Поиск неисправностей в компьютерном блоке питания. Технология ремонта блока питания компьютера своими руками

Поиск неисправностей в компьютерном блоке питания. Технология ремонта блока питания компьютера своими руками
Поиск неисправностей в компьютерном блоке питания. Технология ремонта блока питания компьютера своими руками

Неприятная ситуация, когда после нажатия кнопки Power компьютер не включается, может случиться с любым пользователем.

Причин для такого поведения системы могут быть различными. Но не стоит паниковать, многие из них можно устранить самостоятельно или обратившись к специалистам.

Причины и способы решения

Если при включении компьютера он не подает признаков жизни, не запускается или не происходит загрузка операционной системы, вообще, причины этого могут быть самыми разными.

Рассмотрим самые распространенные проблемы, приводящие к невозможности включить компьютер:

  • проблемы с электропитанием;
  • неисправность блока питания;
  • проблемы с батарейкой CMOS;
  • неполадки с комплектующими;
  • сломанная кнопка питания;
  • неисправность материнской платы.

Некоторые из этих проблем легко диагностировать и устранить в домашних условиях, а с другими придется обращаться в сервисный центр. В любом случае попробовать устранить неисправность самостоятельно будет нелишним.

Проблемы с 220В

Очень часто пользователи по своей невнимательности сталкиваются с элементарными проблемами. Прежде всего, не стоит паниковать раньше времени. Сначала необходимо посмотреть, что же случилось. В случае если вентиляторы не крутятся, индикаторы не загораются, то необходимо проверить наличие питания.

Проверить то, что к ПК поступает электричество, можно выполнив несколько простых действий:

  • удостовериться в наличии питания в розетке;
  • проверить подключение сетевого фильтра к розетке и его работу, например, включив в него другое устройство;
  • убедиться в правильности подключения шнура питания к системному блоку и розетке.

В варианте, когда устранить проблему простой проверкой подключения ПК не удалось ситуация, то ищем неисправность дальше.

Не исправен блок питания

Проблемы с включением ПК достаточно часто возникают из-за неисправного блока питания. Происходит такая неполадка по причине перепадов напряжения, которые в наших сетях не редкость.

Рассмотрим основные признаки, указывающие на неисправность блока питания:

  • при нажатии с кнопки питания компьютер не реагирует совсем;
  • индикаторы загораются, но ничего не запускается.

В любом случае определить, виноват ли в ситуации блок питание можно только установив другой, заведомо исправный. Во многих случаях при выходе из строя этого комплектующего придется также заменить материнскую плату или отдавать ее в дорогостоящий ремонт.

Видео: Что делать, если не включается

Не работает батарейка

На материнской плате внутри системного блока находится небольшая батарейка CR-2032. Она отвечает за хранение настроек базовой системы ввода-вывода ПК. Срок службы батарейки достаточно длинный.

Но в ряде случаев она выходит из строя через пару лет, и появляются разные проблемы с часами и включением. В этом случае ее надо просто заменить.

Рассмотрим, как обычно проявляется разрядка батарейки CMOS:

  • компьютер не включается совсем;
  • старт происходит после нескольких нажатий на кнопку питания;
  • сбои часов;
  • произвольное включение ПК при подаче питания;
  • перезагрузки без запроса пользователя.

На самом деле проявления могут несколько отличаться в зависимости от конфигурации системы и других внешних факторов. Приобрести необходимую для замены батарейку можно в компьютерных, хозяйственных и других магазинах.

Пыль

Достаточно частой причиной проблем с запуском компьютера становиться его запыленность. Сбой при этом может проявляться по-разному от остановки системы до произвольного выключения или отсутствия возможности запустить.

Порядок выполнения чистки системного блока:

  1. отключить питание и выдернуть все шнуры из розетки;
  2. открыть крышку системного блока;
  3. удалить пыль, например, с помощью кисточки;
  4. очистить контакты оперативной памяти, видеокарты и других комплектующих;
  5. проверить вентиляторы на заклинивание;
  6. при необходимости выполнить профилактическое обслуживание в виде замены термопасты.

Неполадки с комплектующими

Неисправность отдельных компонентов ПК может привести также к невозможности запустить его. В этом случае самостоятельно диагностировать дома неисправность достаточно сложно. В некоторых вариантах могут помочь в определении проблемы сигналы, подаваемые при запуске системы.

В этом случае понадобиться знать производителя BIOS. Кроме того, описание сигналов, подаваемых при включении, можно найти в инструкции к материнской плате. Наиболее часто писк может указывать на проблемы с оперативной памятью или видеокартой.

Устранить возникшую неисправность можно заменив комплектующие на исправные, но перед этим рекомендуется попробовать произвести чистку контактов с помощью обычного школьного ластика. В некоторых случая этот метод очень выручает.

Кнопка питания

Причина, почему с кнопки запустить ПК не удается, может крыться в самом переключателе. Проще говоря, он может не до конца замыкать контакты. Проверить неполадку можно самостоятельно замкнув соответствующую пару контактов на материнской плате с помощью отвертки.

Внимание! Самостоятельно замыкать контакты рекомендуется только тем, кто уверен в своих действиях и имеет необходимые знания. Остальным лучше обратиться за помощью к специалистам.

Материнская плата

Определить неисправность материнской или системной платы самостоятельно с высокой точностью можно только путем замены всех остальных комплектующих на исправные. В редких случаях при диагностике помогут сигналы подаваемые BIOS.

Чаще всего при возникновении такой неполадки включаются и работают вентиляторы, но отсутствует вывод изображения и другая реакция ПК на действия пользователя. Ремонтировать материнскую плату в большинстве случаев смысла не имеет, так как стоимость работы может превосходить цену на новую деталь в магазине.

Обратите внимание. Часто неполадки с материнской платой ошибочно описывают неисправностью, включаю компьютер, а монитор не включается. Происходит путаница между проблемами с монитором и отсутствием видеосигнала. Проверить работу монитора легко, отключив сигнальный кабель от системного блока и посмотрев на наличие заставки производителя.

Компьютер не включается

Компьютер может перестать включаться по огромному количеству причин. Но среди них можно выделить самые распространенные. Часть из них могут быть устранены самим владельцем ПК без обращения в сервисный центр, но прежде всего, необходимо установить причину неисправности.

Рассмотрим самые распространенные проблемы, из-за которых компьютер может не включаться:

  • дефект видеокарты;
  • проблемы после процессора;
  • неполадки после чистки;
  • сбои после гибернации;
  • некорректная работа после замены деталей.

С видеокартой

Неполадки, связанные с видеокартой, достаточно просто диагностировать. Прежде всего, включая компьютер, а монитор не включается, вентиляторы при этом в большинстве будут крутиться.

При установке исправной видеокарты изображение при этом обычно появляется. Владельцы материнских плат с интегрированным видео могут также использовать его для проверки работоспособности видеоадаптера.

Большая часть видеокарт выходит из строя из-за плохого охлаждения, например, при большой запыленности системного блока или сломавшемся кулере. Поэтому при профилактике необходимо уделять особое внимание удалению пыли и проверке вентилятора на видеокарте.

После замены процессора

Пользователи после замены процессора сталкиваются достаточно часто с невозможностью включить компьютер. Обычно данную неполадку легко устранить.

Рассмотрим основные действия, которые необходимо выполнить, если ПК перестал включаться после замены процессора:

  1. проверить совместимость материнской платы и нового процессора;
  2. сбросить настройки BIOS;
  3. выполнить очистку контактов;
  4. удостовериться в правильности установки всех комплектующих.

Совет. Дополнительно помочь при диагностике могут сигналы, издаваемые системным динамиком.

После скачка напряжения

В результате скачка напряжения могут выйти из строя многие компоненты ПК. В качестве профилактики рекомендуется подключать ЭВМ к сети питания с использованием качественных стабилизаторов.

Компоненты, которые выходят из строя чаще всего при скачках напряжения:

  • блок питания;
  • материнская плата;
  • видеокарта.

Стоит обратить внимание, что повреждены могут быть сразу несколько комплектующих и необязательно из приведенного списка.

После чистки

Многие пользователи, решив впервые почистить системный блок от пыли сталкиваются с невозможностью запустить ПК после обратной сборки. При этом могут быть достаточно простые причины или выйти из строя комплектующие.

Действия, которые необходимо выполнить, если ПК не стартует после чистки:

  • проверить подключение кабелей;
  • убедиться в правильном и плотном подключении разъемов блока питания к материнской плате;
  • проверить установку оперативной памяти и видеокарты;
  • если снималась система охлаждения, то надо удостовериться в правильности ее установке и в достаточном количестве термопасты;
  • убедиться в верном подключении остальных плат и устройств (жесткого диска, привода и т.д.);
  • сбросить настройки BIOS с помощью перемычки или удалив на несколько минут батарейку.

После гибернации

Режим гибернации разработан в первую очередь для снижения энергопотребления ноутбуками и увеличения времени работы от батареи. При выключении ПК этим способом все данные сохраняются на жестком диске. Некоторые системы после перехода в этот режим не могут включиться.

Запустить компьютер можно отключив на несколько минут блок питания от сети и включив снова. При этом операционная система может перестать запускаться. Придется воспользоваться восстановлением системы.

После замены материнской платы

Часть владельцев ПК вынуждена заменять материнскую плату в связи с тем, что старая вышла из строя. При этом важно убедиться в совместимости новой платы с остальными комплектующими, а также правильно выполнить установку. Но даже в этом случае могут возникнуть неполадки.

Рассмотрим основные действия, если компьютер не стартует после замены материнской платы:

  • проверьте подключение блока питания и установку дополнительных плат;
  • временно отключите жесткий диск и другие внешние устройства, старт без которых возможен;
  • удостоверьтесь в правильности установки ОЗУ, почистите контакты на модулях;
  • попробуйте запустить плату без установленного ОЗУ и видеокарты и проверьте наличие сигналов через спикер;
  • замените последовательно блок питания, ОЗУ, видеокарту, процессор на заведомо рабочий.

Если старт ПК после всех этих действий так и не происходит, то рекомендуется обратиться в сервис для проверки работоспособности материнской платы.

После обновления

В ходе установки некоторых обновлений работоспособность операционной системы может быть нарушена и в результате ПК перестает запускать. Для решения придется воспользоваться восстановлением системы.

Запуск средства восстановления системы в Windows 7:


После этого система попытается самостоятельно устранить проблемы с запуском. В случае если неполадки остаются можно попробовать переустановить Windows.

При замене оперативной памяти

Неполадки после замены оперативной памяти возникают достаточно редко. Сначала надо убедитесь, что выбрали совместимые модули.

Рассмотрим действия, которые необходимо выполнить, если ПК перестал запускаться после замены ОЗУ:

  • проверить правильность установки модуля;
  • пробовать запустить систему, используя только один модуль;
  • почистить контакты;
  • выполнить тестовый запуск системы с заведомо исправным модулем.

Компьютер включается, но

В некоторых случаях происходит включение компьютера, вентиляторы запускаются, но операционная система при этом не загружается или отсутствует изображение на экране. Причин для такого поведения ЭВМ немало.

Не загружается

Если компьютер включился, но не загружается Windows, то искать проблему надо именно в ней. Такое поведение происходит при неудачном обновлении, некорректной установке программ или просто из-за сбоя в работе.

Попробовать устранить проблему с загрузкой операционной системы можно следующими способами:

  1. запустить компьютер в безопасном режиме и попробовать откатиться на одну из предыдущих точек восстановления;
  2. воспользоваться средствами восстановления ОС;
  3. провести сканирование на вирусы с помощью специальных загрузочных дисков;
  4. переустановить Windows.

Стоит отметить, что в ряде случаев невозможность запуска операционной системы может быть связана с неисправностью аппаратной части. Тогда можно попробовать использовать специализированные утилиты для тестирования HDD и ОЗУ или обратиться в сервисный центр.

Нет изображения

В ряде случаев происходит запуск компьютера, но отсутствует изображение. При этом включаются все вентиляторы, слышна работа жесткого диска, а иногда даже запускается Windows, что слышно по характерному звуку. Эта проблема носит в большинстве своем аппаратный характер.

  • проверить соединительные шнуры;
  • удостовериться в работе монитора, отключив его от системного блока;
  • очистить контакты видеокарты и проверить работу кулера;
  • попробовать использовать другой внешний или интегрированный видеоадаптер.

Проблем, из-за которых компьютер не включается или не запускает операционную систему большое количество. Многие из них можно постараться устранить самостоятельно, воспользовавшись советами из этой статьи. Если же ничего не помогает, то придется обратиться за помощью к специалистам.

Случаи выхода из строя блоков питания в компьютере не редкость. Причинами тому являются:

1. Выбросы напряжения в электросети;

2. Низкое качество изготовления, особенно касается дешевых блоков питания и системных блоков;

3. Неудачные конструктивные и схемотехнические решения;

4. Применение низкокачественных компонентов при изготовлениии;

Если этот процесс принесет ожидаемые результаты как можно быстрее, создайте резервную копию и замените ненадежный диск на новый. Кроме того, важно заботиться о чистоте вашего компьютера, потому что пыль, которая препятствует охлаждению компонентов, может вызвать проблемы. перегревать их.

Ниже мы приводим список наиболее распространенных сбоев оборудования и кратко описываем, как их удалить. Ошибка 1 - Мышь или клавиатура отказываются подчиняться. Причина в основном связана со стороны водителя. Услуга, требуемая для воспроизведения звука, отключена.

5. Перегрев элементов из-за неудачного расположения системного блока, загрязнения блока питания, остановки вентилятора охлаждения.

Какие «симптомы» неисправности блока питания в компьютере?

Чаще всего это полное отсутствие признаков жизни системного блока, то есть ничего не гудит, не горят светодиоды индикации, нет звуковых сигналов.

Решение. Щелкните правой кнопкой мыши компьютер и выберите «Управление». Разверните раздел «Службы и приложения» Услуги. В противном случае дважды щелкните службу и запустите автозапуск. Если ваш носитель не указан в окне управления дисками, посетите веб-сайт производителя, загрузите и установите последний драйвер.

Затем щелкните правой кнопкой мыши диск и выберите «Изменить букву и путь к диску». Нажмите «Добавить», выберите «Присвоить следующую букву диска» и выберите одну из доступных букв. Уязвимость 4 - компьютер не подключается к Интернету. Сначала определите, какой протокол используется для передачи данных. Снимите флажок «Протокол Интернета версии 6».

В некоторых случаях не стартует материнская плата. При этом могут крутиться вентиляторы, гореть индикация, издавать звуки приводы и жесткий диск, но на экране монитора ничего не появляется.


Иногда системный блок при включении начинает подавать признаки жизни на несколько секунд и тут же выключается по причине срабатывания защиты блока питания от перегрузок.

Аналогичным образом вы избавитесь от ускорителей Интернета, которые не полностью удалены.


Неудача 5 - частая зависание системы. Проверьте напряжение питания и максимальную частоту в руководстве по эксплуатации или непосредственно на диске. При необходимости отрегулируйте настройки.

Однако, если вы не найдете неточностей, вы должны тщательно протестировать память на предмет возможной неисправности. Чтобы определить, какой модуль вышел из строя, вам необходимо изучить каждый из них отдельно. Перед устранением неполадок определите источник питания, используя приведенные ниже примеры. Чтобы определить причину проблемы и выяснить, какие решения доступны, выполните следующие действия.

Для того чтобы окончательно убедиться в неисправности блока питания нужно открыть правую крышку системного блока, если смотреть сзади. Вытащить основной штеккер основного разъёма блока питания, который имеет 20 или 24 контакта, из гнезда материнской платы, и замкнуть контакты с зелёным (иногда серым) и ближайшим чёрным проводом. Если при этом блок питания запустится, то, скорее всего, виновата материнская плата.

Иногда при подключении источника питания к розетке можно обнаружить искры. Это обычно нормальное явление, которое может возникать при подключении любого электрического устройства к выходу. Если источник искр является элементом, отличным от штырьков штепсельной вилки, если вы заметили повреждение или обесцвечивание источника питания, или вас беспокоит другая проблема с искрообразованием.

Известно, что одним из наиболее важных компонентов компьютера является источник питания. В зависимости от его качества остальные компоненты работают или нет в оптимальных параметрах, для которых они были разработаны производителем. На рынке существует множество моделей питания, но их качество часто вызывает сомнения.

Запуск блока питания можно определить по вращению вентилятора блока питания, если он исправен и щелчкам приводов, но для надёжности лучше проверить напряжения на разъёме. Между контактами с черным и красным проводами - 5в, между черным и желтым - 12в, между черным и розовым - 3,3в; между черным и фиолетовым - 5в дежурного напряжения. Минус на черном, а плюс на цветных. Для того чтобы убедиться что блок питания запущен достаточно измерить одно из напряжений, кроме «дежурных» 5в на фиолетовом проводе.

Из-за этого, без обобщения, это часто происходит, когда компьютер не запускается, не зависает или не перезапускается, а основным виновником является даже источник питания. К сожалению, такие случаи встречаются довольно часто в компьютерах с дешевыми источниками питания. Что еще более неприятно для дешевых источников и почему бы не признать это, низкое качество заключается в том, что из-за неисправности он влияет на остальные компоненты компьютера, что приводит к преждевременному старению деталей, раздутым конденсаторам, знаменитым «плохим», На жесткие диски и многое другое.

Иногда пользователи начинают искать предохранитель. Не ищите, снаружи их нет. Есть один внутри, но менять его в большинстве случев не только бесполезно, но опасно и вредно, так как это может привести к ещё большим проблемам.

Если обнаружится, что блок питания неисправен, то в большинстве случаев лучше его заменить, но можно и, если это экономически целесообразно.

Теперь, после этого небольшого введения, давайте посмотрим, что мы можем сделать, если компьютер не запускается. В такой ситуации есть две причины. В источнике питания не работает один из дефектных компонентов, что приводит к тому, что источник входит в защитную систему , состояние аварийности остается до устранения причины.

Те, которые перечислены ниже, относятся только к внешней проверке источника, не мешая ему. Это делается только уполномоченным персоналом, в противном случае существует опасность поражения электрическим током ! После отключения питания от сети мы отключим разъемы на вторичном источнике питания на материнской плате, жестком диске, оптическом приводе, видеокарте, где это применимо, и т.д. все вторичные разъемы должны быть свободными. Как только мы это сделаем, скрепку для бумаг или лишенный провод, мы сделаем ковш, который мы вставим в 20 или 24-контактный разъем питания, который питает материнскую плату.

При покупке нового блока питания нужно, прежде всего, учитывать мощность, которая не должна быть меньше прежнего. Также необходимо обратить внимание на выходные разъёмы, чтобы была возможность подключить все устройства системного блока, хотя в необходимых случаях проблемы подключения могут быть решены при помощи переходников. О том, как выбрать блок питания нужного качества можно прочитать.

Эта колода будет сделана между зелеными и черными нитями. Мост имеет роль запуска источника без материнской платы и кнопки питания. На этом этапе мы увидим специфическую симптоматику следующим образом. Мы поговорим немного о пункте 2, потому что здесь также есть несколько ситуаций, а именно.

Отклонения не должны превышать ± 5% от заданного напряжения на корпусе источника! Как видно из вышесказанного, проверка источника питания не является сложной задачей, но требует внимания и мало практического смысла. Простой проверки достаточно, для остальных, обратитесь в свои специализированные центры или замените источник на лучшее качество, если найдете его дефектным! За дополнительными вопросами используйте!

Нужно ли ремонтировать блок питания самостоятельно? Если Вы не обладаете хотя-бы элементарными знаниями и навыками в области электроники, однозначно нет. Во-первых, Вы скорее всего не сможете это сделать, во-вторых это опасно для жизни и здоровья если не соблюдать правила безопасности.

Для тех, кто всё-таки решил заняться ремонтом блока питания, есть возможность ознакомиться с моим личным опытом и соображениями по этому поводу.

Как это печально, но работа компьютера, который выжил, пошатнулся или каким-то образом сработал, должен быть встречен каждым пользователем. И в этой ситуации возникает вопрос: что делать? Один из вариантов - обратиться в службу ремонта компьютера или обратиться за помощью к друзьям, которые имеют опыт работы с компьютером. Но во многих ситуациях неисправность компьютера может быть обнаружена сама по себе, даже не имея большого опыта в этой области. Если у вас есть желание, доверьтесь себе и немного времени, эта статья для вас.

Как начать ремонт компьютера собственными руками? Начиная все время требуется простейшее. Прежде всего, необходимо проверить, хорошо ли подключены все шнуры питания, шнур питания и монитор, проверьте источник Интернета и беспроводной маршрутизатор. И только после такой проверки необходимо перейти к более серьезному отказу от вины.

В жизни каждого радиолюбителя рано или поздно наступает момент, когда ему приходится начинать осваивать мелкий ремонт техники. Это могут быть настольные компьютерные колонки, планшет, мобильный телефон и еще какие-нибудь гаджеты. Не ошибусь, если скажу, что почти каждый радиолюбитель пробовал чинить свой компьютер. Кому-то это удавалось, а кто-то все таки нес его в сервис-центр.

Но есть несколько предупреждений раньше. Очень важно учитывать требования безопасности при ремонте электрооборудования, включая компьютер. После начала работы нам может понадобиться электроинструмент: маленькая фигурная отвертка, простая отвертка, пинцет. Также может потребоваться наличие баллона с сжатым воздухом, поэтому очень удобно раздувать пыль и жидкость по электронной почте. контакт чистка. С компьютерами и нагрузкой на платформу следует обращаться с особой осторожностью. Перед началом ремонта компьютера вы должны снять статический заряд с вашего собственного контакта с радиатором центрального отопления или с любой другой заземленной структурой. В крайнем случае вы можете коснуться незакрепленной части корпуса компьютера, и было бы хорошо, если вы повторите это несколько раз, пока вы ремонтируете свой компьютер. Все работы с компьютерными деталями должны выполняться после отключения питания. . Давайте рассмотрим возможные причины сбоя компьютера.

В этой статье мы с вами разберем основы самостоятельной диагностики неисправностей блока питания ПК.

Давайте предположим, что нам в руки попался блок питания (БП) от компьютера. Для начала нам надо убедиться, рабочий ли он?Кстати, нужно учитывать, что дежурное напряжение +5 Вольт присутствует сразу после подключения сетевого кабеля к блоку питания.

Если вы попытаетесь нажать кнопку питания, на любом компьютере не отображаются признаки жизни, одна из причин может быть самой кнопкой питания. Но этот вариант нельзя сразу исключить. Часто контакты имеют цветную маркировку, и в этом случае ищите зеленый цвет.

Если компьютер затем включается, мы можем сделать вывод, что кнопка питания повреждена. Ну, если вы не продолжаете включать, тогда мы будем искать ошибку дальше. Компьютерное питание - довольно сложное электронное устройство. В хорошем «выдувании» предусмотрена защита от короткого замыкания. Очень вероятно, что один из компонентов компьютера поврежден и не позволяет ему.

Если его нету, то не лишним будет прозвонить шнур питания на целостность жил мультиметром в режиме звуковой прозвонки. Также не забываем прозвонить кнопку и предохранитель. Если с сетевым шнуром все ОК, то включаем блок питания ПК в сеть и запускаем без материнской платы путем замыкания двух контактов: PS-ON и COM . PS-ON сокращенно с англ. - Power Supply On - дословно как "источник питания включить" . COM сокращенно от англ. Сommon - общий. К контакту PS-ON подходит провод зеленого цвета, а "общий" он же минус - это провода черного цвета.

После каждого шага попробуйте включить компьютер. Не забудьте отсоединить шнур питания от компьютера перед удалением каких-либо компонентов. Это также необходимо, так как некоторые из них не могут работать даже после удаления неактивного компонента, вам необходимо отключить их от источника питания, а затем снова включить их.

Если в какой-то момент на компьютере «восстановить» и включить, последний удаленный модуль, скорее всего, будет неисправен. После этого вы можете разместить все на месте, за исключением неактивной части, и попытаться перезагрузить компьютер. Вполне возможно, что компьютер не сможет нормально работать после удаления неактивного компонента компьютера.

На современных БП идет разъем 24 Pin. На более старых - 20 Pin.

Замкнуть эти два контакта проще всего разогнутой канцелярской скрепкой

Если в этой проверке не обнаружен сбой компьютера, вы должны проверить сам блок питания. Лучшим вариантом для проверки питания является попытка подключить операционную систему. Но если у вас его нет, вы можете просто подключить его к сети и подключить контакты зеленым и любым черным в основном соединении. Важно знать, что некоторые блоки питания не могут нормально работать без нагрузки. Поэтому лучше всего подключить к нему старый ненужный жесткий диск. Кроме того, при проверке все еще существует небольшая вероятность того, что тестируемое устройство имеет проблемы.

Хотя теоретически для этой цели сгодится любой металлический предмет или проводок. Даже можно использовать тот же самый пинцет.

Исправный блок питания у нас должен сразу включиться. Кулер завращается и появится напряжение на всех разъемах блока питания.

Со временем источники питания больше не смогут справиться с требуемым электронным письмом. струи. Если нет результатов для всех модулей и компонентов, то с большой вероятностью возможно, что материнская плата, вероятно, будет повреждена. В некоторых случаях он может быть реактивирован. Блок питания ноутбука предназначен для питания компьютера, подключив его к адаптеру вашего компьютера. Обратите внимание, что неисправность в электрической розетке классифицируется как серьезная ошибка. Неисправность отключения питания в таймере может привести к повреждению материнской платы компьютера.

Если наш компьютер работает со сбоями, то нелишним будет проверить на его разъемах соответствие величины напряжения на его контактах. Да и вообще, когда компьютер глючит и часто вылазит синий экран, неплохо было бы проверить напряжение в самой системе, скачав небольшую программку для диагностики ПК. Я рекомендую программу AIDA. В ней сразу можно увидеть, в норме ли напряжение в системе, виноват ли в этом блок питания или все-таки "мандит" материнская плата, или даже что-то другое.

Ремонт материнской платы в этом случае будет стоить более одного раза, чем ремонт сетевой розетки. Следует иметь в виду, что почти все компьютеры питаются от электрической розетки без аккумулятора компьютера. Если компьютер не питается от электрической розетки от аккумулятора, это может быть одним из симптомов неисправности электрической розетки компьютера. Своевременное изменение электропитания защищает вас от покупки новой материнской платы.

Изменение электропитания компьютера, цена

Симптомы сбоя электропитания. Если вы заметили подобные симптомы неисправности, обязательно обратитесь в мастерскую по ремонту компьютеров для замены электрической розетки.

Электрическая розетка компьютера проскальзывает вниз

Наиболее распространенные ошибки.

Вот скрин с программы AIDA моего ПК. Как мы видим, все напряжения в норме:

Если есть какое-либо приличное отклонение напряжения, то это уже ненормально. Кстати, покупая б/у компьютер, ВСЕГДА закачивайте на него эту программку и полностью проверяйте все напряжения и другие параметры системы. Проверено на горьком опыте:-(.

Если же все-таки величина напряжения сильно отличается на самом разъеме блока питания, то блок надо попытаться отремонтировать. Если вы вообще очень плохо дружите с компьютерной техникой и ремонтами, то при отсутствии опыта его лучше заменить. Нередки случаи, когда НЕисправный блок питания при выходе из строя “утягивал” за собой часть компьютера. Чаще всего при этом выходит из строя материнская плата. Как этого можно избежать?

На блоке питания экономить никогда нельзя и нужно всегда иметь небольшой запас по мощности. Желательно не покупать дешевые блоки питания NONAME.

и POWER MAN

Как быть, если вы слабо разбираетесь в марках и моделях блоков питания, а на новый и качественный мамка не дает денег))? Желательно, чтобы в нем стоял вентилятор 12 См, а не 8 См.

Ниже на фото блок питания с вентилятором 12 см.

Такие вентиляторы обеспечивают лучшее охлаждение радиодеталей блока питания. Нужно также помнить еще одно правило: хороший блок питания не может быть легким . Если блок питания легкий, значит в нем применены радиаторы маленького сечения и такой блок питания будет при работе перегреваться при номинальных нагрузках . А что происходит при перегреве? При перегреве некоторые радиоэлементы, особенно полупроводники и конденсаторы, меняют свои номиналы и вся схема в целом работает неправильно, что конечно же, скажется и на работе блока питания.

Также не забывайте хотя бы раз в год чистить свой блок питания от пыли. Пыль является "одеялом" для радиоэлементов, под которым они могут неправильно функционировать или даже "сдохнуть" от перегрева.

Самая частая поломка БП - это силовые полупроводнки и конденсаторы. Если есть запах горелого кремния, то надо смотреть, что сгорело из диодов или транзисторов. Неисправные конденсаторы определяются визуальным осмотром. Раскрывшиеся, вздутые, с подтекающим электролитом - это первый признак того, что надо срочно их менять.

При замене надо учитывать, что в блоках питания стоят конденсаторы с низким эквивалентным последовательным сопротивлением (ESR) . Так что в этом случае вам стоит обзавестись ESR-метром и выбирать конденсаторы как можно более с низким ESR. Вот небольшая табличка сопротивлений для конденсаторов различной емкости и напряжений:

Здесь надо подбирать конденсаторы таким образом, чтобы значение сопротивления было не больше, чем указано в таблице.

При замене конденсаторов важны еще также два параметра: емкость и их рабочее напряжение . Они указываются на корпусе конденсатора:

Как быть, если в магазине есть конденсаторы нужного номинала, но рассчитанные на большее рабочее напряжение? Их также можно ставить в схемы при ремонте, но нужно учитывать, что у конденсаторов, рассчитанных на большее рабочее напряжение обычно и габариты больше.

Если у нас блок питания запускается, то мы меряем напряжение на его выходном разъеме или разъемах мультиметром. В большинстве случаев при измерении напряжения блоков питания ATX, бывает достаточно выбрать предел DCV 20 вольт.

Существуют два способа диагностики:

Проведение измерений на “горячую” во включенном устройстве

Проведение измерений в обесточенном устройстве

Что же мы можем померять и каким способом проводятся эти измерения? Нас интересует измерение напряжения в указанных точках блока питания, измерение сопротивления между определенными точками, звуковая прозвонка на отсутствие или наличие замыкания, а также измерение силы тока. Давайте разберем подробнее.

Измерение напряжения.

Если вы ремонтируете какое-либо устройство и имеете принципиальную схему на него, на ней часто указывается, какое напряжение должно быть в контрольных точках на схеме. Разумеется, вы не ограничены только этими контрольными точками и можете померять разность потенциалов или напряжение в любой точке блока питания или любого другого ремонтируемого устройства. Но для этого вы должны уметь читать схемы и уметь их анализировать. Более подробно, как измерять напряжение мультиметром, можно прочитать в этой статье.

Измерение сопротивления.

Любая часть схемы имеет какое-то сопротивление. Если при замере сопротивления на экране мультиметра единица, это значит, что в нашем случае сопротивление выше, чем предел измерения сопротивления выбранный нами. Приведу пример, например, мы измеряем сопротивление части схемы, состоящей условно, из резистора известного нам номинала, и дросселя. Как мы знаем, дроссель - это грубо говоря, всего лишь кусок проволоки, обладающий небольшим сопротивлением, а номинал резистора нам известен. На экране мультиметра мы видим сопротивление несколько большее, чем номинал нашего резистора. Проанализировав схему, мы приходим к выводу, что эти радиодетали у нас рабочие и с ними обеспечен на плате хороший контакт. Хотя поначалу, при недостатке опыта, желательно прозванивать все детали по отдельности. Также нужно учитывать, что параллельно подключенные радиодетали влияют друг на друга при измерении сопротивления. Вспомните параллельное подключение резисторов и все поймете. Более подробно про измерение сопротивления можно прочитать.

Звуковая прозвонка.

Если раздается звуковой сигнал, это означает, что сопротивление между щупами, а соответственно и участком цепи, подключенных к её концам, рано нулю, или близко к этому. С её помощью мы можем убедиться в наличии или отсутствии замыкания, на плате. Также можно обнаружить есть контакт на схеме, или нет, например, в случае обрыва дорожки или непропая, или подобной неисправности.

Измерение протекающего тока в цепи

При измерениии силы тока в цепи, требуется вмешательство в конструкцию платы, например путем отпаивания одного из выводов радиодетали. Потому что, как мы помним, амперметр у нас подключается в разрыв цепи. Как измерить силу тока в цепи, можно прочитать в этой статье.

Используя эти четыре метода измерения с помощью одного только мультиметра можно произвести диагностику очень большого количества неисправностей в схемах практически любого электронного устройства.

Как говорится, в электрике есть две основных неисправности: контакт есть там, где его не должно быть, и нет контакта там, где он должен быть . Что означает эта поговорка на практике? Например, при сгорании какой-либо радиодетали мы получаем короткое замыкание , являющееся аварийным для нашей схемы. Например, это может быть пробой транзистора. В схемах может случится и обрыв, при котором ток в нашей цепи течь не может. Например, разрыв дорожки или контактов, по которым течет ток. Также это может быть обрыв провода и тому подобное. В этом случае наше сопротивление становится, условно говоря, бесконечности.

Конечно, существует еще третий вариант: изменение параметров радиодетали. Например, как в случае с тем же электролитически м конденсатором, или подгорание контактов выключателя, и как следствие, сильное возрастание их сопротивления. Зная эти три варианта поломок и умея проводить анализ схем и печатных плат, вы научитесь без труда ремонтировать свои электронные устройства . Более подробно про ремонт радиоэлектронных устройств можно прочитать в статье "Основы ремонта ".

Всем удачных ремонтов!

Мы рассмотрели, какие действия нужно предпринять, если у нас предохранитель блока питания ATX в коротком замыкании. Это означает, что проблема где-то в высоковольтной части, и нам нужно прозванивать диодный мост, выходные транзисторы, силовой транзистор или мосфет, в зависимости от модели блока питания. Если же предохранитель цел, мы можем попробовать подсоединить шнур питания к блоку питания, и включить его выключателем питания, расположенным на задней стенке блока питания.

И вот здесь нас может поджидать сюрприз, сразу как только мы щелкнули выключателем, мы можем услышать высокочастотный свист, иногда громкий, иногда тихий. Так вот, если вы услышали этот свист, даже не пытайтесь подключать блок питания для тестов к материнской плате, сборке, или устанавливать такой блок питания в системный блок!

Дело в том, что в цепях дежурного напряжения (дежурки) стоят все те же знакомые нам по прошлой статье электролитические конденсаторы, которые теряют емкость, при нагреве, и от старости, у них увеличивается ESR, (по-русски сокращенно ЭПС) эквивалентное последовательное сопротивление. При этом визуально, эти конденсаторы могут ничем не отличаться от рабочих, особенно это касается небольших номиналов.

Дело в том, что на маленьких номиналах, производители очень редко устраивают насечки в верхней части электролитического конденсатора, и они не вздуваются и не вскрываются. Такой конденсатор не измерив специальным прибором, невозможно определить на пригодность работы в схеме. Хотя иногда, после выпаивания, мы видим, что серая полоса на конденсаторе, которой маркируется минус на корпусе конденсатора, становится темной, почти черной от нагрева. Как показывает статистика ремонтов, рядом с таким конденсатором обязательно стоит силовой полупроводник, или выходной транзистор, или диод дежурки, или мосфет. Все эти детали при работе выделяют тепло, которое пагубно сказывается на сроке работы электролитических конденсаторов. Дальнейшее объяснять про работоспособность такого потемневшего конденсатора, думаю будет лишним.

Если у блока питания остановился кулер, из-за засыхания смазки и забивания пылью, такой блок питания скорее всего потребует замены практически ВСЕХ электролитических конденсаторов на новые, из-за повышенной температуры внутри блока питания. Ремонт будет довольно муторным, и не всегда целесообразным. Ниже приведена одна из распространенных схем, на которой основаны блоки питания Powerman 300-350 ватт, она кликабельна:

Схема БП АТХ Powerman

Давайте разберем, какие конденсаторы нужно менять, в этой схеме, в случае проблем с дежуркой:

Итак, почему же нам нельзя подключать блок питания со свистом к сборке для тестов? Дело в том, что в цепях дежурки стоит один электролитический конденсатор, (выделено синим) при увеличении ESR которого, у нас возрастает дежурное напряжение, выдаваемое блоком питания на материнскую плату, еще до того, как мы нажмем кнопку включения системного блока. Иными словами, как только мы щелкнули клавишным выключателем на задней стенке блока питания, это напряжение, которое должно быть равно +5 вольт, поступает у нас на разъем блока питания, фиолетовый провод разъема 20 Pin, а оттуда на материнскую плату компьютера.

В моей практике были случаи, когда дежурное напряжение было равно (после удаления защитного стабилитрона, который был в КЗ) +8 вольт, и при этом ШИМ контроллер был жив. К счастью блок питания был качественный, марки Powerman, и там стоял на линии +5VSB, (так обозначается на схемах выход дежурки) защитный стабилитрон на 6.2 вольта.

Почему стабилитрон защитный, как он работает в нашем случае? Когда напряжение у нас меньше, чем 6.2 вольта, стабилитрон не влияет на работу схемы, если же напряжение становится выше, чем 6.2 вольта, наш стабилитрон при этом уходит в КЗ (короткое замыкание), и соединяет цепь дежурки с землей. Что нам это дает? Дело в том, что замкнув дежурку с землей, мы сохраняем тем самым нашу материнскую платы от подачи на нее тех самых 8 вольт, или другого номинала повышенного напряжения, по линии дежурки на материнку, и защищаем материнскую плату от выгорания.

Но это не является 100% вероятностью, что у нас в случае проблем с конденсаторами сгорит стабилитрон, есть вероятность, хотя и не очень высокая, что он уйдет в обрыв, и не защитит тем самым нашу материнскую плату. В дешевых блоках питания, этот стабилитрон обычно просто не ставят. Кстати, если вы видите на плате следы подгоревшего текстолита, знайте, скорее всего там какой-то полупроводник ушел в короткое замыкание, и через него шел очень большой ток, такая деталь очень часто и является причиной, (правда иногда бывает, что и следствием) поломки.

После того, как напряжение на дежурке придет в норму, обязательно поменяйте оба конденсатора на выходе дежурки. Они могут придти в негодность из-за подачи на них завышенного напряжения, превышающего их номинальное. Обычно там стоят конденсаторы номинала 470-1000 мкф. Если же после замены конденсаторов, у нас на фиолетовом проводе, относительно земли появилось напряжение +5 вольт, можно замкнуть зеленый провод с черным, PS-ON и GND, запустив блок питания, без материнской платы.

Если при этом начнет вращаться кулер, это значит с большой долей вероятности, что все напряжения в пределах нормы, потому что блок питания у нас стартанул. Следующим шагом, нужно убедиться в этом, померяв напряжение на сером проводе, Power Good (PG), относительно земли. Если там присутствует +5 вольт, вам повезло, и остается лишь замерить мультиметром напряжения, на разъеме блока питания 20 Pin, чтобы убедиться, что ни одно из них не просажено сильно.

Как видно из таблицы, допуск для +3.3, +5, +12 вольт - 5%, для -5, -12 вольт - 10%. Если же дежурка в норме, но блок питания не стартует, Power Good (PG) +5 вольт у нас нет, и на сером проводе относительно земли ноль вольт, значит проблема была глубже, чем только с дежуркой. Различные варианты поломок и диагностики в таких случаях, мы рассмотрим в следующих статьях. Всем удачных ремонтов! С вами был AKV.

В современном мире развитие и устаревание комплектующих персональных компьютеров происходит очень быстро. Вместе с тем один из основных компонентов ПК – форм-фактора ATX – практически не изменял свою конструкцию последние 15 лет .

Следовательно, блок питания и суперсовременного игрового компьютера, и старого офисного ПК работают по одному и тому же принципу, имеют общие методики диагностики неисправностей.

Материал, изложенный в этой статье, может применяться к любому блоку питания персональных компьютеров с минимумом нюансов.

Типовая схема блока питания ATX приведена на рисунке. Конструктивно он представляет собой классический импульсный блок на ШИМ-контроллере TL494, запускающемся по сигналу PS-ON (Power Switch On) с материнской платы. Все остальное время, пока вывод PS-ON не подтянут к массе, активен только источник дежурного питания (Standby Supply) с напряжением +5 В на выходе.

Рассмотрим структуру блока питания ATX подробнее. Первым ее элементом является
:

Его задача – это преобразование переменного тока из электросети в постоянный для питания ШИМ-контроллера и дежурного источника питания. Структурно он состоит из следующих элементов:

  • Предохранитель F1 защищает проводку и сам блок питания от перегрузки при отказе БП, приводящем к резкому увеличению потребляемого тока и как следствие – к критическому возрастанию температуры, способному привести к пожару.
  • В цепи «нейтрали» установлен защитный терморезистор, уменьшающий скачок тока при включении БП в сеть.
  • Далее установлен фильтр помех, состоящий из нескольких дросселей (L1, L2 ), конденсаторов (С1, С2, С3, С4 ) и дросселя со встречной намоткой Tr1 . Необходимость в наличии такого фильтра обусловлена значительным уровнем помех, которые передает в сеть питания импульсный блок – эти помехи не только улавливаются теле- и радиоприемниками, но и в ряде случаев способны приводить к неправильной работе чувствительной аппаратуры.
  • За фильтром установлен диодный мост, осуществляющий преобразование переменного тока в пульсирующий постоянный. Пульсации сглаживаются емкостно-индуктивным фильтром.

Источник дежурного питания – это маломощный самостоятельный импульсный преобразователь на основе транзистора T11, который генерирует импульсы, через разделительный трансформатор и однополупериодный выпрямитель на диоде D24 запитывающие маломощный интегральный стабилизатор напряжения на микросхеме 7805. Эта схема хотя и является, что называется, проверенной временем, но ее существенным недостатком является высокое падение напряжения на стабилизаторе 7805, при большой нагрузке приводящее к ее перегреву. По этой причине повреждение в цепях, запитанных от дежурного источника, способно привести к выходу его из строя и последующей невозможности включения компьютера.

Основой импульсного преобразователя является ШИМ-контроллер . Эта аббревиатура уже несколько раз упоминалась, но не расшифровывалась. ШИМ – это широтно-импульсная модуляция, то есть изменение длительности импульсов напряжения при их постоянной амплитуде и частоте. Задача блока ШИМ, основанного на специализированной микросхеме TL494 или ее функциональных аналогах – преобразование постоянного напряжения в импульсы соответствующей частоты, которые после разделительного трансформатора сглаживаются выходными фильтрами. Стабилизация напряжений на выходе импульсного преобразователя осуществляется подстройкой длительности импульсов, генерируемых ШИМ-контроллером.

Важным достоинством такой схемы преобразования напряжения также является возможность работы с частотами, значительно большими, чем 50 Гц электросети. Чем выше частота тока, тем меньшие габариты сердечника трансформатора и число витков обмоток требуются. Именно поэтому импульсные блоки питания значительно компактнее и легче классических схем с входным понижающим трансформатором.

За включение блока питания ATX отвечает цепь на основе транзистора T9 и следующих за ним каскадов. В момент включения блока питания в сеть на базу транзистора через токоограничительный резистор R58 подается напряжение 5В с выхода источника дежурного питания, в момент замыкания провода PS-ON на массу схема запускает ШИМ-контроллер TL494. При этом отказ источника дежурного питания приведет к неопределенности работы схемы запуска БП и вероятному отказу включения, о чем уже упоминалось.

Прислал юрий11112222 - Схемотехника блоков питания: ATX-350WP4
Схемотехника блоков питания: ATX-350WP4

В статье предлагается информация о схемных решениях, рекомендации по ремонту, замене деталей-аналогов блока питания ATX-350WP4. К сожалению, точного изготовителя автору установить не удалось, по-видимому, это сборка блока достаточно близкая к оригиналу предположительно Delux ATX-350WP4 (Shenzhen Delux Industry Co., Ltd), внешний вид блока показан на фото.

Общие сведения. Блок питания реализован в формате ATX12V 2.0, адаптирован под отечественного потребителя, поэтому в нем отсутствуют выключатель питания и переключатель вида переменной сети. Выходные разъемы включают:
разъем для подключения к системной плате -основной 24-контактный разъем питания;
4-контактный разъем +12 V (Р4 connector);
разъемы питания съемных носителей;
питание жесткого диска Serial ATA. Предполагается, что основной разъем питания
может быть легко трансформированным в 20-контактный путем отбрасывания 4-контактной группы, что делает его совместимым с материнскими платами старых форматов. Наличие 24-контактного разъема позволяет обеспечить максимальную мощность разъема с использованием стандартных терминалов в 373.2 Вт .
Эксплуатационная информация об источнике питания ATX-350WP4 приведена в табл.

Структурная схема. Набор элементов структурной схемы источника питания ATX-350WP4 характерен для блоков питания импульсного типа . К ним относятся двухзвенный заградительный фильтр сетевых помех, низкочастотный высоковольтный выпрямитель с фильтром, основной и вспомогательный импульсные преобразователи, высокочастотные выпрямители, монитор выходных напряжений, элементы защиты и охлаждения. Особенностью источника питания такого типа является наличие напряжения питающей сети на входном разъеме блока питания, при этом ряд элементов блока находятся под напряжением, присутствует напряжение на некоторых его выходах, в частности, на выходах +5V_SB. Структурная схема источника показана на рис.1.

Работа источника питания. Выпрямленное сетевое напряжение величиной порядка 300 В является питающим для основного и вспомогательного преобразователей. Кроме того, с выходного выпрямителя вспомогательного преобразователя подается напряжение питания на микросхему управления основным преобразователем. В выключенном состоянии (сигнал PS_On имеет высокий уровень) источника питания основной преобразователь находится в «спящем» режиме, в этом случае напряжение на его выходах измерительными приборами не регистрируются. В то же время, вспомогательный преобразователь вырабатывает напряжение питания основного преобразователя и выходное напряжение +5B_SB. Этот источник питания играет роль источника питания дежурного режима.

Включение основного преобразователя в работу происходит по принципу дистанционного включения, в соответствии с которым сигнал Ps_On становится равным нулевому потенциалу (низкий уровень напряжения) при включении компьютера. По этому сигналу монитором выходных напряжений выдается сигнал разрешения на формирование управляющих импульсов ШИМ-контроллера основного преобразователя максимальной длительности. Основной преобразователь выходит из «спящего» режима. С высокочастотных выпрямителей через соответствующие сглаживающие фильтры на выход блока питания поступают напряжения ±12 В, ±5 В и +3,3 В.

С задержкой в 0,1...0,5 с относительно появления сигнала PS_On, но достаточной для окончания переходных процессов в основном преобразователе и формирования питающих напряжений +3,3 В. +5 В, +12 В на выходе блока питания, монитором выходных напряжений формируется сигнал RG. (питание в норме). Сигнал P.G. является информационным, свидетельствующим о нормальной работе блока питания. Он выдается на материнскую плату для начальной установки и запуска процессора. Таким образом, сигнал Ps_On управляет включением блока питания, а сигнал P.G. отвечает за запуск материнской платы, оба сигнала входят в состав 24-контактного разъема.
Основной преобразователь использует импульсный режим, управление преобразователем осуществляется от ШИМ-контроллера. Длительность открытого состояния ключей преобразователя определяет величину напряжения выходных источников, которое может быть стабилизировано в пределах допустимой нагрузки.

Состояние блока питания контролируется монитором выходных напряжений. В случае перегрузки или недозагрузки, монитором формируют сигналы, запрещающие функционирование ШИМ-контроллера основного преобразователя, переводя его в спящий режим.
Аналогичная ситуация возникает в условиях аварийной эксплуатации блока питания, связанной с короткими замыканиями в нагрузке, контроль которых осуществляется специальной схемой контроля. Для облегчения тепловых режимов в блоке питания использовано принудительное охлаждение, основанное на принципе создания отрицательного давления (выброса теплого воздуха).

Принципиальная схема источника питания показана на рис.2.

Сетевой фильтр и низкочастотный выпрямитель используют элементы защиты от сетевых помех, пройдя которые сетевое напряжение выпрямляется схемой выпрямления мостового типа. Защита выходного напряжения от помех в сети переменного тока осуществляется с помощью пары звеньев заградительного фильтра. Первое звено выполнено на отдельной плате, элементами которой являются СХ1, FL1, второе звено составляют элементы основной платы источника питания СХ, CY1, CY2, FL1. Элементы Т, THR1 защищают источник питания от токов короткого замыкания в нагрузке и всплесков напряжения во входной сети.
Мостовой выпрямитель выполнен на диодах В1-В4. Конденсаторы С1, С2 образуют фильтр низкочастотной сети. Резисторы R2, R3 - элементы цепи разряда конденсаторов С1, С2 при выключении питания. Варисторы V3, V4 ограничивают выпрямленное напряжение при бросках сетевого напряжения выше принятых пределов.
Вспомогательный преобразователь подключен непосредственно к выходу сетевого выпрямителя и схематически представляет автоколебательный блокинг-генератор. Активными элементами бло-кинг-генератора являются транзистор Q1 п-каналь-ный полевой транзистор (MOSFET) и трансформатор Т1. Начальный ток затвора транзистора Q1 создается резистором R11R12. В момент подачи питания начинает развиваться блокинг-процесс, и через рабочую обмотку трансформатора Т1 начинает протекать ток. Магнитный поток, создаваемый этим током, наводит ЭДС в обмотке положительной обратной связи. При этом через диод D5, подключенный к этой обмотке, заряжается конденсатор С7, и происходит намагничивание трансформатора. Ток намагничивания и зарядный ток конденсатора С7 приводят к уменьшению тока затвора Q1 и его последующему запиранию. Демпфирование выброса в цепи стока осуществляется элементами R19, С8, D6, надежное запирание транзистора Q1 осуществляется биполярным транзистором Q4.

Основной преобразователь блока питания выполнен по двухтактной полумостовой схеме (рис.3). Силовая часть преобразователя транзисторная - Q2, Q3, обратно включенные диоды D1, D2 обеспечивают защиту транзисторов преобразователя от «сквозных токов». Вторая половина моста образована конденсаторами С1, С2, создающими делитель выпрямленного напряжения. В диагональ этого моста включены первичные обмотки трансформаторов Т2 и ТЗ, первый из них выпрямительный, а второй функционирует в схеме управления и защиты от «чрезмерных» токов в преобразователе. Для исключения возможности несимметричного подмагничивания трансформатора ТЗ, что может иметь место при переходных процессах в преобразователе, применяется разделительный конденсатор СЗ. Режим работы транзисторов задается элементами R5, R8, R7, R9.
Управляющие импульсы на транзисторы преобразователя поступают через согласующий трансформатор Т2. Однако запуск преобразователя происходит в автоколебательном режиме, при открытом транзисторе 03 ток протекает по цепи:
+U(В1...В4) -> Q3(к-э) -> Т2 - T3 -> СЗ -> С2 -> -U(BL..B4) .

В случае открытого транзистора Q2 ток протекает по цепи:
+U(B1...B4) -> С1 -> С3 -> Т3 -> Т2 -> Q2(к-э) -> -U(B1...B4) .

Через переходные конденсаторы С5, С6 и ограничительные резисторы R5, R7 в базу ключевых транзисторов поступают управляющие сигналы, режекторная цепь R4C4 предотвращает проникновение импульсных помех в переменную электрическую сеть. Диод D3 и резистор R6 образуют цепь разряда конденсатора С5, a D4 и R10 -цепь разряда Сб.
При протекании тока через первичную обмотку ТЗ происходит процесс накопления энергии трансформатором, передача этой энергии во вторичные цепи источника питания и заряд конденсаторов С1, С2. Установившийся режим работы преобразователя начнется после того, как суммарное напряжение на конденсаторах С1, С2 достигнет величины +310 В. При этом на микросхеме U3 (выв. 12) появится питание от источника, выполненного на элементах D9, R20, С15, С16.
Управление преобразователем осуществляется каскадом, выполненным на транзисторах Q5, Q6 (рис.3). Нагрузкой каскада являются симметричные полуобмотки трансформатора Т2, в точку соединения которых поступает питающее напряжение +16 В через элементы D9, R23. Режим работы транзисторов Q5 и Q6 задается резисторами R33, R32 соответственно. Управление каскадом осуществляется импульсами микросхемы ШИМ-формирователя U3, поступающими с выводов 8 и 11 на базы транзисторов каскада. Под воздействием управляющих импульсов один из транзисторов, например Q5, открывается, а второй, Q6 соответственно, закрывается. Надежное запирание транзистора осуществляется цепочкой D15D16C17. Так, при протекании тока через открытый транзистор Q5 по цепи:
+ 16В -> D9 -> R23 -> Т2 -> Q5(к-э) -> D15, D16 -> корпус.

В эмиттере этого транзистора формируется падение напряжения +1,6 В. Этой величины достаточно для запирания транзистора Q6. Наличие конденсатора С17 способствует поддержанию запирающего потенциала во время «паузы».
Диоды D13, D14 предназначены для рассеивания магнитной энергии, накопленной полуобмотками трансформатора Т2.
ШИМ-контроллер выполнен на микросхеме AZ7500BP (BCD Semiconductor), работающей в двухтактном режиме . Элементами времязадающей цепи генератора являются конденсатор С28 и резистор R45. Резистор R47 и конденсатор С29 образуют цепь коррекции усилителя ошибки 1 (рис.4) .

Для реализации двухтактного режима работы преобразователя вход управления выходными каскадами (выв. 13) соединен с источником эталонного напряжения (выв. 14). С выводов 8 и 11 микросхемы управляющие импульсы поступают в базовые цепи транзисторов Q5, Q6 каскада управления. Напряжение +16 В подводится на вывод питания микросхемы (выв. 12) от выпрямителя вспомогательного преобразователя.

Режим «медленного пуска» реализован с помощью усилителя ошибки 2, на неинвертирующий вход которого (выв. 16 U3) поступает напряжение питания +16 В через делитель R33R34R36R37C21, а на инвертирующий вход (выв. 15) поступает напряжение от источника опорного (выв. 14) с интегрирующего конденсатора С20 и резистора R39.
На неинвертирующий вход усилителя ошибки 1 (выв. 1 U3) через сумматор R42R43R48 поступает сумма напряжений +12 В и +3,3 В. На противоположный вход усилителя (выв. 2 U3) через делитель R40R49 подается напряжение от эталонного источника микросхемы (выв. 14 U3). Резистор R47 и конденсатор С29 - элементы частотной коррекции усилителя.
Цепи стабилизации и защиты. Длительность выходных импульсов ШИМ-контроллера (выв. 8, 11 U3) в установившемся режиме определяется сигналами обратной связи и пилообразным напряжением задающего генератора. Интервал времени, в течение которого «пила» превышает напряжение обратной связи, определяет длительность выходного импульса. Рассмотрим процесс их формирования.

С выхода усилителя ошибки 1 (выв. 3 U3) информация об отклонении выходных напряжений от номинального значения в виде медленно изменяющегося напряжения поступает на формирователь ШИМ. Далее с выхода усилителя ошибки 1 напряжение поступает на один из входов широт-но-импульсного модулятора (ШИМ). На его второй вход поступает пилообразное напряжение амплитудой +3,2 В. Очевидно, что при отклонении выходных напряжения от номинальных значений, например, в сторону уменьшения будет происходить уменьшение напряжения обратной связи при той величине пилообразного напряжения, поступающее на выв. 1, что приводит к увеличению длительности циклов выходных импульсов. При этом в трансформаторе Т1 накапливается больше электромагнитной энергии, отдаваемой в нагрузку, вследствие чего выходное напряжение повышается до номинального значения.
В аварийном режиме функционирования увеличивается падение напряжения на резисторе R46. При этом увеличивается напряжение на выводе 4 микросхемы U3, а это, в свою очередь, приводит к срабатыванию компаратора «пауза» и последующему уменьшению длительности выходных импульсов и, соответственно, к ограничению протекания тока через транзисторы преобразователя, предотвращая тем самым выход Q1, Q2 из строя.

В источнике также имеются цепи защиты от короткого замыкания в каналах выходного напряжения. Датчик короткого замыкания по каналам -12 В и -5 В образован элементами R73, D29, средняя точка которых соединена с базой транзистора Q10 через резистор R72. Сюда же через резистор R71 поступает напряжение от источника +5 В. Следовательно, наличие короткого замыкания в каналах -12 В (или -5 В) приведет к отпиранию транзистора Q10 и перегрузке по выводу 6 монитора напряжений U4, а это, в свою очередь, прекратит работу преобразователя по выводу 4 преобразователя U3.
Управление, контроль и защита источника питания. Практически всем компьютерам кроме высококачественного выполнения его функций требуется легкое и быстрое включение / выключение. Задача включения / выключения источника питания решается путем реализации в современных компьютерах принципа дистанционного включения / выключения. При нажатии кнопки «I/O», расположенной на передней панели корпуса компьютера, процессорной платой формируется сигнал PS_On. Для включения источника питания сигнал PS_On должен иметь низкий потенциал, т.е. нулевой, при выключении - высокий потенциал.

В источнике питания задачи управления, контроля и защиты реализованы на микросхеме U4 монитора выходных напряжений источника питания LP7510 . При поступлении нулевого потенциала (сигнал PS_On) на вывод 4 микросхемы, на выводе 3 также формируется нулевой потенциал с задержкой на 2,3 мс. Этот сигнал является запускающим для источника питания. Если же сигнал PS_On высокого уровня или же цепь поступления его разорвана, то на выводе 3 микросхемы устанавливается также высокий уровень .
Кроме того, микросхема U4 осуществляет контроль основных выходных напряжений источника питания. Так, выходные напряжения источников питания 3,3 В и 5 В не должны выходить за установленные пределы 2,2 В < 3,3В < 3,9 В и 3,5 В < 5 В < 6,1 В. В случае их выхода за эти пределы более чем на 146 мкс на выходе 3 микросхемы U4 устанавливается высокий уровень напряжения, и источник питания выключается по входу 4 микросхемы U3. Для источника питания +12 В, контролируемого по выводу 7, существует только контроль над его превышением. Напряжение питания этого источника не должно превышать больше чем 14,4 В. В перечисленных аварийных режимах основной преобразователь переходит в спящий режим путем установления на выводе 3 микросхемы U4 напряжения высокого уровня. Таким способом осуществляется контроль и защита блока питания от понижения и повышения напряжения на выходах его основных источников (рис.5).

Во всех случаях высокого уровня напряжения на выводе 3, напряжение на выводе 8 в норме, PG имеет низкий уровень (нулевой). В случае, когда все напряжения питания в норме, на выводе 4 устанавливается низкий уровень сигнала PSOn, а также на выводе 1 присутствует напряжение, не превышающее 1,15 В, на выводе 8 появляется сигнал высокого уровня с задержкой на 300 мс.
Схема терморегулирования предназначена для поддержания температурного режима внутри корпуса блока питания. Схема состоит из вентилятора и термистора THR2, которые подключены к каналу+12 В. Поддержание постоянной температуры внутри корпуса достигается регулированием скорости вращением вентилятора.
Выпрямители импульсного напряжения используют типовую двухполупериодную схему выпрямления со средней точкой, обеспечивающую необходимый коэффициент пульсаций.
Выпрямитель источника питания +5 V_SB выполнен на диоде D12. Двухзвенный фильтр выходного напряжения состоит из конденсатора С15, дросселя L3 и конденсатора С19. Резистор R36 -нагрузочный. Стабилизация этого напряжения осуществляется микросхемами U1, U2.

Источник питания +5 В выполнен на диодной сборке D32. Двухзвенный фильтр выходного напряжения образован обмоткой L6.2 многообмоточного дросселя, дросселя L10, конденсаторами С39, С40. Резистор R69 - нагрузочный.
Аналогично исполнен источник питания +12 В. Его выпрямитель реализован на диодной сборке D31. Двухзвенный фильтр выходного напряжения образован обмоткой L6.3 многообмоточного дросселя, дросселя L9, конденсатора С38. Нагрузка источника питания - схема терморегулирования.
Выпрямитель напряжения +3,3 В - диодная сборка D30. В схеме использован стабилизатор параллельного типа с регулирующим транзистором Q9 и параметрическом стабилизаторе U5. На управляющий вход U5 напряжение поступает с делителя R63R58. Резистор R67 - нагрузка делителя.
Для снижения уровня помех, излучаемых импульсными выпрямителями в электрическую сеть, параллельно вторичным обмоткам трансформатора Т1 включены резистивно-емкостные фильтры на элементах R20, R21, СЮ, С11.
Источники питания отрицательных напряжений -12 В, -5 В формируются аналогично. Так для источника - 12 В выпрямитель выполнен на диодах D24, D25, D26, сглаживающий фильтр L6.4L5C42, резистор R74 - нагрузочный.
Напряжение -5 В формируется с помощью диодов D27, 28. Фильтры этих источников -L6.1L4C41. Резистор R75 - нагрузочный.

Типовые неисправности
Перегорание сетевого предохранителя Т или выходные напряжения отсутствуют. В этом случае необходимо проверить исправность элементов заградительного фильтра и сетевого выпрямителя (В1-В4, THR1, С1, С2, V3, V4, R2, R3), а также проверить исправность транзисторов Q2, Q3. Наиболее часто в случае выбора неправильной сети переменного тока выгорают ва-ристоры V3, V4.
Проверяется также исправность элементов вспомогательного преобразователя, транзисторов Q1.Q4.
Если неисправность не обнаруживается и выход и строя рассмотренных ранее элементов не подтвердился, то проверяется наличие напряжения 310 В на последовательно соединенных конденсаторах С1,C2. При его отсутствии проверяется исправность элементов сетевого выпрямителя.
Напряжение+5\/_ЗВ выше или ниже нормы. Проверить исправность цепи стабилизации U1, U2, неисправный элемент заменяется. В качестве элемента замены U2 можно использовать TL431, КА431.
Выходные напряжения питания выше или ниже нормы. Проверяем исправность цепи обратных связей - микросхемы U3, элементов обвязки микросхемы U3: конденсаторов С21, С22, С16. В случае исправности перечисленных выше элементов заменить U3. В качестве аналогов U3 можно использовать микросхемы TL494, КА7500В, МВ3759.
Отсутствует сигнал P.G. Следует проверить наличие сигнала Ps_On, наличие питающих напряжений +12 В, +5 В, +3,3 В, +5 B_SB. В случае их наличия заменить микросхему U4. В качестве аналога LP7510 можно использовать TPS3510.
Отсутствует дистанционное включение источника питания. Проверить наличие на контакте PS-ON потенциала корпуса (нуля), исправность микросхемы U4 и элементов ее обвязки. В случае исправности элементов обвязки заменить U4.
Отсутствие вращения вентилятора. Убедиться в работоспособности вентилятора, проверить элементы цепи его включения: наличие +12 В, исправность терморезистора THR2.

Д. Кучеров, Журнал Радиоаматор, №3, 5 2011г

ДОБАВЛЕНО 07/10/2012 04:08

От себя добавлю:
Сегодня пришлось себе делать БП на замену опять сгоревшего (думаю не скоро я его отремонтирую) Chieftec 1KWt. Был у меня 500вт Topower silent.

В принципе неплохой европейский БП, с честной мощностью. Проблема - срабатывает защита. Т.е. при нормальной дежурке только кратковременный старт. Дёрг вентилем и усё.
КЗ по основным шинам не обнаружил, начал исследовать - чудес то не бывает. И наконец нашёл то что искал - шину -12в. Банальный дефект - пробитый диод, даже не стал рассматривать какой. Просто заменил на HER207.
Установил сей БП себе в систему - полёт нормальный.