовой смеси в результате химических реакций её отдельных компонентов.

2. Приборы, действие которых основано на физических методах анализа, включающих вспомогательные физико-химические процессы (термохимические, электрохимические, фотоколориметрические и др.). Термохимические основаны на измерении теплового эффекта реакции каталитического окисления (горения) газа. Электрохимические позволяют определять концентрацию газа в смеси по значению электрической проводимости электролита, поглотившего этот газ. Фотоколориметрические основаны на изменении цвета определённых веществ, при их реакции с анализируемым компонентом газовой смеси.

3. Приборы, действие которых основано на чисто физических методах анализа (термокондуктометрические, термомагнитные, оптические и др.). Термокондуктометрические основаны на измерении теплопроводности газов. Термомагнитные газоанализаторы применяют главным образом для определения концентрации кислорода, обладающего большой магнитной восприимчивостью. Оптические газоанализаторы основаны на измерении оптической плотности, спектров поглощения или спектров испускания газовой смеси.

Газоанализаторы можно разделить на несколько типов в зависимости от выполняемых задач – это газоанализаторы горения, газоанализаторы для определения параметров рабочей зоны, газоанализаторы для контроля за технологическими процессами и выбросами, газоанализаторы для очистки и анализа воды и т.п., так же они делятся по конструктивному исполнению на портативные, переносные и стационарные, по количеству измеряемых компонентов (может быть измерение какого-то одного вещества или нескольких), по количеству каналов измерения (одноканальные и многоканальные), по функциональным возможностям (индикаторы, сигнализаторы, газоанализаторы).

Газовые анализаторы горения предназначены для наладки и контроля котлов, печей, газовых турбин, горелок и других топливосжигающих установок. Позволяют также проводить мониторинг выбросов углеводородов, оксидов углерода, азота, серы.

Газоанализаторы (газосигнализаторы, детекторы газов) для контроля параметров воздуха рабочей зоны. Отслеживают наличие опасных газов и паров в рабочей зоне, в помещении, шахтах, колодцах, коллекторах.

Газоанализаторы стационарные - предназначены для контроля состава газа при технологических измерениях и контроля выбросов в металлургии, энергетики, нефтехимии, цементной промышленности. Газоанализаторы измеряют содержание кислорода, оксиды азота и серы, фреона, водорода, метана и других веществ.

Фирмы, предлагающие газоанализаторы на российском рынке: Kane International (Великобритания), Testo GmbH (Германия), ФГУП «Аналитприбор» (Россия), Eurotron (Италия), ООО «Дитангаз» (Россия).


Газоанализаторы - это специальные приборы, которые служат, чтобы точно измерять качественный и количественный состав газов. Исходя из их предназначения и принципа эксплуатации, они могут быть ручными и автоматическими. Один из наиболее распространенных типов ручных приборов – это абсорбционные анализаторы.

Принцип действия газоанализатора этого вида основан на том, что составляющие вещества поглощаются в определенной последовательности особыми реагентами. Стационарное оборудование с автоматическим принципом действия производит измерения постоянно, то есть - без перерыва. Оно точно фиксирует все физико-химические показатели изучаемой газовой смеси. Подобные приборы дают возможность получать максимально точные итоги измерений при взаимодействии не только с самим веществом, но и с его отдельными компонентами.

Газоизмерительное оборудование бывает множества разновидностей и наименований. Некоторые из них функционируют на основе физических методов измерения, включающих в себя и применение вспомогательной химической реакции. Подобные приборы называются объёмно-монометрическими. Они позволяют предельно точно обнаруживать любые из изменений объема и давления, происходящие в наблюдаемой среде. Прибор сразу же фиксирует все реакции, в которые вступают отдельные составляющие газовой смеси.

Принцип работы газоанализатора может быть основан и на химических способах анализа наблюдаемой среды. Такие приборы могут отслеживать дополнительные термохимические, хроматографические, электрохимические и фотоколориметрические процессы, что зависит от сферы их применения и характеристик эксплуатации. Принцип действия оборудования также отличается. Например, термохимические приборы измеряют уровень тепла в процессе сгорания газа.

Наиболее часто подобное оборудование применяется тогда, когда нужно отслеживать окись водорода в воздушной среде при подозрениях на ее взрывоопасную концентрацию. Как правило, подобная работа производится с горючими газами, приборы термохимического типа при этом очень помогают.

Множество стационарных газоанализаторов работает только на физических принципах исследования. К данной группе приборов относятся анализаторы, которые функционируют при помощи магнитных и оптических способов измерения.

ГАЗОАНАЛИЗАТОРЫ, приборы, измеряющие содержание (концентрацию) одного или неск. компонентов в газовых смесях (см. также Газовый анализ). Каждый газоанализатор предназначен для измерения концентрации только определенных компонентов на фоне конкретной газовой смеси в нормиров. условиях. Наряду с использованием отдельных газоанализаторов создаются системы газового контроля, объединяющие десятки таких приборов. В большинстве случаев работа газоанализатора невозможна без ряда вспомогат. устройств, обеспечивающих создание необходимых т-ры и давления, очистку газовой смеси от пыли и смол, а в ряде случаев и от нек-рых мешающих измерениям компонентов и агрессивных в-в. Газоанализаторы классифицируют по принципу действия на пневматические, магнитные, электрохимические, полупроводниковые и др. Ниже излагаются физ. основы и области применения Наиб. распространенных газоанализаторов.

Термокондуктометрические газоанализаторы. Их действие основано на зависимости теплопроводности газовой смеси от ее состава. Для большинства практически важных случаев справедливо ур-ние:

где-теплопроводность смеси, - теплопроводность i - того компонента, Ci - eгo концентрация, n-число компонентов.

Термокондуктометрич. газоанализаторы не обладают высокой избирательностью и используются, если контролируемый компонент по теплопроводности существенно отличается от остальных, напр. для определения концентраций Н2, Не, Аг, СО2 в газовых смесях, содержащих N2, О2 и др. Диапазон измерения - от единиц до десятков процентов по объему.

Изменение состава газовой смеси приводит к изменению ее теплопроводности и, как следствие, т-ры и электрич. сопротивления нагреваемого током металлич. или полупроводникового терморезистора, размещенного в камере, через к-рую пропускается смесь. При этом:

где a-конструктивный параметр камеры, R1 и R2- сопротивление терморезистора в случае пропускания через него тока I при теплопроводности газовой среды соотв. и,-температурный коэф. электрич. сопротивления терморезистора.

Термохимические газоанализаторы. В этих приборах измеряют тепловой эффект хим. р-ции, в к-рой участвует определяемый компонент. В большинстве случаев используется окисление компонента кислородом воздуха; катализаторы - марганцевомедный (гопкалит) или мелкодисперсная Pt, нанесенная на пов-сть пористого носителя. Изменение т-рыпри окислении измеряют с помощью металлич. или полупроводникового терморезистора. В ряде случаев пов-сть платинового терморезистора используют как катализатор. Величинасвязана с числом молей М окислившегося компонента и тепловым эффектомсоотношением: , где k-коэф., учитывающий потери тепла, зависящие от конструкции прибора.

Большинство термохим. газоанализаторов используют в кач-ве газосигнализаторов горючих газов и паров (Н2, углеводороды и др.) в воздухе при содержании 20% от их ниж. КПВ, а также при электролизе воды для определения примесей водорода в кислороде (диапазон измерения 0,02-2%) и кислорода в водороде (0,01-1%).

Магнитные газоанализаторы. Применяют для определения О2. Их действие основано на зависимости магн. восприимчивости газовой смеси от концентрации О2, объемная магн. восприимчивость к-рого на два порядка больше, чем у большинства остальных газов. Такие газоанализаторы позволяют избирательно определять О2 в сложных газовых смесях. Диапазон измеряемых концентраций 10-2 - 100%. Наиб. распространены магнитомех. и термомагн. газоанализаторы.

В магнитомеханических газоанализаторах (рис. 3) измеряют силы, действующие в неоднородном магн. поле на помещенное в анализируемую смесь тело (обычно ротор). Сила F, выталкивающая тело из магн. поля, определяется выражением:

гдеи-объемная магн. восприимчивость соотв. анализируемой смеси и тела, помещенного в газ, V-объем тела, H-напряженность магн. поля. Обычно мерой концентрации компонента служит вращающий момент, находимый по углу поворота ротора. Показания магнитомех. газоанализатора определяются магн. св-вами анализируемой газовой смеси и зависят от т-ры и давления, поскольку последние влияют на объемную магн. восприимчивость газа.

Более точны газоанализаторы, выполненные по компенсац. схеме. В них момент вращения ротора, функционально связанный с концентрацией О2 в анализируемой смеси, уравновешивается известным моментом, для создания к-рого используются магнитоэлектрич. или электростатич. системы. Роторные газоанализаторы ненадежны в промышленных условиях, их сложно юстировать.

Действие термомагнитных газоанализаторов основано на термомагн. конвекции газовой смеси, содержащей О2, в неоднородных магнитном и температурном полях. Часто применяют приборы с кольцевой камерой, к-рая представляет собой полое металлич. кольцо. Вдоль его диаметра установлена тонкостенная стеклянная трубка, на к-рую намотана платиновая спираль, нагреваемая электрич. током. Спираль состоит из двух секций - R1 и R2, первая из к-рых помещается между полюсами магнита. При наличии в газовой смеси О2 часть потока направляется через диаметральный канал, охлаждая первую секцию платиновой спирали и отдавая часть тепла второй. Изменение сопротивлений R1 и R2 вызывает изменение выходного напряжения U, пропорциональное содержанию О2 в анализируемой смеси.

Пневматические газоанализаторы. Их действие основано на зависимости плотности и вязкостигазовой смеси от ее состава. Изменения плотности и вязкости определяют измеряя гидромех. параметры потока. Распространены пневматич. газоанализаторы трех типов.

Газоанализаторы с дроссельными преобразователями измеряют гидравлич. сопротивление дросселя (капилляра) при пропускании через него анализируемого газа. При постоянном расходе газа перепад давления на дросселе - ф-ция плотности (турбулентный дроссель), вязкости (ламинарный дроссель) или того и другого параметра одновременно.

Струйные газоанализаторы измеряют динамич. напор струи газа, вытекающего из сопла. Содержат два струйных элемента типа "сопло-приемный канал". Для подачи анализируемого и сравнит. газов служит эжектор 2. Давление на выходе из элементов поддерживается регулятором 4. Равенство давлений газов на входе в элементы обеспечивается соединит. каналом 5 и настройкой вентиля 6. Разница динамич. давлений (напоров), воспринимаемых трубками 1б,- ф-ция отношения и мера концентрации определяемого компонента газовой смеси. Струйные газоанализаторы используют, напр., в азотной пром-сти для измерения содержания Н2 в азоте (диапазон измерения 0-50%), в хлорной пром-сти - для определения С12 (0-50 и 50-100%). Время установления показаний этих газоанализаторов не превышает неск. секунд, поэтому их применяют также в газосигнализаторах довзрывных концентраций газов и паров нек-рых в-в (напр., дихлорэтана, винилхлорида) в воздухе пром. помещений.

Пневмоакустические газоанализаторы содержат два свистка с близкими частотами (3-5 кГц), через один из к-рых проходит анализируемый газ, через второй - сравнительный. Частота биений звуковых колебаний в смесителе частот зависит от плотности анализируемого газа. Биения (частота до 120 Гц) усиливаются и преобразуются в пневматич. колебания усилителем. Для получения выходного сигнала (давления) служит частотно-аналоговый преобразователь.

Пневматич. газоанализаторы не обладают высокой избирательностью. Они пригодны для анализа смесей, в к-рых изменяется концентрация только одного из компонентов, а соотношение между концентрациями других остается постоянным. Диапазон измерения - от единиц до десятков процентов. Пневматич. газоанализаторы не содержат электрич. элементов и поэтому могут использоваться в помещениях любой категории пожаро- и взрывоопасности. Элементы схемы, контактирующие с газами, выполнены из стекла и фторопласта, что позволяет анализировать весьма агрессивные газы (хлор-, серосодержащие и др.).

Инфракрасные газоанализаторы. Их действие основано на избйрат. поглощении молекулами газов и паров ИК-излучения в диапазоне 1-15 мкм. Это излучение поглощают все газы, молекулы к-рых состоят не менее чем из двух разл. атомов. Высокая специфичность молекулярных спектров поглощения разл. газов обусловливает высокую избирательность таких газоанализаторов и их широкое применение в лабораториях и пром-сти. Диапазон измеряемых концентраций 10-3 -100%. В дисперсионных газоанализаторах используют излучение одной длины волны, полученное с помощью монохроматоров (призмы, дифракц. решетки). В недисперсионных газоанализаторах, благодаря особенностям оптич. схемы прибора (применению светофильтров, спец. приемников излучения и т.д.), используют немонохроматич. излучение. В кач-ве примера на рис. 7 приведена Наиб. распространенная схема такого газоанализатора. Излучение от источника последовательно проходит через светофильтр и рабочую кювету, в к-рую подается анализируемая смесь, и попадает в спец. приемник. Если в анализируемой смеси присутствует определяемый компонент, то в зависимости от концентрации он поглощает часть излучения, и регистрируемый сигнал пропорционально изменяется. Источником излучения обычно служит нагретая спираль с широким спектром излучения, реже - ИК-лазер или светодиод, испускающие излучение в узкой области спектра. Если используется источник немонохроматич. излучения, избирательность определения достигается с помощью селективного приемника.

Наиб. распространены газоанализаторы с газонаполненным оптико-акустическим приемником. Последний представляет собой герметичную камеру с окном, заполненную именно тем газом, содержание к-рого нужно измерить. Этот газ, поглощая из потока излучения определенную часть с характерным для данного газа набором спектральных линий, нагревается, вследствие чего давление в камере увеличивается. Посредством мех. модулятора поток излучения прерывается с определ. частотой. В результате с этой же частотой пульсирует давление газа в приемнике. Амплитуда пульсации давления - мера интенсивности поглощенного газом излучения, зависящая от того, какая часть характерного излучения поглощается тем же газом в рабочей кювете. Др. компоненты смеси излучение на этих длинах волн не поглощают. Т. обр., амплитуда пульсации давления в приемнике излучения - мера кол-ва определяемого компонента в анализируемой смеси, проходящей через рабочую кювету. Изменение давления измеряют обычно конденсаторным микрофоном или микроанемометром (датчиком расхода газа). Заменяя газ в приемнике излучения оптико-акустич. газоанализатора, можно избирательно измерять содержание разл. компонентов смесей.

В инфракрасных газоанализаторах используют также неселективные приемники излучения - болометры, термобатареи, полупроводниковые элементы. Тогда в случае источников с широким спектром излучения избирательность определения обеспечивают применением интерференционных и газовых фильтров. Для повышения точности и стабильности измерения часть потока излучения обычно пропускают через сравнит. кювету, заполненную газом, не поглощающим регистрируемое излучение, и измеряют разность или отношение сигналов, полученных в результате прохождения излучения через рабочую и сравнит. кюветы.

Инфракрасные газоанализаторы широко используют для контроля кач-ва продукции, анализа отходящих газов, воздуха помещений. С их помощью определяют, напр., СО, СО2, NH3, СН4 в технол. газах произ-ва синтетич. аммиака, пары ряда р-рителей в воздухе пром. помещений, оксиды азота, SO2, СО и углеводороды в выхлопных газах автомобилей и т.д.

Ультрафиолетовые газоанализаторы. Принцип их действия основан на избират. поглощении молекулами газов и паров излучения в диапазоне 200-450 нм. Избирательность определения одноатомных газов весьма велика. Двух- и многоатомные газы имеют в УФ-области сплошной спектр поглощения, что снижает избирательность их определения. Однако отсутствие УФ-спектра поглощения у N2, O2, СО2 и паров воды позволяет во многих практически важных случаях проводить достаточно селективные измерения в присут. этих компонентов. Диапазон определяемых концентраций обычно 10-2-100% (для паров Hg ниж. граница диапазона 2,5-10-6%).

Схема ультрафиолетового газоанализатора аналогична схеме, приведенной на рис. 7. Имеются также приборы с двумя детекторами излучения без модулятора, в к-рых световые потоки не прерываются. В кач-ве источников излучения обычно применяют ртутные лампы низкого (= 253,7 нм) и высокого (спектр с большим набором линий) давлений, газоразрядные лампы с парами др. металлов (=280, 310 и 360 нм), лампы накаливания с вольфрамовой нитью, водородные и дейтериевые газоразрядные лампы. Приемники излучения - фотоэлементы и фотоумножители. При использовании неселективного источника излучения избирательность измерения в большинстве приборов обеспечивают с помощью оптич. фильтров (стеклянных или интерференционных).

Ультрафиолетовые газоанализаторы применяют гл. обр. для автоматич. контроля содержания С12, О3, SO2, NO2, H2S, C1O2, дихлорэтана, в частности в выбросах пром. предприятий, а также для обнаружения паров Hg, реже Ni (СО)4, в воздухе пром. помещений.

Люминесцентные газоанализаторы . В хемилюминесцентных газоанализаторах измеряют интенсивность люминесценции, возбужденной благодаря хим. р-ции контролируемого компонента с реагентом в твердой, жидкой или газообразной фазе. Пример - взаимод. NO с О3, используемое для определения оксидов азота:

N0 + 03 -> N02+ + 02 -> N02 + hv + 02

Анализируемая смесь и реагент через дроссели поступают в реакц. камеру. Побудитель расхода (насос) обеспечивает необходимое давление в камере. При наличии в смеси определяемого компонента излучение, сопровождающее хемилюминесцентную р-цию, через светофильтр подается на катод фотоумножителя, к-рый расположен в непосредств. близости к реакц. камере. Электрич. сигнал с фотоумножителя, пропорциональный концентрации контролируемого компонента, после усиления поступает на вторичный прибор. При измерении слабых световых потоков, возникающих при малых концентрациях определяемого компонента, фотокатод охлаждают электрич. микрохолодильниками с целью уменьшения темнового (фонового) тока.

Для измерения содержания NO2 в приборе предусмотрен конвертер, где NO2 превращается в NO, после чего анализируемая смесь направляется в реакц. камеру. При этом выходной сигнал пропорционален суммарному содержанию NO и NO2. Если же смесь поступает, минуя конвертер, то по выходному сигналу находят концентрацию только NO. По разности этих сигналов судят о содержании NO 2 в смеси.

Высокая избирательность хемилюминесцентных газоанализаторов обусловлена специфичностью выбранной р-ции, однако сопутствующие компоненты в смеси могут изменять чувствительность прибора. Такие газоанализаторы применяют для определения NO, NO2, NH3, O3 в воздухе в диапазоне 10-7-1%.

В флуоресцентных газоанализаторах измеряют интенсивность флуоресценции (длина волны), возникающей при воздействии на контролируемый компонент УФ-излучения (с частотой v1). В кач-ве примера на рис. 9 представлена схема такого газоанализатора для определения SO2 в воздухе. Анализируемая смесь поступает в детекторную камеру, к-рая отделена от импульсного источника УФ-излучения и от фотоумножителя светофильтрами 3 и 4, пропускающими излучение с длинами волн соотв. и. Фотоумножитель, расположенный под углом 90° к источнику излучения, регистрирует импульсы флуоресценции, амплитуда к-рых пропорциональна концентрации определяемого компонента в камере. Электрич. сигнал с фотоумножителя после усиления и обработки поступает на вторичный прибор. Газоанализаторы для определения SO2 характеризуются высокой чувствительностью и избирательностью. Они используются в автоматич. станциях контроля окружающей среды.

Для удаления паров воды, влияющих на показания люминесцентных газоанализаторов, применяют спец. фильтры (типа молекулярного сита) на входе потока газа в камеру.

Фотоколориметрические газоанализаторы. Эти приборы измеряют интенсивность окраски продуктов избират. р-ции между определяемым компонентом и специально подобранным реагентом. Р-цию осуществляют, как правило, в р-ре (жидкостные газоанализаторы) или на твердом носителе в виде ленты, таблетки, порошка (соотв. ленточные, таблеточные, порошковые газоанализаторы).

Принципиальная схема жидкостного газоанализатора представлена на рис. 10. Излучение от источника проходит через рабочую и сравнит. кюветы и поступает на соответствующие приемники излучения. Индикаторный р-р протекает с постоянной скоростью через обе кюветы и абсорбер. Навстречу потоку р-ра через абсорбер барботирует анализируемый газ. Определяемый компонент, присутствующий в газе, взаимод. с реагентом в р-ре, вызывая изменение оптич. плотности в рабочей кювете, пропорциональное концентрации компонента. В результате интенсивность излучения через одну из кювет изменяется, а через другую-нет. Разность (или отношение) сигналов рабочего и сравнит. каналов - мера концентрации определяемого компонента в анализируемой смеси.

Подача р-ра может быть как непрерывной, так и периодической. При периодич. подаче анализируемый газ пропускают в течение нек-рого времени через одну и ту же порцию р-ра, что позволяет повысить чувствительность определения. Такие газоанализаторы дают возможность измерить среднюю концентрацию определяемого компонента за заданный промежуток времени, напр. при установлении среднесменных или среднесуточных концентраций токсичных примесей в воздухе.

В ленточных газоанализаторах анализируемый газ поступает в газовую камеру, через к-рую непрерывно или с заданной периодичностью протягивается лента с нанесенным на нее реактивом. В результате р-ции с определяемым компонентом на ленте образуется цветовое пятно, интенсивность окраски к-рого пропорциональна концентрации компонента. Разность (или отношение) световых потоков, отраженных от окраш. и неокраш. участков ленты, - мера концентрации контролируемого компонента в смеси. Иногда используют индикаторную ленту с жидким реактивом. В этом случае реактив наносится на ленту из капельницы непосредственно перед ее контактом с газом.

Принцип действия таблеточных и порошковых газоанализаторов такой же, как у ленточных, но эти приборы, как правило, циклич. действия. Для получения чистой пов-сти перед каждым циклом измерения срезается верх. окраш. слой таблетки или заменяется порция порошка.

Время работы ленточных и таблеточных газоанализаторов без замены ленты или таблетки достигает 30 сут и более. Источники излучения в фотоколориметрич. газоанализаторах-обычно лампы накаливания и полупроводниковые светодиоды, фотоприемники - фотоумножители, фотоэлементы, фотодиоды и фототранзисторы. Эти приборы позволяют с высокой избирательностью определять разл. газообразные (парообразные) в-ва в диапазоне концентраций 10-5-1%. Особенно высока чувствительность у газоанализаторов периодич. действия; их недостаток - некрое запаздывание показаний.

Фотоколориметрич. газоанализаторы применяют гл. обр. для измерения концентраций токсичных примесей (напр., оксидов азота, О2, С12, CS2, O3, H2S, NH3, HF, фосгена, ряда орг. соед.) в атмосфере пром. зон и в воздухе пром. помещений. При контроле загрязнений воздуха широко используют переносные приборы периодич. действия. Значит. число фотоколориметрич. газоанализаторов применяют в качестве газосигнализаторов.

Электрохимические газоанализаторы. Их действие основано на зависимости между параметром электрохим. системы и составом анализируемой смеси, поступающей в эту систему.

В кондуктометрических газоанализаторах измеряется электропроводность р-ра при селективном поглощении им определяемого компонента. Обычно схема прибора включает элек-трич. мост постоянного или переменного тока с двумя кондуктометрич. ячейками, через к-рые протекает электролит. В одну из ячеек электролит поступает после контакта с потоком анализируемого газа. Выходной сигнал пропорционален разности электропроводностей р-ра до и после контакта с контролируемой смесью. Эта разность зависит от концентрации растворенного в электролите определяемого компонента. Изменяя расходы электролита и анализируемой смеси, можно в широких пределах изменять диапазон определяемых концентрации. Недостатки этих газоанализаторов-низкая избирательность и длительность установления показаний при измерении малых концентраций. Кондуктометрич. газоанализаторы широко применяют для определения О2, СО, SO2, H2S, NH3 и др.

Действие потенциометрических газоанализаторов основано на зависимости потенциала Е индикаторного электрода от активности а электрохимически активных ионов, образовавшихся при растворении определяемого компонента:

где E°-стандартный электродный потенциал, R- универсальная газовая постоянная, Т - абс. т-ра, F- число Фарадея, n-число электронов, участвующих в электрохим. р-ции. Измеряемое значение Е пропорционально концентрации контролируемого компонента, растворенного в электролите. Эти газоанализаторы применяют для определения СО2, H2S, HF, NH3, SO2 и др.

Большое распространение получили потенциометрич. газоанализаторы с твердым электролитом для измерения содержания О2. Керамич. пластина на основе СаО и ZrO2 при высокой т-ре начинает проводить ионы кислорода, т.е. ведет себя как электролит. На пов-сть такой пластины с обеих сторон наносят тонкие слои пористой платины (платиновые электроды). С одной стороны пластины подают анализируемую газовую смесь, с другой - сравнительный газ. Разность потенциалов между электродами - мера содержания О2. Термостат поддерживает т-ру электрохим. ячейки в нужном диапазоне. С помощью таких газоанализаторов определяют О2 в широком диапазоне концентраций (10-4-100% по объему). Присутствие углеводородов в анализируемой смеси приводит к искажению результатов из-за их окисления при высокой т-ре.

Действие амперометрических газоанализаторов основано на зависимости между электрич. током и кол-вом определяемого компонента, прореагировавшим на индикаторном электроде. Если контролируемый компонент полностью вступает в электрохим. р-цию, то выполняется закон Фарадея: I = = nFQC, где I-ток, Q- расход газа, С-концентрация определяемого компонента, F-число Фарадея, n-число электронов, участвующих в р-ции.

Электрохим. превращение данного компонента газовой смеси со 100%-ным выходом по току (т.е. отсутствие побочных электродных р-ций) обеспечивается выбором индикаторного электрода и его потенциала. Необходимое постоянное значение разности потенциалов поддерживается благодаря тому, что сравнит. и индикаторный электроды выполняют из двух разных специально подобранных металлов, напр. из Аи и Zn, Au и Pb, Ni и Cd (ячейки гальванич. типа). Разность потенциалов можно стабилизировать и посредством электронной системы с использованием третьего вспомогат. электрода (ячейки потенциостатич. типа).

Амперометрич. газоанализаторы применяют для определения газов, обладающих окислит.-восстановит. св-вами, напр. SO2, NO2, H2S, О2, С12, О3. В газоанализаторах для измерения содержания SO2 в воздухе (рис. 12) анализируемый газ поступает на измерит. электрод 3 электрохим. ячейки и по газовому каналу - в камеру с запасным электролитом 9, в к-рый помещен электрод сравнения 5. Вспомогат. электрод 2 расположен в отдельной камере, к-рая, как и камера 9, соединена с камерой измерит. электрода электролитич. каналом. Достоинства амперометрич. газоанализаторов-высокая чувствительность и избирательность.

Кроме рассмотренной выше конструкции электрохим. ячейки барботажного типа (с непосредств. продуванием смеси через электролит) широкое применение находят ячейки с т. наз. газодиффузионными электродами, где газ отделен от электролита пористой газопроницаемой полимерной мембраной. Со стороны, контактирующей с электролитом, на мембрану наносят мелкодисперсный электродный материал (Pt, Pd, Au). Такие системы отличаются более высокой чувствительностью и стабильностью характеристик.

В основе кулонометрических газоанализаторов компенсац. типа лежит метод кулонометрич. титрования, к-рый заключается в электрохим. получении (генерировании) реагента-титранта, способного быстро взаимод. с определяемым компонентом газовой смеси, растворенным в электролите. Этот газоанализатор включает цепи генерирования и индикации. Электрохим. ячейка содержит соотв. две пары электродев - катод и анод, на к-рых идет электролиз и генерируется титрант, а также индикаторный электрод и электрод сравнения. Ток электролиза автоматически поддерживается постоянным. После того как все контролируемое в-во полностью прореагирует с электрогенерированным титрантом, окислит.-восстановит. потенциал системы резко изменяется, что обнаруживается по скачку потенциала индикаторного электрода. Кол-во электричества, прошедшее через ячейку до завершения р-ции, эквивалентно концентрации определяемого компонента.

Ионизационные газоанализаторы. Их действие основано на зависимости электрич. проводимости ионизов. газов от их состава. Появление в газе примесей оказывает дополнит. воздействие на процесс образования ионов или на их подвижность и, следовательно, рекомбинацию. Возникающее при этом изменение проводимости пропорционально содержанию примесей.

Все ионизац. газоанализаторы содержат проточную ионизац. камеру (как на рис. 13), на электроды к-рой налагают определенную разность потенциалов. Эти приборы широко применяют для контроля микропримесей в воздухе, а также в кач-ве детекторов в газовых хроматографах. Ниже рассмотрены Наиб. распространенные типы ионизац. газоанализаторов, используемые без предварительного хроматографич. разделения пробы.

К радиоизотопным газоанализаторам, в к-рых ионизацию газов осуществляют радиоактивным излучением, относятся приборы на основе сечения ионизации, электронно-захватные и аэрозольно-ионизационные. В первых используют разницу в сечениях (вероятности) ионизации компонентов смеси. Ионизацию осуществляют обычноизлучением 90Sr, 3H, 63Ni, 147Pm. Эти Газоанализаторы не избирательны, их применяют для анализа смесей H2-N2, N2-CO2, Н2 - этилен, Н2-СН4, H2-CH3SiCl3, H2-BC13 и т.п.; диапазон измерения 0,01-100%; время установления показаний - до 0,1 с.

Действие электронно-захватных газоанализаторов основано на способности молекул ряда в-в (О2, Н2О, галогены, галогенсодержащие орг. соед., ароматич. углеводороды, спирты, карбонильные соед. и др.) захватывать своб. электроны, возникающие при ионизации газов, и превращаться при этом в ионы. Последние имеют меньшую подвижность, чем электроны, в результате чего ионизац. ток падает пропорционально концентрации в-ва. Электронно-захватные газоанализаторы применяют для контроля примесей (в частности, галогенов при их концентрации 10-3-104%) в чистых газах и воздухе. При определении примесей в воздухе на входе в газоанализаторы обычно помещают полимерные мембраны, задерживающие О2.

В основе действия аэрозольно-ионизационных газоанализаторов лежит зависимость ионизац. тока от концентрации аэрозольных частиц, образующихся после предварительного избират. перевода определяемого компонента смеси в аэрозоль. Этот перевод осуществляют обычно хим. р-цией с соответствующим реагентом или фотохим. р-цией в газовой фазе, пиролизом исследуемого в-ва, а также сочетанием пиролиза с послед. хим. р-цией с реагентом. Напр., при определении NH3 в кач-ве реагента можно использовать пары соляной к-ты; в результате образуется аэрозоль NH4C1. Размер аэрозольных частиц 10-7-10-4 см. Концентрации анализируемых компонентов 10-5-10-3%. Аэрозольно-иониза-ционный газоанализатор используют, в частности, для определения микропримесей NH3, аминов, НС1, HF, NO2, паров HNO3, карбонилов Ni и Со, фосгена и ряда др. соед. в воздухе пром. помещений.

В пламенно-ионизационных газоанализаторах анализируемые орг. соед. ионизуют в водородном пламени. Эффективность ионизации пропорциональна числу атомов С, поступающих в пламя в единицу времени, но зависит также от наличия в молекуле в-ва атомов др. элементов. Схема такого прибора представлена на рис. 14. Горелка служит одним из электродов ионизац. камеры. Второй электрод ("коллекторный") - тонкостенный цилиндр или кольцо. Эти газоанализаторы используют для определения орг. в-в в воздухе и технол. газах. При совместном присутствии ряда орг. компонентов находят либо их сумму, либо концентрацию компонентов со значительно большей эффективностью ионизации. С помощью пламенно-ионизационных газоанализаторов контролируют изменения суммарного содержания углеводородов в атмосфере и токсичные примеси в воздухе пром. помещений, чистоту выхлопных газов автомобилей, утечки газов из трубопроводов и подземных коммуникаций. Диапазон измеряемых концентраций 10-5-1%. Имеется непосредств. взаимосвязь между эффективностью ионизации орг. газов и паров и степенью взрывоопасности их смесей с воздухом. Это позволяет контролировать довзрывные концентрации орг. в-в в пром. помещениях, шахтах, туннелях.

В поверхностно-ионизационных газоанализаторах образуются положит. ионы при адсорбции газов на нагретых пов-стях металлов или их оксидов. Ионизоваться могут компоненты с достаточно низкими потенциалами ионизации, сравнимыми по величине с работой выхода электронов из нагретой пов-сти (эмиттера). Обычно ионизуются не контролируемые компоненты смеси, а продукты их р-ций на каталитически активной пов-сти. В кач-ве эмиттеров применяют, напр., нагреваемые током спирали из Pt, оксидов Мо или W. Нагретый эмиттер одновременно служит одним из электродов ионизац. камеры. Второй ("коллекторный") электрод выполняют в виде наружного цилиндра. Т-ру нагрева эмиттера изменяют от 350 до 850 °С. С помощью таких газоанализаторов определяют фенол, уксусную и муравьиную к-ты, а также (с высокой избирательностью) азотсодержащие орг. соед., в частности анилин, амины, гидразины. Созданы приборы для контроля ряда аминов (диэтиламин, триэтиламин и др.) в воздухе пром. помещений. Диапазон измеряемых концентраций 10-5-10-2%.

В т. наз. "галогенных" газоанализаторах на пов-сти платины, нагретой до 800-850 °С, ионизуются щелочные металлы (обычно Na и К), добавляемые в виде солей в зону нагрева и ионизации. Эмиссия щелочных ионов зависит от содержания в окружающем воздухе галогенов и их соединений. Эти приборы позволяют определять галогены (С1, Вг) в воздухе пром. помещений, хладоны при контроле герметичности холодильных установок и бытовых аэрозольных баллончиков с пределами обнаружения ок. 10-4%.

В фотоионизационных газоанализаторах молекулы определяемого компонента ионизуются УФ-излучением. Это возможно, если энергия фотонов не ниже потенциала ионизации молекул. В кач-ве источников излучения используют лампы, генерирующие фотоны с энергиями 9,5, 10, 10,2, 10,9 и 11,7 эВ. Осн. компоненты воздуха (О2, N2, CO, СО2, Н2О), а также СН4 имеют потенциалы ионизации в диапазоне 12-20 эВ и такими фотонами не ионизуются. Фотоионизац. газоанализаторы применяют для контроля примесей ароматич. и непредельных углеводородов, альдегидов, кетонов, спиртов и других орг. соед. в воздухе с пределами обнаружения 10-5 -10-4%. Подбирая излучение с подходящей энергией, можно избирательно определять, напр., ароматич. соединения в присут. алканов и кислородсодержащих орг. соед., меркаптаны в присут. H2S.

Полупроводниковые газоанализаторы. Их действие основано на изменении сопротивления полупроводника (пленки или монокристалла) при воздействии анализируемого компонента смеси. В основе работы полупроводниковых окисных газоанализаторов лежит изменение проводимости чувствит. слоя (смеси оксидов металлов) при хемосорбции на его пов-сти молекул химически активных газов (рис. 15). Такие газоанализаторы применяют для определения горючих газов (в частности, Н2, СН4, пропана), а также О2, СО2 и др. Селективность анализа достигается варьированием состава чувствит. слоя и его т-ры (при помощи встроенного нагревателя). Диапазон измеряемых концентраций горючих газов 0,01-1% по объему.

В полупроводниковых газоанализаторах с кристаллическими чувствит. элементами измеряют проводимость монокристалла или более сложной полупроводниковой структуры с р-n-переходами при изменении зарядового состояния пов-сти, т.е. концентрации или распределения зарядов на ней. Напр., для определения Н2 используют чувствит. элементы в виде системы слоев металл - диэлектрик - полупроводник (канальные транзисторы), причем верх. металлич. слой получают из Pd или его сплавов. Изменение зарядового состояния пов-сти достигается изменением контактной разности потенциалов между полупроводником и Pd при растворении в последнем Н2, присутствующего в анализируемой смеси. Диапазон измеряемых концентраций Н2 в инертных газах 10-5-10-3%.

Для серийного произ-ва полупроводниковых газоанализаторов применяют совр. технологию микроэлектроники, что позволяет создавать измерит. преобразователь, включающий чувствит. элемент, систему термостатирования и усилитель электрич. сигнала в виде отдельного микромодуля.

Области применения газоанализаторов

В Большинстве отраслей промышленности в различных технологических процессах часто применяются газы, требующие постоянного контроля отсутствия утечек с целью обеспечения безопасности производства и снижения рисков для персонала. Для этого устанавливают системы обнаружения газов для постоянного контроля уровня рабочей среды.

Эти системы, состоящие из детекторов газа (газоанализаторов), контроллеров, устройств оповещения и исполнительных устройств, выполняют функции раннего предупреждения о развитии опасной ситуации. Тем самым системы обнаружения газов позволяют локализовать развитие опасных ситуаций на ранних стадиях, а так же увеличивают период времени для принятия соответствующих защитных мер и действий по устранению аварийных ситуаций.

Системы обнаружения газов

Чтобы системы контроля загазованности имели максимальную эффективность при их проектировании, необходимо учитывать специфику конкретного технологического процесса данной отрасли производства. Ведь универсального решения по построению систем детектирования газов для разных отраслей промышленности не существует — каждый случай уникален и требует индивидуального подхода с точки зрения архитектуры построения систем безопасности, выбора числа точек контроля загазованности и перечню детектируемых газов.

Нефтегазовая промышленность включает в себя большое число направлений производственной деятельности: от разведки на суше и на шельфе, производства нефти и газа и до их транспортировки, хранения и перегонки. Данные виды деятельности характеризуются наличием большого числа огнеопасных газообразных углеводородов, которые представляют собой серьезную опасность. Горючим газам часто сопутствуют так же токсичные газы, такие, например, как сероводород.

  • разведочные буровые установки;
  • эксплуатационные платформы;
  • наземные нефте- и газохранилища;
  • нефтеперерабатывающие заводы.

Контролируемые газы:

  • Горючие: углеводородные газы.
  • Токсичные: сероводород, угарный газ.

Предприятия химической промышленности, возможно, являются самыми крупными потребителями различного оборудования для обнаружения газа. Они часто применяют широкий диапазон горючих и токсичных газов в своих технологических процессах или создают их в виде побочных продуктов производственных процессов.

Типовые объекты, требующие контроля загазованности:

хранилища сырья и готовой продукции;
производственные зоны;
лаборатории;
насосные станции;
компрессорные станции;
зоны погрузки/разгрузки сырья и готовой продукции.
Контролируемые газы:

Горючие: обычные углеводороды.
Токсичные: сероводород, фтороводород, аммиак, дефицит кислорода и другие газы.
Тепловые электростанции. В качестве основного топлива на электростанциях обычно используются природный газ, уголь и нефтепродукты. При сжигании топлива из-за неполного сгорания топлива, наличия утечек в арматуре и соединениях газопроводов или топок котлов возможно выделение в воздух рабочей зоны продуктов горения и не сгоревшего топлива.

Типовые объекты, требующие контроля загазованности:

пространство вблизи топок и трубопроводов в котельных;
пространство внутри и вокруг корпусов турбин;
в бункерах и ленточных транспортерах для угля (на электростанциях работающих на угле).
Контролируемые газы:

Горючие: природный газ, метан, водород, пары углеводородов.
Токсичные: угарный газ, оксиды серы и азота SOx, NOx и дефицит кислорода.
Машинно-котельные отделения бывают всех возможных форм и размеров. В небольших зданиях имеются простые котельные, в то время как в больших зданиях часто можно встретить машинно-котельные отделения из нескольких котельных.

Типовые объекты, требующие контроля загазованности:

утечки горючего газа из приемных газопроводов;
утечки из котельной и окружающего газопровода;
угарный газ в котельных в плохом техническом состоянии.
Контролируемые газы:

Горючие: метан.
Токсичные: угарный газ.
Станции по очистке сточных вод. Канализационные стоки обильно выделяют метан и сероводород. Запах тухлых яиц, присущий сероводороду, часто ощущается еще на подъездах к станции очистки, так как обоняние человека позволяет уловить наличие сероводорода в воздухе при его концентрации менее 0,1 части сероводорода на миллион частей воздуха (0,1 ppm).

Типовые объекты, требующие контроля загазованности:

автоклавы;
заводские отстойники;
скрубберы H2S;
насосные станции.

Контролируемые газы:

Горючие: метан, пары растворителей.
Токсичные: сероводород, углекислый газ, хлор, диоксид серы, озон.
Автомобильные тоннели и закрытые автостоянки требуют отслеживания токсичных выхлопных газов. Современные тоннели и автостоянки используют подобный мониторинг для управления вентиляционными установками, осуществляющими проветривание этих сооружений. В подземных тоннелях может также осуществляться контроль наличия природного газа, который может выделятся в туннель из толщи горной породы, в которой проложен данный тоннель.

Типовые объекты, требующие контроля загазованности:

автомобильные туннели;
подземные и закрытые автостоянки;
подходные туннели;
управление вентиляцией.
Контролируемые газы:

Горючие: метан (природный газ), сжиженный нефтяной газ, сжиженный природный газ, пары бензина.

Токсичные: угарный газ, диоксид азота.

При производстве полупроводниковых материалов используются высокотоксичные вещества и горючие газы. Токсичные фосфор, мышьяк, бор и галлий обычно применяются в качестве легирующих примесей. Горючий водород используется как в качестве реагента, так и газа-носителя восстановительной среды. Травильные и осветляющие газы содержат NF3 и другие перфторированные смеси.

Типовые объекты, требующие контроля загазованности:

реактор полупроводниковых пластин;
установка сушки полупроводниковых пластин;
газовые шкафы;
установка химического осаждения из паровой фазы.
Контролируемые газы:

Горючие: водород, изопропанол, метан, пропан.
Токсичные: HCl, AsH3, BCl3, PH3, CO, HF, O3, H2Cl2Si, TEOS, C4F6, C5F8, GeH4, NH3, NO2 и дефицит кислорода.
Самовоспламеняющиеся: кремневодород.
Медицинские учреждения применяют горючие и токсичные вещества, прежде всего, в своих исследовательских лабораториях. Кроме того, многие медицинские учреждения располагают местной энергосистемой и аварийными генераторными станциями с запасом топлива.

Типовые объекты, требующие контроля загазованности:

лаборатории;
рефрижераторные установки;
машинно-котельные отделения.
Контролируемые газы:

Горючие: метан, водород, пары дизельного топлива.
Токсичные: угарный газ, хлор, аммиак, этиленоксид и дефицит кислорода.
Применение в производственных процессах опасных веществ, в частности легковоспламеняющихся, токсичных и кислородосодержащих газов, требует постоянного мониторинга ситуации. Ведь неизбежно в ходе нарушения технологии производства, производственных аварий и инцидентов могут случаться утечки газов, которые представляют потенциальную опасность для промышленного предприятия, экологии, персонала и людей, проживающих поблизости. Применение систем обнаружения газов позволяет существенно снизить риски и повысит безопасность производства.

Анализ газовых сред является обязательным мероприятием в работе химических производств, а также на многих промышленных предприятиях. Такие исследования представляют собой процедуры по измерению того или иного компонента в газовой смеси.
Например, в горнодобывающих предприятиях знание характеристик воздуха в шахте является вопросом безопасности, а экологи, таким образом, определяют концентрацию вредных элементов.
Не так часто подобные анализы применяют в бытовых целях, но если такая задача и возникает, то так же можно использовать газоанализатор.
Это измерительное устройство, позволяющее определить состав газовой смеси.

Основные задачи газоанализаторов:
контроль атмосферы рабочей зоны (безопасность);
контроль промышленных выбросов (экология);
контроль технологических процессов (технология);
контроль загрязнения атмосферы жилой зоны (экология);
контроль выхлопных газов автомобилей (экология и технология);
контроль выдыхаемого человеком воздуха (алкоголь);
отдельно можно назвать контроль газов в воде и др. жидкостях.

Классификация газоанализаторов:
по функциональным возможностям (индикаторы, течеискатели, сигнализаторы, газоанализаторы);
по конструктивному исполнению (стационарные, переносные, портативные);
по количеству измеряемых компонентов (однокомпонентные и многокомпонентные);
по количеству каналов измерения (одноканальные и многоканальные);
по назначению (для обеспечения безопасности работ, для контроля технологических процессов, для контроля промышленных выбросов, для контроля выхлопных газов автомобилей, для экологического контроля.

- предназначены для решения ряда задач в сфере экологического мониторинга и контроля загрязнения атмосферного воздуха и воздуха рабочей зоны, а также для некоторых других целей требуется производить измерения в различных точках предприятия, не всегда оснащенных розетками электропитания.

В этих случаях незаменимыми становятся переносные газоанализаторы (портативные газоанализаторы) !

В отличие от стационарных газоанализаторов, такие приборы отличаются компактностью, мобильностью и простотой использования, а так же небольшим временем подготовки к работе и широким диапазоном условий эксплуатации.

Область применение переносных газоанализаторов:
В замкнутых сосудах и помещениях (тоннелях, колодцах, дымоходах, трубопроводах и т.д.);
На заводах по добыче и переработке различных нефтепродуктов;
На водоотстойниках, фекальных и фильтрационных насосных станциях;
В автопромышленности;
В химических лабораториях и других производственных процессах, связанных с выделением различных загрязняющих веществ;
Помимо вышеуказанного назначения, портативные газоанализаторы служат для калибровки и поверки стационарных газоанализаторов.

Достоинства портативных газоанализаторов:
Низкая стоимость;
Мобильность;
Простота эксплуатации;
Большой спектр определяемых газов и загрязняющих веществ;
Высокая чувствительность сенсоров, что позволяет определять даже самые малые доли вредных веществ;
Возможность подключать электрохимические, термокаталитические или оптические сенсоры;
Большой модельный ряд;
Быстродействие микропроцессорного блока;
Моментальное определение наличия взрывоопасных паров;
Могут выступать в качестве калибровочного устройства для стационарных газоанализаторов;
Компактные размеры и легкий вес;
Производят замеры как качественного, так и количественного состава воздушной или газовой смеси;
Позволяют одновременно контролировать содержание в воздухе рабочей зоны до нескольких газов;
Возможность настраивать и программировать пороги срабатывания устройства;
Наличие интерфейсов (ИК, Wi-Fi, Bluetooth, Ethernet и т.д.) для соединения с компьютером или принтером;
Наличие памяти, для записи результатов, время и даты замеров.


- предназначены для стационарной установки в рабочей зоне промышленных заводов и комбинатов, химических лабораториях, на нефтеперерабатывающих и газодобывающих предприятиях и других производствах.

Это эффективные и высокоточные приборы, которые имеют соответствующую степень защиты, обладают высокой надежностью и способны дооборудоваться системой автоматики для удаления ядовитых, токсичных и горючих газов с различных помещений!

Стационарные газоанализаторы применяются в тех случаях, когда необходимо производить постоянные и достаточно частые периодические измерения концентрации загрязняющих веществ и кислорода в промышленной зоне для поддержания необходимого уровня и для организации технологического контроля за производственными процессами.

Область применения стационарных газоанализаторов:
Котельных;
Холодильных установках;
Помещениях ГРП (газораспределительные пункты);
Рабочих зонах промышленных предприятий;
Лабораториях;
Дизельных и турбинных установках;
Канализационных системах;
Печах обжига и т.д.

Основные достоинства стационарных газоанализаторов:
Надежность;
Приемлемая цена;
Высокая точность измерений;
Возможность контролировать сразу несколько газов;
Длительный срок эксплуатации;
Возможность оборудовать помещение автоматической системой вытяжной вентиляции;
Дистанционный контроль состава воздушной смеси;
Высокая степень защиты устройства.

Несмотря на множество конструкционных вариаций прибора, существует набор базовых компонентов, которые присутствуют в каждой модели. В первую очередь это корпус, в который заключены все рабочие элементы газоанализатора.
Дело в том, что такие аппараты требуют высокой степени защиты, поэтому к внешней оболочке следует предъявлять серьезные требования.
Практически каждый прибор требует питания энергией – соответственно, аккумулятор также можно рассматривать как обязательную часть устройства.
Далее стоит перейти к более ответственному компоненту. Это первичный преобразователь, то есть датчик газоанализатора или чувствительный элемент, обеспечивающий непосредственные данные для измерения.
Надо сказать, что существует несколько видов таких сенсоров, в том числе термокаталитические, инфракрасные и электрохимические, оптические. Задача данного элемента заключается в преобразовании искомого компонента газового состава в электрический сигнал.

После этого в работу вступает измерительно-показывающее устройство, которое обрабатывает данный сигнал и демонстрирует его показатели в виде индикации или отображения на дисплее.
Принцип действия термохимического (термокаталитического) сенсора основан на прямой зависимости тепла, получаемого при сгорании детектируемого газа, от величины концентрации этого газа.
В электрохимических сенсорах проверяемый компонент взаимодействует с чувствительным слоем непосредственно на электроде или в слое раствора проводящего электролита около него.

Электрохимическая ячейка (ЭХЯ), как правило, имеет два или три электрода для совершения электрохимической реакции.

Электрохимические датчики обладают следующими преимуществами, при сравнении их с обычным аналитическим оборудованием:
- малые габаритные размеры;
- высокая селективность;
- удобство использования;
- простота конструкции;
- высокая надёжность;
- значительный ресурс работы;
- относительно низкая стоимость.

Различают следующие электрохимические сенсоры:
кулонометрические, потенциометрические, амперометрические (вольтамперометрия), кондуктометрические.

Оптические сенсоры фиксируют изменение оптической плотности исследуемой газовой смеси при определенной длине волны.
Различают следующие оптические датчики: спектрофотометрические, люминесцентные.

Поверка газоанализаторов
Все газоанализаторы, в соответствии с законом периодически подвергается поверке или калибровке. Поверка производится один раз в год, периодичность калибровки устанавливается владельцем газоанализатора.

При проведении поверки выполняются следующие операции:
Внешний осмотр
♦ Определение электрического сопротивления изоляции, проверка герметичности газовой системы
♦ Определение метрологических характеристик.
♦ Определение основной приведенной погрешности газоанализатора.
♦ Проверка сигнализации о диапазоне измерений по унифицированному выходному сигналу

К сожалению, невозможно создать один универсальный газоанализатор, с помощью которого можно бы было решать все задачи газового анализа, по той причине, что ни один из известных методов не позволяет с одинаковой точностью производить измерения в максимально широком диапазоне концентраций.
Контроль разных газов, в разных диапазонах концентраций, производится разными методами и способами. Поэтому производителями конструируются и выпускаются приборы для решения конкретных задач измерения.

Подводя итоги нужно сказать, что газоанализаторы – это незаменимые устройства, которые используются как на производстве, так и в быту и позволяют определять качественный и количественный состав загрязняющих веществ в рабочей зоне или любом другом помещении, где есть опасные факторы утечки вредных веществ и газов.

Благодарим Вас за прочтение данной статьи.
А так же сообщаем, что в нашем интернет-магазине Вы можете приобрести газоанализатор любого типа по выгодной цене, а специалисты нашей компании ответят на все интересующие Вас вопросы и помогут подобрать прибор, удовлетворяющий Вашим требованиям как по техническим так и по ценовым характеристикам.

Анализ газовых сред является обязательным мероприятием в работе химических производств, а также на многих промышленных предприятиях. Такие исследования представляют собой процедуры по измерению того или иного компонента в газовой смеси. Например, в горнодобывающих предприятиях знание характеристик воздуха в шахте является вопросом безопасности, а экологи таким образом определяют концентрацию вредных элементов. Не так часто подобные анализы применяют в бытовых целях, но если такая задача и возникает, то лучше всего использовать газоанализатор. Это измерительное устройство, позволяющее определить состав газовой смеси. При этом есть множество разновидностей данного прибора, которые имеют принципиальные отличия.

Устройство газоанализатора

Несмотря на множество конструкционных вариаций прибора, существует набор базовых компонентов, которые присутствуют в каждой модели. В первую очередь это корпус, в который заключены все рабочие элементы газоанализатора. Дело в том, что такие аппараты требуют высокой степени защиты, поэтому к внешней оболочке следует предъявлять серьезные требования. Практически каждый прибор требует питания энергией - соответственно, аккумулятор также можно рассматривать как обязательную часть устройства. Далее стоит перейти к более ответственному компоненту. Это первичный преобразователь, то есть датчик газоанализатора или чувствительный элемент, обеспечивающий непосредственные данные для измерения.

Надо сказать, что существует несколько видов таких сенсоров, в том числе термокаталитические, инфракрасные и электрохимические. Задача данного элемента заключается в преобразовании искомого компонента газового состава в электрический сигнал. После этого в работу вступает измерительно-показывающее устройство, которое обрабатывает данный сигнал и демонстрирует его показатели в виде индикации или отображения на дисплее. Теперь стоит рассмотреть виды существующих газоанализаторов.

Термохимические модели

В устройствах такого типа предусматривается принцип измерения за счет определения теплового эффекта от химической реакции с участием искомого компонента. Как правило, в процессе работы применяется техника окисления кислородом. Поэтому такой прибор можно рассматривать как газоанализатор кислорода, а функцию катализаторов выполняет гопкалит, который наносится на пористый носитель. Измерение показателей окисления осуществляется при помощи металлических или полупроводниковых терморезисторов. В некоторых случаях поверхность платиновых терморезисторов также выступает катализатором. Обычно термохимические модели применяются для работы с горючими газами и парами, а также в процессе С его помощью можно определить, к примеру, содержание кислорода в водороде.

Магнитные устройства

В данном случае речь также идет о приборах, ориентированных на определение кислорода. Газоанализатор этого типа отслеживает показатели восприимчивости магнитов относительно исследуемой среды в зависимости от концентрации в ней кислорода. Казалось бы, данный компонент может определяться и другими разновидностями прибора, но есть одна особенность. Дело в том, что магнитный газоанализатор - это измеритель, который способен с более высокой точностью определять концентрацию в сложных смесях. Также следует различать магнитомеханические и термомагнитные устройства. В первом случае прибор измеряет силу, действующую в неоднородном магнитном поле на размещенный в исследуемой среде чувствительный элемент - например, ротор. Показания будут зависеть от температуры среды и давления. Принцип действия термомагнитных моделей основан на конвенции, которая возникает при взаимодействии газовой смеси с неоднородными температурным и магнитным полями.

Пневматические модели

Такие приборы работают на основе измерения показателей вязкости и плотности. Для этого анализируются данные гидромеханических свойств потока. Сразу надо сказать, что существует три варианта подобных устройств: дроссельные, струйные и пневмоакустические. Дроссельный газоанализатор - это устройство с преобразователем, которое измеряет при пропускании через себя газовой смеси. Модели струйного типа измеряют динамические характеристики напора газовой смеси, вытекающей из сопла. Обычно устройства этого типа применяются в работе с азотными и хлористыми составами.

Пневмоакустический прибор включает свою конструкцию два свистка с приблизительно равными частотами порядка 4 кГц. Первый свисток пропускает через себя анализируемый газ, а второй - состав для сравнения. В итоге газоанализатор воздуха позволяет сопоставить частоты колебаний, преобразуя показатели в пневматические вибрации с помощью усилителя. Для обеспечения подачи сигнала используется типа.

Инфракрасные модели

Принцип работы таких газоанализаторов базируется на избирательном поглощении инфракрасным излучением молекул пара и газа. Важно учитывать, что устройство предусматривает поглощение тех газовых смесей, молекулы которых содержат не менее двух разных атомов. Специфика молекулярных спектров в различных газах определяет и повышенную избирательность подобных устройств. Например, существуют обычные и дисперсионные версии преобразователя. Дисперсионный газоанализатор - это прибор, в работе которого используется излучение, вырабатываемое монохроматорами, то есть или призмами. В обычных представителях этого класса применяется немонохроматическое излучение, обеспечиваемое за счет особенностей оптических схем. Для этого используются светофильтры, специальные приемники излучения и другие компоненты. Также в инфракрасных газоанализаторах могут применяться приемники излучения неселективного типа - в частности, термобатареи, болометры и полупроводниковые компоненты.

Как пользоваться прибором?

Для пользователя прибором важно ознакомиться с дисплеем или другим устройством для вывода информации, которым снабжается аппарат. Как правило, на современных дисплеях отображается дата, а также несколько полей для данных о составе газовой смеси. Получить полные сведения о значении полей и каналов прибора позволит инструкция газоанализатора в конкретной комплектации. Собственно, управление функциями прибора также зависит от конкретной модели. Как правило, достаточно активировать устройство при нахождении в газовой среде. Далее, когда будут достигнуты пороговые показатели концентрации искомого компонента, устройство подаст сигнал. В некоторых моделях возможна и световая индикация. В этот же момент на экране прибора должны быть заполнены основные строки о химическом составе газовой смеси и свойствах определенного компонента, на который был настроен прибор.

Поверка устройства

Как и любой газоанализатор нуждается в поверке. Эта процедура позволит оценить техническое состояние, рабочие показатели устройства, а также его соответствие Чаще всего сбоям в рабочих показателях подвергаются переносные газоанализаторы, поэтому их обслуживание следует производить чаще. Итак, как проводится поверка? Процедура выполняется на специальном поверочном стенде. Начинается она с осмотра прибора, тестирования замены неисправных элементов. Далее следуют калибровочные мероприятия и выполнение необходимых настроек.

Непосредственно поверка предполагает использование прибора для оценки концентрации определенного компонента в баллоне со сжатым газом. То есть, применяются специальные смеси, при помощи которых осуществляется поверка газоанализаторов на предмет анализа конкретного компонента.