Примеры на обратные тригонометрические функции. Выразим через все обратные тригонометрические функции

Примеры на обратные тригонометрические функции. Выразим через все обратные тригонометрические функции
Примеры на обратные тригонометрические функции. Выразим через все обратные тригонометрические функции

Обратные тригонометрические функции имеют широкое применение в математическом анализе. Однако у большинства старшеклассников задачи, связанные с данным видом функций, вызывают значительные затруднения. В основном это связано с тем, что во многих учебниках и учебных пособиях задачам такого вида уделяется слишком мало внимания. И если с задачами на вычисление значений обратных тригонометрических функций учащиеся хоть как-то справляются, то уравнения и неравенства, содержащие такие функции, в большинстве своем ставят ребят в тупик. На самом деле, в этом нет ничего удивительного, ведь практически ни в одном учебнике не объясняется методика решения даже самых простейших уравнений и неравенств, содержащих обратные тригонометрические функции.

Рассмотрим несколько уравнений и неравенств, содержащих обратные тригонометрические функции, и решим их с подробным объяснением.

Пример 1.

Решить уравнение: 3arccos (2x + 3) = 5π/2.

Решение.

Выразим из уравнения обратную тригонометрическую функцию, получим:

arccos (2x + 3) = 5π/6. Теперь воспользуемся определением арккосинуса.

Арккосинусом некоторого числа a, принадлежащего отрезку от -1 до 1, является такой угол y из отрезка от 0 до π, что его косинус и равен числу x. Поэтому можно записать так:

2x + 3 = cos 5π/6.

Распишем правую часть полученного уравнения по формуле приведения:

2x + 3 = cos (π – π/6).

2x + 3 = -cos π/6;

2x + 3 = -√3/2;

2x = -3 – √3/2.

Приведем правую часть к общему знаменателю.

2x = -(6 + √3) / 2;

x = -(6 + √3) / 4.

Ответ: -(6 + √3) / 4 .

Пример 2.

Решить уравнение: cos (arccos (4x – 9)) = x 2 – 5x + 5.

Решение.

Так как cos (arcсos x) = x при x принадлежащем [-1; 1], то данное уравнение равносильно системе:

{4x – 9 = x 2 – 5x + 5,
{-1 ≤ 4x – 9 ≤ 1.

Решим уравнение, входящее в систему.

4x – 9 = x 2 – 5x + 5.

Оно квадратное, поэтому получим, что

x 2 – 9x + 14 = 0;

D = 81 – 4 · 14 = 25;

x 1 = (9 + 5) / 2 = 7;

x 2 = (9 – 5) / 2 = 2.

Решим двойное неравенство, входящее в систему.

1 ≤ 4x – 9 ≤ 1. Прибавим ко всем частям 9, будем иметь:

8 ≤ 4x ≤ 10. Разделим каждое число на 4, получим:

2 ≤ x ≤ 2,5.

Теперь объединим полученные ответы. Легко видеть, что корень x = 7 не удовлетворяет ответу неравенства. Поэтому единственным решением уравнения будет x = 2.

Ответ: 2.

Пример 3.

Решить уравнение: tg (arctg (0,5 – x)) = x 2 – 4x + 2,5 .

Решение.

Так как tg (arctg x) = x при всех действительных числах, то данное уравнение равносильно уравнению:

0,5 – x = x 2 – 4x + 2,5.

Решим полученное квадратное уравнение с помощью дискриминанта, предварительно приведя его в стандартный вид.

x 2 – 3x + 2 = 0;

D = 9 – 4 · 2 = 1;

x 1 = (3 + 1) / 2 = 2;

x 2 = (3 – 1) / 2 = 1.

Ответ: 1; 2 .

Пример 4.

Решить уравнение: arcctg (2x – 1) = arcctg (x 2 /2 + x/2) .

Решение.

Так как arcctg f(x) = arcctg g(x) тогда и только тогда, когда f(x) = g(x), то

2x – 1 = x 2 /2 + x/2. Решим полученное квадратное уравнение:

4x – 2 = x 2 + x;

x 2 – 3x + 2 = 0.

По теореме Виета получим, что

x = 1 или x = 2.

Ответ: 1; 2.

Пример 5.

Решить уравнение: arcsin (2x – 15) = arcsin (x 2 – 6x – 8) .

Решение.

Так как уравнение вида arcsin f(x) = arcsin g(x) равносильно системе

{f(x) = g(x),
{f(x) € [-1; 1],

то исходное уравнение равносильно системе:

{2x – 15 = x 2 – 6x + 8,
{-1 ≤ 2x – 15 ≤ 1.

Решим полученную систему:

{x 2 – 8x + 7 = 0,
{14 ≤ 2x ≤ 16.

Из первого уравнения по теореме Виета имеем, что x = 1 или x = 7. Решая второе неравенство системы, получаем, что 7 ≤ x ≤ 8. Поэтому в окончательный ответ подходит только корень x = 7.

Ответ: 7 .

Пример 6.

Решить уравнение: (arccos x) 2 – 6 arccos x + 8 = 0.

Решение.

Пусть arccos x = t, тогда t принадлежит отрезку и уравнение принимает вид:

t 2 – 6t + 8 = 0. Решим полученное квадратное уравнение по теореме Виета, получим, что t = 2 или t = 4.

Так как t = 4 не принадлежит отрезку , то получим, что t = 2, т.е. arccos x = 2, а значит x = cos 2.

Ответ: cos 2.

Пример 7.

Решить уравнение: (arcsin x) 2 + (arccos x) 2 = 5π 2 /36 .

Решение.

Воспользуемся равенством arcsin x + arccos x = π/2 и запишем уравнение в виде

(arcsin x) 2 + (π/2 – arcsin x) 2 = 5π 2 /36.

Пусть arcsin x = t, тогда t принадлежит отрезку [-π/2; π/2] и уравнение принимает вид:

t 2 + (π/2 – t) 2 = 5π 2 /36.

Решим полученное уравнение:

t 2 + π 2 /4 – πt + t 2 = 5π 2 /36;

2t 2 – πt + 9π 2 /36 – 5π 2 /36 = 0;

2t 2 – πt + 4π 2 /36 = 0;

2t 2 – πt + π 2 /9 = 0. Умножим каждое слагаемое на 9, чтобы избавиться от дробей в уравнении, получим:

18t 2 – 9πt + π 2 = 0.

Найдем дискриминант и решим полученное уравнение:

D = (-9π) 2 – 4 · 18 · π 2 = 9π 2 .

t = (9π – 3π) / 2 · 18 или t = (9π + 3π) / 2 · 18;

t = 6π/36 или t = 12π/36.

После сокращения имеем:

t = π/6 или t = π/3. Тогда

arcsin x = π/6 или arcsin x = π/3.

Таким образом, x = sin π/6 или x = sin π/3. То есть x = 1/2 или x =√3/2.

Ответ: 1/2; √3/2.

Пример 8.

Найти значение выражения 5nx 0 , где n – количество корней, а x 0 – отрицательный корень уравнения 2 arcsin x = - π – (x + 1) 2 .

Решение.

Так как -π/2 ≤ arcsin x ≤ π/2, то -π ≤ 2 arcsin x ≤ π. Кроме того, (x + 1) 2 ≥ 0 при всех действительных x,
тогда -(x + 1) 2 ≤ 0 и -π – (x + 1) 2 ≤ -π.

Таким образом, уравнение может иметь решение, если обе его части одновременно равны –π , т.е. уравнение равносильно системе:

{2 arcsin x = -π,
{-π – (x + 1) 2 = -π.

Решим полученную систему уравнений:

{arcsin x = -π/2,
{(x + 1) 2 = 0.

Из второго уравнения имеем, что x = -1, соответственно n = 1, тогда 5nx 0 = 5 · 1 · (-1) = -5.

Ответ: -5.

Как показывает практика, умение решать уравнения с обратными тригонометрическими функциями является необходимым условием успешной сдачи экзаменов. Именно поэтому тренировка в решении таких задач просто необходима и является обязательной при подготовке к ЕГЭ.

Остались вопросы? Не знаете, как решать уравнения?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Обра́тные тригонометри́ческие фу́нкции-это математические функции, являющиеся обратными тригонометрическим функциям.

Функция y=arcsin(x)

Арксинусом числа α называют такое число α из промежутка [-π/2;π/2], синус которого равен α.
График функции
Функция у= sin⁡(x) на отрезке [-π/2;π/2], строго возрастает и непрерывна; следовательно, она имеет обратную функцию, строго возрастающую и непрерывную.
Функция, обратная для функции у= sin⁡(x), где х ∈[-π/2;π/2], называется арксинусом и обозначается y=arcsin(x),где х∈[-1;1].
Итак, согласно определению обратной функции, областью определения арксинуса является отрезок [-1;1], а множеством значений - отрезок [-π/2;π/2].
Отметим, что график функцииy=arcsin(x),где х ∈[-1;1].симметричен графику функции у= sin(⁡x), где х∈[-π/2;π/2],относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcsin(x).

Пример№1.

Найти arcsin(1/2)?

Так как область значений функцииarcsin(x)принадлежит промежутку [-π/2;π/2], то подходит только значениеπ/6 .Следовательноarcsin(1/2) =π/6.
Ответ:π/6

Пример №2.
Найти arcsin(-(√3)/2)?

Так как область значений arcsin(x) х ∈[-π/2;π/2], то подходит только значение -π/3.Следовательноarcsin(-(√3)/2) =- π/3.

Функция y=arccos(x)

Арккосинусом числа α называют такое число α из промежутка , косинус которого равен α.

График функции

Функция у= cos(⁡x) на отрезке , строго убывает и непрерывна; следовательно, она имеет обратную функцию, строго убывающую и непрерывную.
Функция, обратная для функции у= cos⁡x, где х ∈, называется арккосинусом и обозначается y=arccos(x),где х ∈[-1;1].
Итак, согласно определению обратной функции, областью определения арккосинуса является отрезок [-1;1], а множеством значений - отрезок .
Отметим, что график функцииy=arccos(x),где х ∈[-1;1] симметричен графику функции у= cos(⁡x), где х ∈,относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arccos(x).

Пример №3.

Найти arccos(1/2)?


Так как область значений arccos(x) х∈, то подходит только значение π/3.Следовательно arccos(1/2) =π/3.
Пример №4.
Найти arccos(-(√2)/2)?

Так как область значений функции arccos(x) принадлежит промежутку , то подходит только значение 3π/4.Следовательноarccos(-(√2)/2) =3π/4.

Ответ: 3π/4

Функция y=arctg(x)

Арктангенсом числа α называют такое число α из промежутка [-π/2;π/2], тангенс которого равен α.

График функции

Функция тангенс непрерывная и строго возрастающая на интервале(-π/2;π/2); следовательно, она имеет обратную функцию, которая непрерывна и строго возрастает.
Функция, обратная для функции у= tg⁡(x), где х∈(-π/2;π/2); называется арктангенсом и обозначается y=arctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арктангенса является интервал(-∞;+∞), а множеством значений - интервал
(-π/2;π/2).
Отметим, что график функции y=arctg(x),где х∈R, симметричен графику функции у= tg⁡x, где х ∈ (-π/2;π/2), относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arctg(x).

Пример№5?

Найти arctg((√3)/3).

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение π/6 .Следовательноarctg((√3)/3) =π/6.
Пример№6.
Найти arctg(-1)?

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение -π/4 .Следовательноarctg(-1) = - π/4.

Функция y=arcctg(x)


Арккотангенсом числа α называют такое число α из промежутка (0;π), котангенс которого равен α.

График функции

На интервале (0;π),функция котангенс строго убывает; кроме того,она непрерывна в каждой точке этого интервала; следовательно, на интервале (0;π), эта функция имеет обратную функцию, которая является строго убывающей и непрерывной.
Функция, обратная для функции у=ctg(x), где х ∈(0;π), называется арккотангенсом и обозначается y=arcctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арккотангенса будет R,а множеством значений –интервал (0;π).График функции y=arcctg(x),где х∈R симметричен графику функции y=ctg(x) х∈(0;π),относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcctg(x).




Пример№7.
Найти arcctg((√3)/3)?


Так как область значений arcctg(x) х ∈(0;π), то подходит только значение π/3.Следовательно arccos((√3)/3) =π/3.

Пример№8.
Найти arcctg(-(√3)/3)?

Так как область значений arcctg(x) х∈(0;π), то подходит только значение 2π/3.Следовательноarccos(-(√3)/3) =2π/3.

Редакторы: Агеева Любовь Александровна, Гаврилина Анна Викторовна

Уроки 32-33. Обратные тригонометрические функции

09.07.2015 5917 0

Цель: рассмотреть обратные тригонометрические функции, их использование для записи решений тригонометрических уравнений.

I. Сообщение темы и цели уроков

II. Изучение нового материала

1. Обратные тригонометрические функции

Рассмотрение этой темы начнем со следующего примера.

Пример 1

Решим уравнение: a ) sin x = 1/2; б) sin x = а.

а) На оси ординат отложим значение 1/2 и построим углы x 1 и х2, для которых sin x = 1/2. При этом х1 + х2 = π, откуда х2 = π – x 1 . По таблице значений тригонометрических функций найдем величину х1 = π/6, тогда Учтем периодичность функции синуса и запишем решения данного уравнения: где k ∈ Z .

б) Очевидно, что алгоритм решения уравнения sin х = а такой же, как и в предыдущем пункте. Разумеется, теперь по оси ординат откладывается величина а. Возникает необходимость каким-то образом обозначить угол х1. Условились такой угол обозначать символом arcsin а. Тогда решения данного уравнения можно записать в виде Эти две формулы можно объединить в одну: при этом

Аналогичным образом вводятся и остальные обратные тригонометрические функции.

Очень часто бывает необходимо определить величину угла по известному значению его тригонометрической функции. Такая задача является многозначной - существует бесчисленное множество углов, тригонометрические функции которых равны одному и тому же значению. Поэтому, исходя из монотонности тригонометрических функций, для однозначного определения углов вводят следующие обратные тригонометрические функции.

Арксинус числа a (arcsin , синус которого равен а, т. е.

Арккосинус числа a (arccos а) - такой угол а из промежутка , косинус которого равен а, т. е.

Арктангенс числа a (arctg а) - такой угол а из промежутка тангенс которого равен а, т. е. tg а = а.

Арккотангенс числа a (arcctg а) - такой угол а из промежутка (0; π), котангенс которого равен а, т. е. ctg а = а.

Пример 2

Найдем:

Учитывая определения обратных тригонометрических функций получим:


Пример 3

Вычислим

Пусть угол а = arcsin 3/5, тогда по определению sin a = 3/5 и . Следовательно, надо найти cos а. Используя основное тригонометрическое тождество, получим: Учтено, что и cos a ≥ 0. Итак,

Свойства функции

Функция

у = arcsin х

у = arccos х

у = arctg х

у = arcctg х

Область определения

х ∈ [-1; 1]

х ∈ [-1; 1]

х ∈ (-∞; +∞)

х ∈ (-∞ +∞)

Область значений

y ∈ [ -π/2 ; π /2 ]

y ∈

y ∈ (-π/2 ; π /2 )

y ∈ (0; π)

Четность

Нечетная

Ни четная, ни нечетная

Нечетная

Ни четная, ни нечетная

Нули функции (y = 0)

При х = 0

При х = 1

При х = 0

у ≠ 0

Промежутки знакопостоянства

у > 0 при х ∈ (0; 1],

у < 0 при х ∈ [-1; 0)

у > 0 при х ∈ [-1; 1)

у > 0 при х ∈ (0; +∞),

у < 0 при х ∈ (-∞; 0)

у > 0 при x ∈ (-∞; +∞)

Монотонность

Возрастает

Убывает

Возрастает

Убывает

Связь с тригонометрической функцией

sin у = х

cos у = х

tg у = х

ctg у = х

График



Приведем еще ряд типичных примеров, связанных с определениями и основными свойствами обратных тригонометрических функций.

Пример 4

Найдем область определения функции

Для того чтобы функция у была определена, необходимо выполнение неравенства которое эквивалентно системе неравенств Решением первого неравенства является промежуток х (-∞; +∞), второго - Этот промежуток и является решением системы неравенств, а следовательно, и областью определения функции

Пример 5

Найдем область изменения функции

Рассмотрим поведение функции z = 2х - х2 (см. рисунок).

Видно, что z ∈ (-∞; 1]. Учитывая, что аргумент z функции арккотангенса меняется в указанных пределах, из данных таблицы получим, что Таким образом, область изменения

Пример 6

Докажем, что функция у = arctg х нечетная. Пусть Тогда tg а = -х или х = - tg а = tg (- a ), причем Следовательно, - a = arctg х или а = - arctg х. Таким образом, видим, что т. е. у(х) - функция нечетная.

Пример 7

Выразим через все обратные тригонометрические функции

Пусть Очевидно, что Тогда Так как

Введем угол Так как то

Аналогично поэтому и

Итак,

Пример 8

Построим график функции у = cos (arcsin х).

Обозначим а = arcsin x , тогда Учтем, что х = sin а и у = cos а, т. е. x 2 + у2 = 1, и ограничения на х (х [-1; 1]) и у (у ≥ 0). Тогда графиком функции у = cos (arcsin х) является полуокружность.

Пример 9

Построим график функции у = arccos (cos x ).

Так как функция cos х изменяется на отрезке [-1; 1], то функция у определена на всей числовой оси и изменяется на отрезке . Будем иметь в виду, что у = arccos (cos x ) = х на отрезке ; функция у является четной и периодической с периодом 2π. Учитывая, что этими свойствами обладает функция cos x , теперь легко построить график.


Отметим некоторые полезные равенства:

Пример 10

Найдем наименьшее и наибольшее значения функции Обозначим тогда Получим функцию Эта функция имеет минимум в точке z = π/4, и он равен Наибольшее значение функции достигается в точке z = -π/2, и оно равно Таким образом, и

Пример 11

Решим уравнение

Учтем, что Тогда уравнение имеет вид: или откуда По определению арктангенса получим:

2. Решение простейших тригонометрических уравнений

Аналогично примеру 1 можно получить решения простейших тригонометрических уравнений.

Уравнение

Решение

tgx = а

ctg х = а

Пример 12

Решим уравнение

Так как функция синус нечетная, то запишем уравнение в виде Решения этого уравнения: откуда находим

Пример 13

Решим уравнение

По приведенной формуле запишем решения уравнения: и найдем

Заметим, что в частных случаях (а = 0; ±1) при решении уравнений sin х = а и cos х = а проще и удобнее использовать не общие формулы, а записывать решения на основании единичной окружности:

для уравнения sin х = 1 решения

для уравнения sin х = 0 решения х = π k ;

для уравнения sin х = -1 решения

для уравнения cos х = 1 решения х = 2π k ;

для уравнения cos х = 0 решения

для уравнения cos х = -1 решения

Пример 14

Решим уравнение

Так как в данном примере имеется частный случай уравнения, то по соответствующей формуле запишем решение: откуда найдем

III. Контрольные вопросы (фронтальный опрос)

1. Дайте определение и перечислите основные свойства обратных тригонометрических функций.

2. Приведите графики обратных тригонометрических функций.

3. Решение простейших тригонометрических уравнений.

IV. Задание на уроках

§ 15, № 3 (а, б); 4 (в, г); 7 (а); 8 (а); 12 (б); 13 (а); 15 (в); 16 (а); 18 (а, б); 19 (в); 21;

§ 16, № 4 (а, б); 7 (а); 8 (б); 16 (а, б); 18 (а); 19 (в, г);

§ 17, № 3 (а, б); 4 (в, г); 5 (а, б); 7 (в, г); 9 (б); 10 (а, в).

V. Задание на дом

§ 15, № 3 (в, г); 4 (а, б); 7 (в); 8 (б); 12 (а); 13 (б); 15 (г); 16 (б); 18 (в, г); 19 (г); 22;

§ 16, № 4 (в, г); 7 (б); 8 (а); 16 (в, г); 18 (б); 19 (а, б);

§ 17, № 3 (в, г); 4 (а, б); 5 (в, г); 7 (а, б); 9 (г); 10 (б, г).

VI. Творческие задания

1. Найдите область определения функции:


Ответы :

2. Найдите область значений функции:

Ответы:

3. Постройте график функции:


VII. Подведение итогов уроков

Даны определения обратных тригонометрических функций и их графики. А также формулы, связывающие обратные тригонометрические функции, формулы сумм и разностей.

Определение обратных тригонометрических функций

Поскольку тригонометрические функции периодичны, то обратные к ним функции не однозначны. Так, уравнение y = sin x , при заданном , имеет бесконечно много корней. Действительно, в силу периодичности синуса, если x такой корень, то и x + 2πn (где n целое) тоже будет корнем уравнения. Таким образом, обратные тригонометрические функции многозначны . Чтобы с ними было проще работать, вводят понятие их главных значений. Рассмотрим, например, синус: y = sin x . Если ограничить аргумент x интервалом , то на нем функция y = sin x монотонно возрастает. Поэтому она имеет однозначную обратную функцию, которую называют арксинусом: x = arcsin y .

Если особо не оговорено, то под обратными тригонометрическими функциями имеют в виду их главные значения, которые определяются следующими определениями.

Арксинус (y = arcsin x ) - это функция, обратная к синусу (x = sin y

Арккосинус (y = arccos x ) - это функция, обратная к косинусу (x = cos y ), имеющая область определения и множество значений .

Арктангенс (y = arctg x ) - это функция, обратная к тангенсу (x = tg y ), имеющая область определения и множество значений .

Арккотангенс (y = arcctg x ) - это функция, обратная к котангенсу (x = ctg y ), имеющая область определения и множество значений .

Графики обратных тригонометрических функций

Графики обратных тригонометрических функций получаются из графиков тригонометрических функций зеркальным отражением относительно прямой y = x . См. разделы Синус, косинус , Тангенс, котангенс .

y = arcsin x


y = arccos x


y = arctg x


y = arcctg x

Основные формулы

Здесь следует особо обратить внимание на интервалы, для которых справедливы формулы.

arcsin(sin x) = x при
sin(arcsin x) = x
arccos(cos x) = x при
cos(arccos x) = x

arctg(tg x) = x при
tg(arctg x) = x
arcctg(ctg x) = x при
ctg(arcctg x) = x

Формулы, связывающие обратные тригонометрические функции

Формулы суммы и разности


при или

при и

при и


при или

при и

при и


при

при


при

при