Способ преобразования гравитационных волн в механическое движение. Эйнштейн был прав: гравитационные волны существуют. Экспериментальное подтверждение существования

Способ преобразования гравитационных волн в механическое движение. Эйнштейн был прав: гравитационные волны существуют. Экспериментальное подтверждение существования
Способ преобразования гравитационных волн в механическое движение. Эйнштейн был прав: гравитационные волны существуют. Экспериментальное подтверждение существования

Спустя сто лет после теоретического предсказания, которое в рамках общей теории относительности сделал Альберт Эйнштейн, ученым удалось подтвердить существование гравитационных волн. Начинается эра принципиально нового метода изучения далекого космоса — гравитационно-волновой астрономии.

Открытия бывают разные. Бывают случайные, в астрономии они встречаются часто. Бывают не совсем случайные, сделанные в результате тщательного «прочесывания местности», как, например, открытие Урана Вильямом Гершелем. Бывают серендипические — когда искали одно, а нашли другое: так, например, открыли Америку. Но особое место в науке занимают запланированные открытия. Они основаны на четком теоретическом предсказании. Предсказанное ищут в первую очередь для того, чтобы подтвердить теорию. Именно к таким открытиям относятся обнаружение бозона Хиггса на Большом адронном коллайдере и регистрация гравитационных волн с помощью лазерно-интерферометрической гравитационно-волновой обсерватории LIGO. Но для того чтобы зарегистрировать какое-то предсказанное теорией явление, нужно довольно неплохо понимать, что именно и где искать, а также какие инструменты необходимы для этого.

Гравитационные волны традиционно называют предсказанием общей теории относительности (ОТО), и это в самом деле так (хотя сейчас такие волны есть во всех моделях, альтернативных ОТО или же дополняющих ее). К появлению волн приводит конечность скорости распространения гравитационного взаимодействия (в ОТО эта скорость в точности равна скорости света). Такие волны — возмущения пространства-времени, распространяющиеся от источника. Для возникновения гравитационных волн необходимо, чтобы источник пульсировал или ускоренно двигался, но определенным образом. Скажем, движения с идеальной сферической или цилиндрической симметрией не подходят. Таких источников достаточно много, но часто у них маленькая масса, недостаточная для того, чтобы породить мощный сигнал. Ведь гравитация — самое слабое из четырех фундаментальных взаимодействий, поэтому зарегистрировать гравитационный сигнал очень трудно. Кроме того, для регистрации нужно, чтобы сигнал быстро менялся во времени, то есть имел достаточно высокую частоту. Иначе нам не удастся его зарегистрировать, так как изменения будут слишком медленными. Значит, объекты должны быть еще и компактными.

Первоначально большой энтузиазм вызывали вспышки сверхновых, происходящие в галактиках вроде нашей раз в несколько десятков лет. Значит, если удастся достичь чувствительности, позволяющей видеть сигнал с расстояния в несколько миллионов световых лет, можно рассчитывать на несколько сигналов в год. Но позднее оказалось, что первоначальные оценки мощности выделения энергии в виде гравитационных волн во время взрыва сверхновой были слишком оптимистичными, и зарегистрировать подобный слабый сигнал можно было бы только в случае, если б сверхновая вспыхнула в нашей Галактике.

Еще один вариант массивных компактных объектов, совершающих быстрые движения, — нейтронные звезды или черные дыры. Мы можем увидеть или процесс их образования, или процесс взаимодействия друг с другом. Последние стадии коллапса звездных ядер, приводящие к образованию компактных объектов, а также последние стадии слияния нейтронных звезд и черных дыр имеют длительность порядка нескольких миллисекунд (что соответствует частоте в сотни герц) — как раз то что надо. При этом выделяется много энергии, в том числе (а иногда и в основном) в виде гравитационных волн, так как массивные компактные тела совершают те или иные быстрые движения. Вот они — наши идеальные источники.

Правда, сверхновые вспыхивают в Галактике раз в несколько десятков лет, слияния нейтронных звезд происходят раз в пару десятков тысяч лет, а черные дыры сливаются друг с другом еще реже. Зато сигнал гораздо мощнее, и его характеристики можно достаточно точно рассчитать. Но теперь нам надо научиться видеть сигнал с расстояния в несколько сотен миллионов световых лет, чтобы охватить несколько десятков тысяч галактик и обнаружить несколько сигналов за год.

Определившись с источниками, начнем проектировать детектор. Для этого надо понять, что же делает гравитационная волна. Не вдаваясь в детали, можно сказать, что прохождение гравитационной волны вызывает приливную силу (обычные лунные или солнечные приливы — это отдельное явление, и гравитационные волны тут ни при чем). Так что можно взять, например, металлический цилиндр, снабдить датчиками и изучать его колебания. Это несложно, поэтому такие установки начали делать еще полвека назад (есть они и в России, сейчас в Баксанской подземной лаборатории монтируется усовершенствованный детектор, разработанный командой Валентина Руденко из ГАИШ МГУ). Проблема в том, что такой прибор будет видеть сигнал без всяких гравитационных волн. Есть масса шумов, с которыми трудно бороться. Можно (и это было сделано!) установить детектор под землей, попытаться изолировать его, охладить до низких температур, но все равно для того, чтобы превысить уровень шума, понадобится очень мощный гравитационно-волновой сигнал. А мощные сигналы приходят редко.

Поэтому был сделан выбор в пользу другой схемы, которую в 1962 году выдвинули Владислав Пусто-войт и Михаил Герценштейн. В статье, опубликованной в ЖЭТФ (Журнал экспериментальной и теоретической физики), они предложили использовать для регистрации гравитационных волн интерферометр Майкельсона. Луч лазера бегает между зеркалами в двух плечах интерферометра, а затем лучи из разных плеч складываются. Анализируя результат интерференции лучей, можно измерить относительное изменение длин плеч. Это очень точные измерения, поэтому, если победить шумы, можно достичь фантастической чувствительности.

В начале 1990-х было принято решение о строительстве нескольких детекторов по такой схеме. Первыми в строй должны были войти относительно небольшие установки, GEO600 в Европе и ТАМА300 в Японии (числа соответствуют длине плеч в метрах) для обкатки технологии. Но основными игроками должны были стать установки LIGO в США и VIRGO в Европе. Размер этих приборов измеряется уже километрами, а окончательная плановая чувствительность должна была бы позволить видеть десятки, если не сотни событий в год.

Почему нужны несколько приборов? В первую очередь для перекрестной проверки, поскольку существуют локальные шумы (например, сейсмические). Одновременная регистрация сигнала на северо-западе США и в Италии была бы прекрасным свидетельством его внешнего происхождения. Но есть и вторая причина: гравитационно-волновые детекторы очень плохо определяют направление на источник. А вот если разнесенных детекторов будет несколько, указать направление можно будет довольно точно.

Лазерные исполины

В своем первоначальном виде детекторы LIGO были построены в 2002 году, a VIRGO — в 2003-м. По плану это был лишь первый этап. Все установки поработали по несколько лет, а в 2010-2011 годах были остановлены для доработки, чтобы затем выйти на плановую высокую чувствительность. Первыми заработали детекторы LIGO в сентябре 2015 года, VIRGO должна присоединиться во второй половине 2016-го, и начиная с этого этапа чувствительность позволяет надеяться на регистрацию как минимум нескольких событий в год.

После начала работы LIGO ожидаемый темп всплесков составлял примерно одно событие в месяц. Астрофизики заранее оценили, что первыми ожидаемыми событиями должны стать слияния черных дыр. Связано это с тем, что черные дыры обычно раз в десять тяжелее нейтронных звезд, сигнал получается мощнее, и его «видно» с больших расстояний, что с лихвой компенсирует меньший темп событий в расчете на одну галактику. К счастью, долго ждать не пришлось. 14 сентября 201 5 года обе установки зарегистрировали практически идентичный сигнал, получивший наименование GW150914.

С помощью довольно простого анализа можно получить такие данные, как массы черных дыр, мощность сигнала и расстояние до источника. Масса и размер черных дыр связаны очень простым и хорошо известным образом, а по частоте сигнала сразу можно оценить размер области выделения энергии. В данном случае размер указывал на то, что из двух дыр массой 25-30 и 35-40 солнечных масс образовалась черная дыра с массой более 60 солнечных масс. Зная эти данные, можно получить и полную энергию всплеска. В гравитационное излучение перешло почти три массы Солнца. Это соответствует светимости 1023 светимостей Солнца — примерно столько же, сколько за это время (сотые доли секунды) излучают все звезды в видимой части Вселенной. А из известной энергии и величины измеренного сигнала получается расстояние. Большая масса слившихся тел позволила зарегистрировать событие, произошедшее в далекой галактике: сигнал шел к нам примерно 1,3 млрд лет.

Более детальный анализ позволяет уточнить отношение масс черных дыр и понять, как они вращались вокруг своей оси, а также определить и некоторые другие параметры. Кроме того, сигнал с двух установок позволяет примерно определить направление всплеска. К сожалению, пока тут точность не очень велика, но с вводом в строй обновленной VIRGO она возрастет. А еще через несколько лет начнет принимать сигналы японский детектор KAGRA. Затем один из детекторов LIGO (изначально их было три, одна из установок была сдвоенной) будет собран в Индии, и ожидается, что тогда будут регистрироваться многие десятки событий в год.

Эра новой астрономии

На данный момент самый важный результат работы LIGO — это подтверждение существования гравитационных волн. Кроме того, уже первый всплеск позволил улучшить ограничения на массу гравитона (в ОТО он имеет нулевую массу), а также сильнее ограничить отличие скорости распространения гравитации от скорости света. Но ученые надеются, что уже в 2016 году они смогут получать с помощью LIGO и VIRGO много новых астрофизических данных.

Во-первых, данные гравитационно-волновых обсерваторий — это новый канал изучения черных дыр. Если ранее можно было только наблюдать потоки вещества в окрестностях этих объектов, то теперь можно прямо «увидеть» процесс слияния и «успокоения» образующейся черной дыры, как колеблется ее горизонт, принимая свою окончательную форму (определяемую вращением). Наверное, вплоть до обнаружения хокинговского испарения черных дыр (пока что этот процесс остается гипотезой) изучение слияний будет давать лучшую непосредственную информацию о них.

Во-вторых, наблюдения слияний нейтронных звезд дадут много новой, крайне нужной информации об этих объектах. Впервые мы сможем изучать нейтронные звезды так, как физики изучают частицы: наблюдать за их столкновениями, чтобы понять, как они устроены внутри. Загадка строения недр нейтронных звезд волнует и астрофизиков, и физиков. Наше понимание ядерной физики и поведения вещества при сверхвысокой плотности неполно без разрешения этого вопроса. Вполне вероятно, что именно гравитационноволновые наблюдения сыграют здесь ключевую роль.

Считается, что именно слияния нейтронных звезд ответственны за короткие космологические гамма-всплески. В редких случаях удастся одновременно наблюдать событие сразу и в гамма-диапазоне, и на гравитационно-волновых детекторах (редкость связана с тем, что, во-первых, гамма-сигнал сконцентрирован в очень узкий луч, и он не всегда направлен на нас, а во-вторых, от очень далеких событий мы не зарегистрируем гравитационных волн). Видимо, понадобится несколько лет наблюдений, чтобы удалось это увидеть (хотя, как обычно, может повезти, и это произойдет прямо сегодня). Тогда, кроме всего прочего, мы сможем очень точно сравнить скорость гравитации со скоростью света.

Таким образом, лазерные интерферометры вместе будут работать как единый гравитационно-волновой телескоп, приносящий новые знания и астрофизикам, и физикам. Ну а за открытие первых всплесков и их анализ рано или поздно будет вручена заслуженная Нобелевская премия.

, США
© REUTERS, Handout

Гравитационные волны наконец-то открыты

Популярная наука

Колебания в пространстве-времени открыты спустя столетие после того, как их предсказал Эйнштейн. Начинается новая эра в астрономии.

Ученым удалось обнаружить колебания в пространстве-времени, вызываемые слиянием черных дыр. Это произошло через сто лет после того, как Альберт Эйнштейн в своей общей теории относительности предсказал эти «гравитационные волны», и через сто лет после того, как физики занялись их поисками.

Об этом знаковом открытии сообщили сегодня исследователи из Лазерной интерферометрической гравитационно-волновой обсерватории LIGO. Они подтвердили слухи, которые уже несколько месяцев окружали анализ первого набора собранных ими данных. Астрофизики говорят, что открытие гравитационных волн позволяет по-новому взглянуть на вселенную и дает возможность распознавать далекие события, которые невозможно увидеть в оптические телескопы, но можно почувствовать и даже услышать их слабое дрожание, доносящееся до нас через космос.

«Мы обнаружили гравитационные волны. Мы сделали это!» — объявил исполнительный директор научного коллектива из одной тысячи человек Дэвид Рейце (David Reitze), выступая сегодня на пресс-конференции в Вашингтоне в Национальном научном фонде.

Гравитационные волны — это, пожалуй, самое трудноуловимое явление из прогнозов Эйнштейна, на эту тему ученый дискутировал с современниками на протяжении десятилетий. Согласно его теории, пространство и время формируют растягивающуюся материю, которая искривляется под воздействием тяжелых объектов. Почувствовать гравитацию значит попасть в изгибы этой материи. Но может ли это пространство-время дрожать подобно шкуре барабана? Эйнштейн был в замешательстве, он не знал, что означают его уравнения. И неоднократно менял свою точку зрения. Но даже самые стойкие сторонники его теории полагали, что гравитационные волны в любом случае слишком слабы и не поддаются наблюдению. Они расходятся каскадом наружу после определенных катаклизмов, и по мере движения попеременно растягивают и сжимают пространство-время. Но к тому времени, как эти волны достигают Земли, они растягивают и сжимают каждый километр пространства на ничтожную долю диаметра атомного ядра.


© REUTERS, Hangout Детектор обсерватории LIGO в Ханфорде, штат Вашингтон

Чтобы засечь эти волны, понадобилось терпение и осторожность. Обсерватория LIGO запускала лазерные лучи туда и обратно вдоль расположенных под прямым углом четырехкилометровых колен двух детекторов, — один в Ханфорде, штат Вашингтон, а другой в Ливингстоне, штат Луизиана. Делалось это в поисках совпадающих расширений и сокращений этих систем при прохождении гравитационных волн. Используя самые современные стабилизаторы, вакуумные приборы и тысячи датчиков, ученые измеряли изменения в длине этих систем, составляющие всего одну тысячную от размера протона. Такая чувствительность приборов была немыслима сто лет тому назад. Невероятной она казалась и в 1968 году, когда Райнер Вайс (Rainer Weiss) из Массачусетского технологического института задумал эксперимент, получивший название LIGO.

«Это великое чудо, что в конечном итоге им все удалось. Они сумели засечь эти крохотные вибрации!» — сказал теоретический физик из Арканзасского университета Дэниел Кеннефик (Daniel Kennefick), написавший в 2007 году книгу Traveling at the Speed of Thought : Einstein and the Quest for Gravitational Waves (Путешествуя со скоростью мысли. Эйнштейн и поиски гравитационных волн).

Это открытие положило начало новой эре астрономии гравитационных волн. Есть надежда, что у нас появятся более точные представления о формировании, составе и галактической роли черных дыр — этих сверхплотных шаров массы, которые искажают пространство-время настолько резко, что оттуда не может выйти даже свет. Когда черные дыры сближаются друг с другом и сливаются, они порождают импульсный сигнал — пространственно-временные колебания, которые нарастают по амплитуде и тону, а затем резко заканчиваются. Те сигналы, которые может фиксировать обсерватория, находятся в звуковом диапазоне — правда, они слишком слабые , и невооруженным ухом их не услышать. Можно воссоздать этот звук, пробежав пальцами по клавишам фортепьяно. «Начинайте с самой низкой ноты и доходите до третьей октавы, — сказал Вайс. — Это то, что мы слышим».

Физики уже удивляются тому количеству и силе сигналов, которые зафиксированы на данный момент. Это значит, что в мире больше черных дыр, чем предполагалось ранее. «Нам повезло, но я всегда рассчитывал на такое везение, — сказал астрофизик Кип Торн (Kip Thorne), работающий в Калифорнийском технологическом институте и создавший LIGO совместно с Вайсом и Рональдом Дривером (Ronald Drever), которые тоже из Калтеха. — Обычно такое случается тогда, когда во вселенной открывается совершенно новое окно».

Подслушав гравитационные волны, мы можем сформировать совсем другие представления о космосе, а возможно, откроем невообразимые космические явления.

«Я могу сравнить это с моментом, когда мы впервые направили в небо телескоп, — сказала теоретический астрофизик Жанна Левин (Janna Levin) из Барнард-колледжа Колумбийского университета. — Люди поняли, что там что-то есть, и это можно увидеть, но они не могли предугадать тот невероятный набор возможностей, которые существуют во вселенной». Аналогичным образом, заметила Левин, открытие гравитационных волн может показать, что во вселенной «полно темной материи, которую мы не в состоянии просто так определить при помощи телескопа».

История открытия первой гравитационной волны началась в понедельник утром в сентябре, и началась она с хлопка. Сигнал был такой четкий и громкий, что Вайс подумал: «Нет, это ерунда, ничего из этого не выйдет».

Накал страстей

Эта первая гравитационная волна прокатилась по детекторам модернизированной LIGO — сначала в Ливингстоне, а спустя семь миллисекунд в Ханфорде — во время имитационного прогона рано утром 14 сентября, за два дня до официального начала сбора данных.

Детекторы проходили «обкатку» после модернизации, длившейся пять лет и стоившей 200 миллионов долларов. Их оснастили новыми зеркальными подвесками для шумоподавления и системой активной обратной связи для подавления посторонних колебаний в режиме реального времени. Модернизация дала усовершенствованной обсерватории более высокий уровень чувствительности по сравнению со старой LIGO, которая в период с 2002 по 2010 годы обнаружила «абсолютный и чистый ноль», как выразился Вайс.

Когда в сентябре пришел мощный сигнал, ученые в Европе, где в тот момент было утро, начали спешно засыпать своих американских коллег сообщениями по электронной почте. Когда проснулась остальная группа, новость распространилась очень быстро. По словам Вайса, практически все отнеслись к этому скептически, особенно когда увидели сигнал. Это была настоящая классика, как из учебника, и поэтому кое-кто подумал, что это подделка.

Ошибочные утверждения в процессе поиска гравитационных волн звучали многократно, начиная с конца 1960-х годов, когда Джозеф Вебер (Joseph Weber) из Мэрилендского университета посчитал, что он обнаружил резонансные колебания в алюминиевом цилиндре с датчиками в ответ на волны. В 2014 году состоялся эксперимент под названием BICEP2, по результатам которого было объявлено об обнаружении изначальных гравитационных волн — пространственно-временных колебаний от Большого взрыва, которые к настоящему времени растянулись и на постоянной основе застыли в геометрии вселенной. Ученые из группы BICEP2 объявили о своем открытии с большой помпой, но потом их результаты были подвергнуты независимой проверке, в ходе которой выяснилось, что они неправы, и что этот сигнал пришел от космической пыли.

Когда космолог из Университета штата Аризона Лоуренс Краусс (Lawrence Krauss) услышал об открытии команды LIGO, он сначала подумал, что это «слепой вброс». Во время работы старой обсерватории смоделированные сигналы тайком вставляли в потоки данных для проверки реакции, и большая часть коллектива об этом не знала. Когда Краусс от знающего источника узнал, что на сей раз это не «слепой вброс», он с трудом смог сдержать радостное возбуждение.

25 сентября он сообщил своим 200 тысячам подписчикам в Твиттере: «Слухи об обнаружении гравитационной волны на детекторе LIGO. Поразительно, если правда. Сообщу детали, если это не липа». Затем следует запись от 11 января: «Прежние слухи о LIGO подтверждены независимыми источниками. Следите за новостями. Возможно, открыты гравитационные волны!»

Официальная позиция ученых была такова: не распространяться о полученном сигнале, пока не будет стопроцентной уверенности. Торн, по рукам и ногам связанный этим обязательством хранить тайну, даже жене ничего не сказал. «Я отпраздновал в одиночку», — заявил он. Для начала ученые решили вернуться в самое начало и проанализировать все до мельчайших деталей, чтобы узнать, как распространялся сигнал через тысячи каналов измерения различных детекторов, и понять, не было ли чего-то странного в момент обнаружения сигнала. Они не нашли ничего необычного. Они также исключили хакеров, которые лучше всех должны были знать о тысячах потоков данных в ходе эксперимента. «Даже тогда, когда команда осуществляет слепые вбросы, они недостаточно совершенны, и оставляют после себя множество следов, — сказал Торн. — А здесь никаких следов не было».

В последующие недели они услышали еще один, более слабый сигнал.

Ученые анализировали первые два сигнала, а к ним поступали все новые. В январе они представили материалы своего исследования в журнале Physical Review Letters. Этот номер выходит в интернет-версии сегодня. По их оценкам, статистическая значимость первого, наиболее мощного сигнала превышает «5-sigma», а это значит, что исследователи на 99,9999% уверены в его подлинности.

Слушая гравитацию

Уравнения общей относительности Эйнштейна настолько сложны, что у большинства физиков ушло 40 лет на то, чтобы согласиться: да, гравитационные волны существуют, и их можно засечь — даже теоретически.

Сначала Эйнштейн думал, что объекты не могут выделять энергию в виде гравитационного излучения, но потом поменял свою точку зрения. В своей исторической работе, написанной в 1918 году, он показал, какие объекты могут это делать: гантелевидные системы, которые одновременно вращаются вокруг двух осей, например, двойные и сверхновые звезды, взрывающиеся подобно хлопушкам. Они-то и могут порождать волны в пространстве-времени.


© REUTERS, Handout Компьютерная модель, иллюстрирующая природу гравитационных волн в Солнечной системе

Но Эйнштейн и его коллеги продолжали колебаться. Некоторые физики утверждали, что даже если волны существуют, мир будет колебаться вместе с ними, и ощутить их будет невозможно. И лишь в 1957 году Ричард Фейнман (Richard Feynman) закрыл этот вопрос, продемонстрировав в ходе мысленного эксперимента, что если гравитационные волны существуют, теоретически их можно обнаружить. Но никто не знал, насколько распространены эти гантелевидные системы в космическом пространстве, и насколько сильны или слабы возникающие в результате волны. «В конечном итоге, вопрос звучал так: сможем ли мы когда-нибудь их обнаружить?» — сказал Кеннефик.

В 1968 году Райнер Вайс был молодым преподавателем Массачусетского технологического института, и ему поручили вести курс общей теории относительности. Будучи экспериментатором, он мало что знал о ней, но вдруг появились новости об открытии Вебером гравитационных волн. Вебер построил из алюминия три резонансных детектора размером с письменный стол и разместил их в разных американских штатах. Теперь он сообщил, что во всех трех детекторах зафиксировано «звучание гравитационных волн».

Ученики Вайса попросили объяснить природу гравитационных волн и высказать свое мнение о прозвучавшем сообщении. Изучая детали, он был поражен сложностью математических расчетов. «Я не мог понять, какого черта делает Вебер, как датчики взаимодействуют с гравитационной волной. Я подолгу сидел и спрашивал себя: „Какую я могу придумать самую примитивную вещь, чтобы она обнаруживала гравитационные волны?“ И тут мне в голову пришла идея, которую я называю концептуальной основой LIGO».

Представьте себе три предмета в пространстве-времени, скажем, зеркала в углах треугольника. «Посылайте световой сигнал от одного к другому, — рассказывал Вебер. — Смотрите, сколько времени уходит на переход от одной массы к другой, и проверяйте, изменилось ли время». Оказывается, отметил ученый, это можно сделать быстро. «Я поручил это своим студентам в качестве научного задания. Буквально вся группа смогла сделать эти расчеты».

В последующие годы, когда другие исследователи пытались повторить результаты эксперимента Вебера с резонансным детектором, но постоянно терпели неудачу (непонятно, что наблюдал он, но это были не гравитационные волны), Вайс начал готовить гораздо более точный и амбициозный эксперимент: гравитационно-волновой интерферометр. Лазерный луч отражается от трех зеркал, установленных в форме буквы «Г» и формирует два луча. Интервал пиков и провалов световых волн точно указывает длину колен буквы «Г», которые создают оси Х и Y пространства-времени. Когда шкала неподвижна, две световые волны отражаются от углов и гасят друг друга. Сигнал в детекторе получается нулевой. Но если через Землю проходит гравитационная волна, она растягивает длину одного плеча буквы «Г» и сжимает длину другого (и наоборот поочередно). Несовпадение двух световых лучей создает сигнал в детекторе, показывая легкие колебания пространства-времени.

Сначала коллеги-физики проявляли скептицизм, но вскоре эксперимент обрел поддержку в лице Торна, чья группа теоретиков из Калтеха исследовала черные дыры и прочие потенциальные источники гравитационных волн, а также порождаемые ими сигналы. Торна вдохновил эксперимент Вебера и аналогичные усилия российских ученых. Поговорив в 1975 году на конференции с Вайсом, «я начал верить, что обнаружение гравитационных волн пройдет успешно», сказал Торн. «И я хотел, чтобы Калтех в этом тоже участвовал». Он договорился с институтом, чтобы тот взял на работу шотландского экспериментатора Рональда Дривера, который также заявлял, что построит гравитационно-волновой интерферометр. Со временем Торн, Дривер и Вайс начали работать как одна команда, и каждый из них решал свою долю бесчисленных задач в рамках подготовки практического эксперимента. Это трио в 1984 году создало LIGO, а когда были построены опытные образцы и началось сотрудничество в рамках постоянно увеличивавшегося коллектива, они в начале 1990-х получили от Национального научного фонда финансирование в размере 100 миллионов долларов. Были составлены чертежи для строительства пары гигантских детекторов Г-образной формы. Спустя десятилетие детекторы заработали.

В Ханфорде и Ливингстоне в центре каждого из четырехкилометровых колен детекторов находится вакуум, благодаря которому лазер, его пучок и зеркала максимально изолированы от постоянных колебаний планеты. Чтобы еще больше застраховаться, ученые LIGO следят за своими детекторами во время их работы при помощи тысяч приборов, измеряя все что можно: сейсмическую активность, атмосферное давление, молнии, появление космических лучей, вибрацию оборудования, звуки в районе лазерного луча и так далее. Затем они отфильтровывают свои данные от этих посторонних фоновых шумов. Пожалуй, главное в том, что у них два детектора, а это позволяет сличать полученные данные, проверяя их на наличие совпадающих сигналов.

Контекст

Гравитационные волны: завершено то, что Эйнштейн начал в Берне

SwissInfo 13.02.2016

Как умирают черные дыры

Medium 19.10.2014
Внутри создаваемого вакуума, даже в условиях полной изоляции и стабилизации лазеров и зеркал «все время происходят странные вещи», говорит заместитель пресс-секретаря проекта LIGO Марко Кавалья (Marco Cavaglià). Ученые должны отслеживать этих «золотых рыбок», «призраков», «непонятных морских монстров» и прочие посторонние вибрационные явления, выясняя их источник, чтобы устранить его. Один трудный случай произошел на проверочном этапе, рассказала научный исследователь из коллектива LIGO Джессика Макайвер (Jessica McIver), исследующая такие посторонние сигналы и помехи. Среди данных часто появлялась череда периодических одночастотных шумов. Когда она вместе с коллегами преобразовала вибрации зеркал в аудиофайлы, «стал отчетливо слышен звонок телефона», сказала Макайвер. «Оказалось, что это рекламщики связи звонили по телефону внутри лазерного помещения».

В предстоящие два года ученые продолжат совершенствовать чувствительность детекторов модернизированной Лазерной интерферометрической гравитационно-волновой обсерватории LIGO. А в Италии начнет работать третий интерферометр под названием Advanced Virgo. Один из ответов, который помогут дать полученные данные, это как формируются черные дыры. Являются ли они продуктом схлопывания самых ранних массивных звезд, или они появляются в результате столкновений внутри плотных звездных кластеров? «Это только два предположения, я полагаю, их будет больше, когда все успокоятся», — говорит Вайс. Когда в ходе предстоящей работы LIGO начнет накапливать новые статистические данные, ученые начнут слушать истории о происхождении черных дыр, которые им будет нашептывать космос.

Судя по форме и размеру, первый, самый громкий импульсный сигнал возник в 1,3 миллиарда световых лет от того места, где после длившегося вечность медленного танца под влиянием взаимного гравитационного притяжения наконец слились две черные дыры, каждая примерно в 30 раз больше солнечной массы. Черные дыры кружили все быстрее и быстрее, подобно водовороту, постепенно сближаясь. Потом произошло слияние, и они в мгновение ока выпустили гравитационные волны с энергией, сопоставимой энергии трех Солнц. Это слияние стало самым мощным энергетическим явлением из когда-либо зафиксированных.

«Как будто мы никогда не видели океан во время шторма», — сказал Торн. Он ждал этого шторма в пространстве-времени с 1960-х годов. То чувство, которое Торн испытал в момент, когда накатили эти волны, нельзя назвать волнением, говорит он. Это было нечто иное: чувство глубочайшего удовлетворения.

Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.

Официальным днем открытия (детектирования) гравитационных волн считается 11 февраля 2016 года. Именно тогда, на состоявшейся в Вашингтоне пресс-конференции, руководителями коллаборации LIGO было объявлено, что коллективу исследователей удалось впервые в истории человечества зафиксировать это явление.

Пророчества великого Эйнштейна

О том, что гравитационные волны существуют, еще в начале прошлого века (1916 г.) предположил Альберт Эйнштейн в рамках сформулированной им Общей теории относительности (ОТО). Остается только поражаться гениальным способностям знаменитого физика, который при минимуме реальных данных смог сделать такие далеко идущие выводы. Среди множества прочих предсказанных физических явлений, нашедших подтверждение в последующее столетие (замедление течения времени, изменение направления электромагнитного излучения в гравитационных полях и пр.) практически обнаружить наличие этого типа волнового взаимодействия тел до последнего времени не удавалось.

Гравитация - иллюзия?

Вообще, в свете Теории относительности гравитацию сложно назвать силой. возмущения или искривления пространственно-временного континуума. Хорошим примером, иллюстрирующим данный постулат, может служить натянутый кусок ткани. Под тяжестью размещенного на такой поверхности массивного предмета образуется углубление. Прочие объекты при движении вблизи этой аномалии будут изменять траекторию своего движения, как бы "притягиваясь". И чем больше вес предмета (больше диаметр и глубина искривления), тем выше "сила притяжения". При его движении по ткани, можно наблюдать возникновение расходящейся "ряби".

Нечто подобное происходит и в мировом пространстве. Любая ускоренно движущаяся массивная материя является источником флуктуаций плотности пространства и времени. Гравитационная волна с существенной амплитудой, образуется телами с чрезвычайно большими массами или при движении с огромными ускорениями.

Физические характеристики

Колебания метрики пространство-время проявляют себя, как изменения поля тяготения. Это явление иначе называют пространственно-временной рябью. Гравитационная волна воздействует на встреченные тела и объекты, сжимая и растягивая их. Величины деформации очень незначительны - порядка 10 -21 от первоначального размера. Вся трудность обнаружения этого явления заключалась в том, что исследователям необходимо было научиться измерять и фиксировать подобные изменения с помощью соответствующей аппаратуры. Мощность гравитационного излучения также чрезвычайно мала - для всей Солнечной системы она составляет несколько киловатт.

Скорость распространения гравитационных волн незначительно зависит от свойств проводящей среды. Амплитуда колебаний с удалением от источника постепенно уменьшается, но никогда не достигает нулевого значения. Частота лежит в диапазоне от нескольких десятков до сотен герц. Скорость гравитационных волн в межзвездной среде приближается к скорости света.

Косвенные доказательства

Впервые теоретическое подтверждение существования волн тяготения удалось получить американскому астроному Джозефу Тейлору и его ассистенту Расселу Халсу в 1974 году. Изучая просторы Вселенной с помощью радиотелескопа обсерватории Аресибо (Пуэрто-Рико), исследователи открыли пульсар PSR B1913+16, представляющий собой двойную систему нейтронных звезд, вращающихся вокруг общего центра масс с постоянной угловой скоростью (довольно редкий случай). Ежегодно период обращения, изначально составляющий 3,75 часа, сокращается на 70 мс. Это значение вполне соответствует выводам из уравнений ОТО, предсказывающих увеличение скорости вращения подобных систем вследствие расходования энергии на генерацию гравитационных волн. В дальнейшем было обнаружено несколько двойных пульсаров и белых карликов с аналогичным поведением. Радиоастрономам Д. Тейлору и Р. Халсу в 1993 году была присуждена Нобелевская премия по физике за открытие новых возможностей изучения полей тяготения.

Ускользающая гравитационная волна

Первое заявление о детектировании волн тяготения поступило от ученого Мэрилендского университета Джозефа Вебера (США) в 1969 году. Для этих целей он использовал две гравитационные антенны собственной конструкции, разнесенные на расстояние в два километра. Резонансный детектор представлял собой хорошо виброизолированный цельный двухметровый цилиндр из алюминия, оснащенный чувствительными пьезодатчиками. Амплитуда, якобы зафиксированных Вебером колебаний оказалась более чем в миллион раз выше ожидаемого значения. Попытки других ученых с помощью подобного оборудования повторить "успех" американского физика положительных результатов не принесли. Через несколько лет работы Вебера в данной области были признаны несостоятельными, но дали толчок развития "гравитационному буму", привлекшему в эту область исследований многих специалистов. Кстати, сам Джозеф Вебер до конца своих дней был уверен, что принимал гравитационные волны.

Совершенствование приемного оборудования

В 70-х годах ученый Билл Фэйрбанк (США) разработал конструкцию гравитационно-волновой антенны, охлаждаемой с применением сквидов - сверхчувствительных магнитомеров. Существующие на тот момент технологии не позволили увидеть изобретателю свое изделие, реализованное в "металле".

По такому принципу выполнен гравитационный детектор Auriga в Национальной леньярской лаборатории (Падуя, Италия). В основе конструкции алюминиево-магниевый цилиндр, длиной 3 метра и диаметром 0,6 м. Приемное устройство массой 2,3 тонны подвешено в изолированной, охлажденной почти до абсолютного нуля вакуумной камере. Для фиксации и детектирования сотрясений используется вспомогательный килограммовый резонатор и измерительный комплекс на основе ЭВМ. Заявленная чувствительность оборудования 10 -20 .

Интерферометры

В основу функционирования интерференционных детекторов гравитационных волн заложены те же принципы, по которым работает интерферометр Майкельсона. Испускаемый источником лазерный луч делится на два потока. После многократных отражений и путешествий по плечам устройства потоки вновь сводятся воедино, и по итоговому судят о том, воздействовали ли на ход лучей какие-либо возмущения (например, гравитационная волна). Подобное оборудование создано во многих странах:

  • GEO 600 (Ганновер, Германия). Длина вакуумных тоннелей 600 метров.
  • ТАМА (Япония) с плечами в 300 м.
  • VIRGO (Пиза, Италия) - совместный франко-итальянский проект, запущенный в 2007 году с трехкилометровыми тоннелями.
  • LIGO (США, Тихоокеанское побережье), ведущий охоту за волнами тяготения с 2002 года.

Последний стоит рассмотреть более подробно.

LIGO Advanced

Проект был создан по инициативе ученых Массачусетского и Калифорнийского технологических институтов. Включает в себя две обсерватории, разнесенные на 3 тыс. км, в и Вашингтон (города Ливингстон и Хэнфорд) с тремя идентичными интерферометрами. Длина перпендикулярных вакуумных тоннелей составляет 4 тыс. метров. Это самые большие на сегодняшний момент действующие подобные сооружения. До 2011 года многочисленные попытки обнаружения волн тяготения никаких результатов не принесли. Проведенная существенная модернизация (Advanced LIGO) повысила чувствительность оборудования в диапазоне 300-500 Гц более чем в пять раз, а в низкочастотной области (до 60 Гц) почти на порядок, достигнув столь вожделенной величины в 10 -21 . Обновленный проект стартовал в сентябре 2015 года, и усилия более чем тысячи сотрудников коллаборации были вознаграждены полученными результатами.

Гравитационные волны обнаружены

14 сентября 2015 года усовершенствованные детекторы LIGO с интервалом в 7 мс зафиксировали дошедшие до нашей планеты гравитационные волны от крупнейшего явления, произошедшего на окраинах наблюдаемой Вселенной - слияния двух крупных черных дыр с массами в 29 и 36 раз превышающими массу Солнца. В ходе процесса, состоявшегося более 1,3 млрд лет назад, за считанные доли секунды на излучение волн тяготения было израсходовано около трех солнечных масс вещества. Зафиксированная начальная частота гравитационных волн составляла 35 Гц, а максимальное пиковое значение достигло отметки в 250 Гц.

Полученные результаты неоднократно подвергались всесторонней проверке и обработке, тщательно отсекались альтернативные интерпретации полученных данных. Наконец, прошлого года о прямой регистрации предсказанного Эйнштейном явления было объявлено мировому сообществу.

Факт, иллюстрирующий титаническую работу исследователей: амплитуда колебаний размеров плеч интерферометров составила 10 -19 м - эта величина во столько же раз меньше диаметра атома, во сколько он сам меньше апельсина.

Дальнейшие перспективы

Сделанное открытие еще раз подтверждает, что Общая теория относительности - не просто набор абстрактных формул, а принципиально новый взгляд на суть гравитационных волн и гравитации в целом.

В дальнейших исследованиях ученые большие надежды возлагают на проект ELSA: создание гигантского орбитального интерферометра с плечами около 5 млн км, способного обнаружить даже незначительные возмущения полей тяготения. Активизация работ в этом направлении способна поведать много нового об основных этапах развития Вселенной, о процессах, наблюдение которых в традиционных диапазонах затруднено или невозможно. Несомненно, что и черные дыры, гравитационные волны которых будут зафиксированы в будущем, многое расскажут о своей природе.

Для изучения реликтового гравитационного излучения, способного рассказать о первых мгновениях нашего мира после Большого Взрыва, потребуются более чувствительные космические инструменты. Такой проект существует (Big Bang Observer ), но его реализация, по заверениям специалистов, возможна не ранее, чем через 30-40 лет.

Ключевое отличие в том, что если звуку нужна среда, в которой он путешествует, гравитационные волны движут среду - в данном случае само пространство-время. «Они буквально раздавливают и растягивают ткань пространства-времени», - говорит Кьяра Мингарелли, астрофизик гравитационных волн в Калтехе. Для наших ушей, волны, обнаруженные LIGO, будут звучать как бульк.

Как именно будет происходить эта революция? У LIGO сейчас есть два детектора, которые выступают «ушами» для ученых, и в будущем будет еще больше детекторов. И если LIGO стала первой обнаружившей, она явно не будет единственной. Типов гравитационных волн весьма много. На самом деле, их целый спектр, подобно тому, как бывают разные типы света, с различной длиной волны, в электромагнитном спектре. Поэтому и другие коллаборации вступят в охоту на волны с частотой, на которую не рассчитана LIGO.

Мингарелли работает с коллаборацией NanoGRAV (северо-американской наногерцевой обсерваторией гравитационных волн), частью крупного международного консорциума, в который входят European Pulsar Timing Array и Parkes Pulsar Timing Array в Австралии. Как следует из названия, ученые NanoGRAV охотятся на низкочастотные гравитационные волны в режиме от 1 до 10 наногерц; чувствительность LIGO находится в килогерцевой (слышимой) части спектра, ищет очень длинные волны.


Эта коллаборация опирается на данные пульсаров, собранные обсерваторией Аресибо в Пуэрто-Рико и телескопом Грин-Бэнк в Западной Вирджинии. Пульсары это быстро вращающиеся нейтронные звезды, которые образуются, когда звезды массивнее Солнца взрываются и коллапсируют в себя. Они вращаются все быстрее и быстрее по мере сжатия, подобно тому как грузик на конце веревки крутится тем быстрее, чем короче становится веревка.

Они также испускают мощные всплески излучения по мере вращения, как маяк, которые фиксируются как импульсы света на Земле. И это периодическое вращение чрезвычайно точное - почти так же точно, как атомные часы. Оно делает их идеальными космическими детекторами гравитационных волн. Первое непрямое доказательство пришло в процессе изучения пульсаров в 1974 году, когда Джозеф Тейлор-младший и Расселл Халс обнаружили, что пульсар, вращающийся вокруг нейтронной звезды, медленно сжимается со временем - такой эффект можно было бы ожидать, если бы он преобразовывал часть своей массы в энергию в форме гравитационных волн.

В случае NanoGRAV, дымящимся пистолетом будет своего рода мерцание. Импульсы должны приходить одновременно, но если в них попадает гравитационная волна, они будут приходить чуть раньше или позже, поскольку пространство-время будет сжиматься или растягиваться по мере прохождения волны.

Массивы пульсарных временных решеток особенно чувствительны к гравитационным волнам, произведенным путем слияния сверхмассивных черных дыр в миллиард или десять миллиардов раз больше массы нашего Солнца, вроде тех, что скрываются в центре самых массивных галактик. Если две таких галактики сольются, дыры в их центрах также сольются и испустят гравитационные волны. «LIGO видит самый конец слияния, когда пары оказываются очень близко, - говорит Мингарелли. - С помощью МПВР мы могли бы видеть их в начале спиральной фазы, когда они только вступают в орбиту друг друга».

А есть еще космическая миссия LISA (Laser Interferometer Space Antenna). Находящаяся на Земле LIGO прекрасно обнаруживает гравитационные волны, эквивалентные части спектра слышимого звука - вроде того, что произвели наши сливающиеся черные дыры. Но множество интересных источников этих волн выдают низкие частоты. Поэтому физики должны отправиться в космос, чтобы обнаружить их. Основная задача текущей миссии LISA Pathfinder () - проверить работу детектора. «С LIGO вы можете остановить работу инструмента, вскрыть вакуум и все починить, - говорит Скотт Хьюз из MIT. - Но в космосе ничего не вскроешь. Придется сразу нормально делать, чтоб нормально работало».

Цель LISA проста: используя лазерные интерферометры, космический аппарат попытается точно измерить относительное положение двух 1,8-дюймовых золото-платиновых кубов в состоянии свободного падения. Размещенные в отдельных электродных боксах в 15 дюймах друг от друга, тестовые объекты будут защищены от солнечного ветра и других внешних сил, так что будет возможно обнаружить крошечное движение, вызванное гравитационными волнами (будем надеяться).

Наконец, есть два эксперимента, спроектированных для поиска отпечатков, оставленных первичными гравитационными волнами в реликтовом излучении (послесвечении Большого Взрыва): BICEP2 и миссия спутника Планка. BICEP2 заявил об обнаружении таковой в 2014 году, но оказалось, что сигнал был фальшивым (виновата космическая пыль).

Обе коллаборации продолжают охоту в надежде пролить свет на раннюю историю нашей Вселенной - и, надеюсь, подтверждение ключевых прогнозов инфляционной теории. Эта теория предсказала, что вскоре после своего рождения Вселенная пережила быстрый рост, который не мог не оставить мощных гравитационных волн, оставшихся отпечатком в реликтовом излучении в форме особых световых волн (поляризации).

Каждый из четырех режимов гравитационных волн откроет астрономам четыре новых окна на Вселенную.

Но мы-то знаем, о чем вы думаете: пора запускать варп-двигатель, чуваки! Поможет ли открытие LIGO построить Звезду Смерти на следующей неделе? Конечно, нет. Но чем лучше мы поймем гравитацию, тем шире мы будем понимать, как строить подобные вещи. В конце концов, это работа ученых, этим они зарабатывают на хлеб. Понимая, как работает Вселенная, мы можем больше полагаться на свои возможности.

Валентин Николаевич Руденко делится историей своего визита в город Кашина (Италия), где он провел неделю на тогда еще только что построенной «гравитационной антенне» – оптическом интерферометре Майкельсона. По дороге к месту назначения таксист интересуется, для чего построена установка. «Тут люди думают, что это для разговора с Богом», – признается водитель.

– Что такое гравитационные волны?

– Гравитационная волна один из «переносчиков астрофизической информации». Существуют видимые каналы астрофизической информации, особая роль в «дальнем видении» принадлежит телескопам. Астрономы освоили также низкочастотные каналы – микроволновой и инфракрасный, и высокочастотные – рентгеновские и гамма-. Кроме электромагнитного излучения, мы можем регистрировать потоки частиц из Космоса. Для этого используют нейтринные телескопы – крупногабаритные детекторы космических нейтрино – частиц, которые слабо взаимодействуют с веществом и поэтому трудно регистрируются. Почти все теоретически предсказанные и лабораторно-исследованные виды «переносчиков астрофизической информации» надежно освоены на практике. Исключение составляла гравитация – самое слабое взаимодействие в микромире и самая мощная сила в макромире.

Гравитация – это геометрия. Гравитационные волны – геометрические волны, то есть волны, которые меняют геометрические характеристики пространства, когда проходят по этому пространству. Грубо говоря, это – волны, деформирующие пространство. Деформация – это относительное изменение расстояния между двумя точками. Гравитационное излучение отличается от всех других типов излучений именно тем, что они геометрические.

– Гравитационные волны предсказал Эйнштейн?

– Формально считается, что гравитационные волны предсказал Эйнштейн, как одно из следствий его общей теории относительности, но фактически их существование становится очевидным уже в специальной теории относительности.

Теория относительности предполагает, что из-за гравитационного притяжения возможен гравитационный коллапс, то есть стягивание объекта в результате коллапсирования, грубо говоря, в точку. Тогда гравитация такая сильная, что из нее даже не может выйти свет, поэтому такой объект образно называется черной дырой.

– В чем заключается особенность гравитационного взаимодействия?

Особенностью гравитационного взаимодействия является принцип эквивалентности. Согласно ему динамическая реакция пробного тела в гравитационном поле не зависит от массы этого тела. Проще говоря, все тела падают с одинаковым ускорением.

Гравитационное взаимодействие – самое слабое из известных нам сегодня.

– Кто первым пытался поймать гравитационную волну?

– Гравитационно-волновой эксперимент первым провел Джозеф Вебер из Мэрилендского университета (США). Он создал гравитационный детектор, который теперь хранится в Смитсоновском музее в Вашингтоне. В 1968-1972 году Джо Вебер провел серию наблюдений на паре пространственно разнесенных детекторов, пытаясь выделить случаи «совпадений». Прием совпадений заимствован из ядерной физики. Невысокая статистическая значимость гравитационных сигналов, полученных Вебером, вызывала критическое отношение к результатам эксперимента: не было уверенности в том, что удалось зафиксировать гравитационные волны. В дальнейшим ученые пытались увеличить чувствительность детекторов веберовского типа. На разработку детектора, чувствительность которого была адекватна астрофизическому прогнозу, ушло 45 лет.

За время начала эксперимента до фиксации прошло много других экспериментов, были зафиксированы импульсы за этот период, но у них была слишком маленькая интенсивность.

– Почему о фиксации сигнала объявили не сразу?

– Гравитационные волны были зафиксированы еще в сентябре 2015 года. Но даже если совпадение было зафиксировано, надо прежде, чем объявлять, доказать, что оно не является случайным. В сигнале, снимаемом с любой антенны, всегда есть шумовые выбросы (кратковременные всплески), и один из них случайно может произойти одновременно с шумовым всплеском на другой антенне. Доказать, что совпадение произошло не случайно можно только с помощью статистических оценок.

– Почему открытия в области гравитационных волн так важны?

– Возможность зарегистрировать реликтовый гравитационный фон и измерить его характеристики, такие как плотность, температура и т.п., позволяет подойти к началу мироздания.

Привлекательным является то, что гравитационное излучение трудно обнаружить, потому что оно очень слабо взаимодействует с веществом. Но, благодаря этому же свойству, оно и проходит без поглощений из самых далеких от нас объектов с самыми таинственными, с точки зрения материи, свойствами.

Можно сказать, что гравитационные излучения проходят без искажения. Наиболее амбициозная цель – исследовать то гравитационное излучение, которое было отделено от первичной материи в Теории Большого Взрыва, которое создалось в момент создания Вселенной.

– Исключает ли открытие гравитационных волн квантовую теорию?

Теория гравитации предполагает существование гравитационного коллапса, то есть стягивание массивных объектов в точку. В то же время, квантовая теория, которую развивала Копенгагенская школа предполагает, что, благодаря принципу неопределенности, нельзя одновременно указать точно такие параметры как координата, скорость и импульс тела. Здесь есть принцип неопределенности, нельзя определить точно траекторию, потому что траектория – это и координата, и скорость и т. д. Можно определить только некий условный доверительный коридор в пределах этой ошибки, которая связана с принципами неопределенности. Квантовая теория категорически отрицает возможность точечных объектов, но описывает их статистически вероятностным образом: не конкретно указывает координаты, а указывает вероятность того, что она имеет определенные координаты.

Вопрос об объединении квантовой теории и теории гравитации – один из фундаментальных вопросов создания единой теории поля.

Над ним сейчас продолжают работать, и слова “квантовая гравитация” означают совершенно передовую область науки, границу знаний и незнаний, где сейчас работают все теоретики мира.

– Что может дать открытие в будущем?

Гравитационные волны неизбежно должны лечь в фундамент современной науки как одна из составляющих нашего знания. Им отводится существенная роль в эволюции Вселенной и с помощью этих волн Вселенную следует изучать. Открытие способствует общему развитию науки и культуры.

Если решиться выйти за рамки сегодняшней науки, то допустимо представить себе линии телекоммуникационной гравитационной связи, реактивные аппараты на гравитационной радиации, гравитационно-волновые приборы интроскопии.

– Имеют ли отношение гравитационные волны к экстрасенсорике и телепатии?

Не имеют. Описанные эффекты – это эффекты квантового мира, эффекты оптики.

Беседовала Анна Уткина