Как решать десятичные дроби. Десятичные дроби. Понятие десятичной дроби

Как решать десятичные дроби. Десятичные дроби. Понятие десятичной дроби
Как решать десятичные дроби. Десятичные дроби. Понятие десятичной дроби

Уже в начальной школе учащиеся сталкиваются с дробями. И потом они появляются в каждой теме. Забывать действия с этими числами нельзя. Поэтому нужно знать всю информацию про обыкновенные и десятичные дроби. Понятия эти несложные, главное - разбираться во всем по порядку.

Зачем нужны дроби?

Окружающий нас мир состоит из целых предметов. Поэтому в долях необходимости нет. Зато повседневная жизнь постоянно наталкивает людей на работу с частями предметов и вещей.

Например, шоколад состоит из нескольких долек. Рассмотрим ситуацию, когда его плитка образована двенадцатью прямоугольниками. Если ее разделить на двоих, то получится по 6 частей. Она хорошо разделится и на троих. А вот пятерым не удастся дать по целому числу долек шоколада.

Кстати, эти дольки - уже дроби. А дальнейшее их деление приводит к появлению более сложных чисел.

Что такое «дробь»?

Это число, состоящее из частей единицы. Внешне оно выглядит как два числа, разделенные горизонтальной или наклонной чертой. Эта черта носит название дробной. Число, записанное сверху (слева), называется числителем. То, что стоит снизу (справа), является знаменателем.

По сути, дробная черта оказывается знаком деления. То есть числитель можно назвать делимым, а знаменатель — делителем.

Какие существуют дроби?

В математике их имеется всего два вида: обыкновенные и десятичные дроби. С первыми школьники знакомятся в начальных классах, называя их просто «дроби». Вторые узнают в 5 классе. Именно тогда появляются эти названия.

Обыкновенные дроби — все те, что записываются в виде двух чисел, разделенных чертой. Например, 4/7. Десятичная — это число, в котором дробная часть имеет позиционную запись и отделяется от целой при помощи запятой. К примеру, 4,7. Учащимся нужно четко уяснить, что два приведенных примера — это совершенно разные числа.

Каждую простую дробь можно записать в виде десятичной. Это утверждение почти всегда верно и в обратном направлении. Существуют правила, которые позволяют записать обыкновенной дробью десятичную дробь.

Какие подвиды имеют указанные виды дробей?

Начать лучше в хронологическом порядке, так как они изучаются. Первыми идут обыкновенные дроби. Среди них можно выделить 5 подвидов.

    Правильная. Ее числитель всегда меньше знаменателя.

    Неправильная. У нее числитель больше или равен знаменателю.

    Сократимая/несократимая. Она может оказаться как правильной, так и неправильной. Важно другое, есть ли у числителя со знаменателем общие множители. Если имеются, то на них полагается разделить обе части дроби, то есть сократить ее.

    Смешанная. К ее привычной правильной (неправильной) дробной части приписывается целое число. Причем оно всегда стоит слева.

    Составная. Она образуется из двух разделенных друг на друга дробей. То есть в ней насчитывается сразу три дробные черты.

У десятичных дробей есть всего два подвида:

    конечная, то есть та, у которой дробная часть ограничена (имеет конец);

    бесконечная — число, у которого цифры после запятой не заканчиваются (их можно писать бесконечно).

Как переводить десятичную дробь в обыкновенную?

Если это конечное число, то применяется ассоциация, основанная на правиле — как слышу, так пишу. То есть нужно правильно прочитать ее и записать, но уже без запятой, а с дробной чертой.

В качестве подсказки о необходимом знаменателе, нужно запомнить, что он всегда единица и несколько нулей. Последних нужно написать столько, сколько цифр в дробной части рассматриваемого числа.

Как перевести десятичные дроби в обыкновенные, если их целая часть отсутствует, то есть равна нулю? Например, 0,9 или 0,05. После применения указанного правила, получается, что нужно написать ноль целых. Но оно не указывается. Остается записать только дробные части. У первого числа знаменатель будет равен 10, у второго — 100. То есть указанные примеры ответами будут иметь числа: 9/10, 5/100. Причем последнее оказывается можно сократить на 5. Поэтому результатом для нее нужно записать 1/20.

Как из десятичной дроби сделать обыкновенную, если ее целая часть отлична от нуля? Например, 5,23 или 13,00108. В обоих примерах читается целая часть и записывается ее значение. В первом случае это — 5, во втором — 13. Потом нужно переходить к дробной части. С ними полагается провести ту же операцию. У первого числа появляется 23/100, у второго — 108/100000. Второе значение снова нужно сократить. В ответе получаются такие смешанные дроби: 5 23/100 и 13 27/25000.

Как перевести бесконечную десятичную дробь в обыкновенную?

Если она является непериодической, то такую операцию провести не удастся. Этот факт связан с тем, что каждая десятичная дробь всегда переводится или в конечную или в периодическую.

Единственное, что допускается делать с такой дробью, — это округлять ее. Но тогда десятичная будет приблизительно равно той бесконечной. Ее уже можно превратить в обыкновенную. Но обратный процесс: перевод в десятичную — никогда не даст начального значения. То есть бесконечные непериодические дроби в обыкновенные не переводятся. Это нужно запомнить.

Как записать бесконечную периодическую дробь в виде обыкновенной?

В этих числах после запятой всегда появляются одна или несколько цифр, которые повторяются. Их называют периодом. Например, 0,3(3). Здесь «3» в периоде. Их относят к классу рациональных, так как могут быть преобразованы в обыкновенные дроби.

Тем, кто встречался с периодическими дробями, известно, что они могут быть чистыми или смешанными. В первом случае период начинается сразу от запятой. Во втором — дробная часть начинается с каких-либо цифр, а потом начинается повтор.

Правило, по которому нужно записать в виде обыкновенной дроби бесконечную десятичную, будет разным для указанных двух видов чисел. Чистые периодические дроби записать обыкновенными достаточно просто. Как с конечными, их нужно преобразовать: в числитель записать период, а знаменателем будет цифра 9, повторяющаяся столько раз, сколько цифр содержит период.

Например, 0,(5). Целой части у числа нет, поэтому сразу нужно приступать к дробной. В числитель записать 5, а в знаменатель одну 9. То есть ответом будет дробь 5/9.

Правило о том, как записать обыкновенной десятичную периодическую дробь, являющуюся смешанной.

    Посмотреть на длину периода. Столько 9 будет иметь знаменатель.

    Записать знаменатель: сначала девятки, потом нули.

    Чтобы определить числитель, нужно записать разность двух чисел. Уменьшаемым будут все цифры после запятой, вместе с периодом. Вычитаемым — оно же без периода.

Например, 0,5(8) - запишите периодическую десятичную дробь в виде обыкновенной. В дробной части до периода стоит одна цифра. Значит ноль будет один. В периоде тоже только одна цифра — 8. То есть девятка одна. То есть в знаменателе нужно написать 90.

Для определения числителя из 58 нужно вычесть 5. Получается 53. Ответом к примеру придется записать 53/90.

Как переводятся обыкновенные дроби в десятичные?

Самым простым вариантом оказывается число, в знаменателе которого стоит число 10, 100 и прочее. Тогда знаменатель просто отбрасывается, а между дробной и целой частями ставится запятая.

Бывают ситуации, когда знаменатель легко превращается в 10, 100 и т. д. Например, числа 5, 20, 25. Их достаточно умножить на 2, 5 и 4 соответственно. Только умножать полагается не только знаменатель, но и числитель на то же число.

Для всех остальных случаев пригодится простое правило: разделить числитель на знаменатель. В этом случае может получиться два варианта ответов: конечная или периодическая десятичная дробь.

Действия с обыкновенными дробями

Сложение и вычитание

С ними учащиеся знакомятся раньше других. Причем сначала у дробей одинаковые знаменатели, а потом разные. Общие правила можно свести к такому плану.

    Найти наименьшее общее кратное знаменателей.

    Записать дополнительные множители ко всем обыкновенным дробям.

    Умножить числители и знаменатели на определенные для них множители.

    Сложить (вычесть) числители дробей, а общий знаменатель оставить без изменения.

    Если числитель уменьшаемого меньше вычитаемого, то нужно выяснить, перед нами смешанное число или правильная дробь.

    В первом случае у целой части нужно занять единицу. К числителю дроби прибавить знаменатель. А потом выполнять вычитание.

    Во втором — необходимо применить правило вычитания из меньшего числа большее. То есть из модуля вычитаемого вычесть модуль уменьшаемого, а в ответ поставить знак «-».

    Внимательно посмотреть на результат сложения (вычитания). Если получилась неправильная дробь, то полагается выделить целую часть. То есть разделить числитель на знаменатель.

    Умножение и деление

    Для их выполнения дроби не нужно приводить к общему знаменателю. Это упрощает выполнение действий. Но в них все равно полагается следовать правилам.

      При умножении обыкновенных дробей необходимо рассмотреть числа в числителях и знаменателях. Если какой-либо числитель и знаменатель имеют общий множитель, то их можно сократить.

      Перемножить числители.

      Перемножить знаменатели.

      Если получилась сократимая дробь, то ее полагается снова упростить.

      При делении нужно сначала заменить деление на умножение, а делитель (вторую дробь) — на обратную дробь (поменять местами числитель и знаменатель).

      Потом действовать, как при умножении (начиная с пункта 1).

      В заданиях, где умножить (делить) нужно на целое число, последнее полагается записать в виде неправильной дроби. То есть со знаменателем 1. Потом действовать, как было описано выше.

    Действия с десятичными дробями

    Сложение и вычитание

    Конечно, всегда можно превратить десятичную дробь в обыкновенную. И действовать по уже описанному плану. Но иногда удобнее действовать без этого перевода. Тогда правила для их сложения и вычитания будут совершенно одинаковыми.

      Уравнять число цифр в дробной части числа, то есть после запятой. Приписать в ней недостающее количество нулей.

      Записать дроби так, чтобы запятая оказалась под запятой.

      Сложить (вычесть) как натуральные числа.

      Снести запятую.

    Умножение и деление

    Важно, что здесь не нужно дописывать нули. Дроби полагается оставлять в том виде, как они даны в примере. А дальше идти по плану.

      Для умножения нужно написать дроби одна под другой, не обращая внимание на запятые.

      Умножить, как натуральные числа.

      Поставить в ответе запятую, отсчитав от правого конца ответа столько цифр, сколько их стоит в дробных частях обоих множителей.

      Для деления нужно сначала преобразовать делитель: сделать его натуральным числом. То есть умножить его на 10, 100 и т. д., в зависимости от того, сколько цифр в дробной части делителя.

      На то же число умножить делимое.

      Разделить десятичную дробь на натуральное число.

      Поставить в ответе запятую в тот момент, когда закончится деление целой части.

    Как быть, если в одном примере есть оба вида дробей?

    Да в математике часто встречаются примеры, в которых нужно выполнить действия над обыкновенными и десятичными дробями. В таких заданиях возможны два пути решения. Нужно объективно взвесить числа и выбрать оптимальный.

    Первый путь: представить обыкновенные десятичными

    Он подходит, если при делении или переводе получаются конечные дроби. Если хотя бы одно число дает периодическую часть, то этот прием применять запрещено. Поэтому, даже если не нравится работать с обыкновенными дробями, придется считать их.

    Второй путь: записать десятичные дроби обыкновенными

    Этот прием оказывается удобным, если в части после запятой стоят 1-2 цифры. Если их больше, может получиться очень большая обыкновенная дробь и десятичные записи позволят сосчитать задание быстрее и проще. Поэтому всегда нужно трезво оценивать задание и выбирать самый простой метод решения.

ДЕСЯТИЧНЫЕ ДРОБИ. ДЕЙСТВИЯ НАД ДЕСЯТИЧНЫМИ ДРОБЯМИ

(урок-обобщение)

Тумышева Замира Тансыкбаевна, учитель математики, школа-гимназия №2

г. Хромтау Актюбинской области Республика Казахстан

Данная разработка урока предназначена как урок-обобщение по главе «Действия над десятичными дробями». Её можно использовать как в 5 классах, так и в 6 классах. Урок проводится в игровой форме.

Десятичные дроби. Действия над десятичными дробями. (урок-обобщение)

Цель :

    Отработка умений и навыков сложения, вычитания, умножения и деления десятичных дробей на натуральные числа и на десятичную дробь

    Создание условий для развития навыков самостоятельной работы, самоконтроля и самооценки, развития интеллектуальных качеств: внимания, воображения, памяти, умения анализировать и обобщать

    Привить познавательный интерес к предмету и выработать уверенность в своих силах

ПЛАН УРОКА:

1. Организационная часть.

3. Тема и цель нашего урока.

4. Игра «К заветному флажку!»

5. Игра «Числовая мельница».

6. Лирическое отступление.

7. Проверочная работа.

8. Игра «Шифровка» (работа в парах)

9. Подведение итогов.

10. Домашнее задание.

1. Организационная часть. Здравствуйте. Присаживайтесь.

2. Обзор правил выполнения арифметических действий с десятичными дробями.

Правило сложения и вычитания десятичных дробей:

1) уравнять количество знаков после запятой в этих дробях;

2) записать друг под другом так, чтобы запятая была под запятой;

3) не замечая запятой, выполнить действие (сложение или вычитание), и поставить в результате запятую под запятыми.

3,455 + 0,45 = 3,905 3,5 + 4 = 7,5 15 – 7,88 = 7,12 4,57 - 3,2 = 1,37

3,455 + 3,5 _15,00 _ 4,57

0,450 4,0 7,88 3,20

3,905 7,5 7,12 1,37

При сложении и вычитании натуральные числа записывают как десятичную дробь с десятичными знаками, равными нулю

Правило умножения десятичных дробей:

1) не обращая внимания на запятую, умножить числа;

2) в полученном произведении отделить запятой столько цифр справа налево, сколько их отделено запятой в десятичных дробях.

При умножении десятичной дроби на разрядные единицы (10, 100, 1000 и т.п.) запятая переносится вправо на столько чисел, сколько нулей в разрядной единице

4

17,25 · 4 = 69

х 1 7,2 5

4

6 9,0 0

15,256 · 100 = 1525,6

,5 · 0,52 = 2,35

Х 0,5 2

4,5

2 7 0

2 0 8__

2,3 5 0

При умножении натуральные числа записывают как натуральные числа.

Правило деления десятичных дробей на натуральное число:

1) разделить целую часть делимого, поставить в частном запятую;

2) продолжить деление.

При делении к остатку сносим только по одному числу из делимого.

Если в процессе деления десятичной дроби останется остаток, то приписав к нему нужное число нулей, продолжим деление до тех пор, пока в остатке не получится нуль.

15,256: 100 = 0,15256

0,25: 1000 = 0,00025

Ри делении десятичной дроби на разрядные единицы (10, 100, 1000 и т.п.) запятая переносится влево на столько чисел, сколько нулей в разрядной единице.

18,4: 8 = 2,3

_ 18,4 І_8_

16 2,3

2 4

2 4

22,2: 25 = 0,88

22,2 І_25_

0 0,888

22 2

20 0

2 20

2 00

200

200

3,56: 4 = 0,89

3,56 І_4_

0 0,89

3 5

3 2

36


При делении натуральные числа записывают как натуральные числа.

Правило деления десятичных дробей на десятичную дробь:

1) перенесём запятую в делителе вправо так, чтобы получилось натуральное число;

2) запятую в делимом перенесём вправо настолько чисел, насколько перенесли в делителе;

3) производим деление десятичной дроби на натуральное число.

3,76: 0,4 = 9, 4

_ 3,7,6 І_0,4,_

3 6 9, 4

1 6

1 6

0

Игра «К заветному флажку!»

Правила игры: Из каждой команды к доске вызываются по одному ученику, которые производят устный счет с нижней ступеньки. Решивший один пример отмечает ответ в таблице. Дальше его сменяет другой член команды. Происходит движение вверх - к заветному флажку. Учащиеся на местах устно проверяют результаты своих игроков. При неправильном ответе к доске выходит другой член команды, чтобы продолжить решение заданий. Вызывают для работы у доски учеников капитаны команд. Выигрывает та команда, которая при наименьшем количестве учащихся первой достигнет флажка.

Игра «Числовая мельница»

Правила игры: В кружках мельницы записаны числа. На стрелках, соединяющих кружки, указаны действия. Задание состоит в том, чтобы выполнить последовательно действия, продвигаясь по стрелке от центра к внешней окружности. Выполняя последовательно действия по указанному маршруту, вы найдете ответ в одном из кружков внизу. Результат выполнения действий по каждой стрелке записывается в овале рядом.

Лирическое отступление.

Стихотворение Лифшица «Три десятых»

Это кто

Из портфеля

Швыряет в досаде

Ненавистный задачник,

Пенал и тетради

И суёт свой дневник.

Не краснея при этом,

Под дубовый буфет.

Чтоб лежал под буфетом?..

Познакомьтесь, пожалуйста:

Костя Жигалин.

Жертва вечных придирок, -

Он снова провален.

И шипит,

На растрёпанный

Глядя задачник:

Просто мне не везёт!

Просто я неудачник!

В чём причина

Обиды его и досады?

Что ответ не сошёлся

Лишь на три десятых.

Это сущий пустяк!

И к нему, безусловно,

Придирается

Строгая

Марья Петровна.

Три десятых...

Скажи про такую ошибку -

И, пожалуй, на лицах

Увидишь улыбку.

Три десятых...

И всё же об этой ошибке

Я прошу вас

Послушать меня

Без улыбки.

Если б, строя ваш дом.

Тот, в котором живёте.

Архитектор

Немножко

Ошибся

В расчёте, -

Что б случилось.

Ты, знаешь ли, Костя Жигалин?

Этот дом

Превратился бы

В груду развалин!

Ты вступаешь на мост.

Он надёжен и прочен.

А не будь инженер

В чертежах своих точен, -

Ты бы, Костя,

Свалившись

в холодную реку,

Не сказал бы спасибо

Тому человеку!

Вот турбина.

В ней вал

Токарями расточен.

Если б токарь

В работе

Не очень был точен, -

Совершилось бы, Костя,

Большое несчастье:

Разнесло бы турбину

На мелкие части!

Три десятых -

И стены

Возводятся

Косо!

Три десятых -

И рухнут

Вагоны

С откоса!

Ошибись

Только на три десятых

Аптека, -

Станет ядом лекарство,

Убьёт человека!

Мы громили и гнали

Фашистскую банду.

Твой отец подавал

Батарее команду.

Ошибись он прилетом

Хоть на три десятых, -

Не настигли б снаряды

Фашистов проклятых.

Ты подумай об этом,

Мой друг, хладнокровно

И скажи.

Не права ль была

Марья Петровна?

Если честно

Подумаешь, Костя, об этом.

То недолго лежать

Дневнику под буфетом!

Проверочная работа по теме «Десятичные дроби» (математика -5)

На экране последовательно появятся 9 слайдов. Учащиеся в тетрадях записывают номер варианта и ответы на вопрос. Например, Вариант 2

1. С; 2. А; и т.п.

ВОПРОС 1

Вариант 1

При умножении десятичной дроби на 100, нужно в этой дроби перенести запятую:

А. влево на 2 цифры; В. вправо на 2 цифры; С. не менять место запятой.

Вариант 2

При умножении десятичной дроби на 10, нужно в этой дроби перенести запятую:

А. вправо на 1 цифру; В. влево на 1 цифру; С. не менять место запятой.

ВОПРОС 2

Вариант 1

Сумма 6,27+6,27+6,27+6,27+6,27 в виде произведения записывается так:

А. 6,27 · 5; В. 6,27 · 6,27; С. 6,27 · 4.

Вариант 2

Сумма 9,43+9,43+9,43+9,43 в виде произведения записывается так:

А. 9,43 · 9,43; В. 6 · 9,43; С. 9,43 · 4.

ВОПРОС 3

Вариант 1

В произведении 72,43· 18 после запятой будет:

Вариант 2

В произведении 12,453· 35 после запятой будет:

А. 2 цифры; В. 0 цифр; С. 3 цифры.

ВОПРОС 4

Вариант 1

В частном 76,4: 2 после запятой будет:

А. 2 цифры; В. 0 цифр; С. 1 цифра.

Вариант 2

В частном 95,4: 6 после запятой будет:

А. 1 цифра; В. 3 цифры; С. 2 цифры.

ВОПРОС 5

Вариант 1

Найти значение выражения 34,5: х + 0,65· у, при х=10 у=100:

А. 35,15; В. 68,45; С. 9,95.

Вариант 2

Найти значение выражения 4,9 · х +525:у, при х=100 у=1000:

А. 4905,25; В. 529,9; С. 490,525.

ВОПРОС 6

Вариант 1

Площадь прямоугольника со сторонами 0,25 и 12 см равна

А. 3; В. 0,3; С. 30.

Вариант 2

Площадь прямоугольника со сторонами 0,5 и 36 см равна

А. 1,8; В. 18; С. 0,18.

ВОПРОС 7

Вариант 1

Из школы одновременно в противоположные стороны вышли два ученика. Скорость первого ученика 3,6 км\ч, скорость второго – 2,56 км\ч. Через 3 часа расстояние между ними будет равно :

А. 6,84 км; В. 18,48 км; С. 3,12 км

Вариант 2

Из школы одновременно в противоположные стороны выехали два велосипедиста. Скорость первого 11,6 км\ч, скорость второго – 13,06 км\ч. Через 4 часа расстояние между ними будет равно :

А. 5,84 км; В. 100,8 км; С. 98,64 км

Вариант 1

Вариант 2

Проверьте свои ответы. Поставьте «+» за правильный ответ и «-» за неправильный ответ.

Игра «Шифровка»

Правила игры: На каждую парту раздаётся по карточке с заданием, имеющим код-букву. Выполнив действия и получив результат, записываете код-букву вашей карточки под числом, соответствующим вашему ответу.

В результате получим предложение:

6,8

420

21,6


420

306

65,8

21,6


Подведение итогов урока.

Объявляются оценки за проверочную работу.

Домашнее задание №1301, 1308, 1309

СПАСИБО за внимание!!!

Десятичная дробь используется, когда нужно выполнять действия с нецелыми числами. Это может показаться нерациональным. Но такой вид чисел существенно облегчает математические операции, которые с ними необходимо выполнять. Это понимание приходит со временем, когда их запись становится привычной, а прочтение не вызывает трудностей, и освоены правила десятичных дробей. Тем более что все действия повторяют уже известные, которые усвоены с натуральными числами. Только нужно запомнить некоторые особенности.

Определение десятичной дроби

Десятичная дробь — это особое представление нецелого числа со знаменателем, который делится на 10, а ответ получается в виде единицы и, возможно, нулей. Другими словами, если в знаменателе 10, 100, 1000 и так далее, то удобнее переписать число с использованием запятой. Тогда до нее будет расположена целая часть, а потом - дробная. Причем запись второй половины числа будет зависеть от знаменателя. Количество цифр, которые находятся в дробной части, должно быть равно разряду знаменателя.

Проиллюстрировать вышесказанное можно этими числами:

9/10=0,9; 178/10000=0,0178; 3,05; 56 003,7006.

Причины, по которым понадобилось применение десятичных дробей

Математикам потребовались десятичные дроби по нескольким основаниям:

    Упрощение записи. Такая дробь расположена вдоль одной линии без черточки между знаменателем и числителем, при этом наглядность не страдает.

    Простота в сравнении. Достаточно просто соотнести цифры, находящиеся в одинаковых позициях, в то время как с обыкновенными дробями пришлось бы приводить их к общему знаменателю.

    Упрощение вычислений.

    Калькуляторы не рассчитаны на введение обыкновенных дробей, они для всех операций используют десятичную запись чисел.

Как правильно прочитать такие числа?

Ответ прост: так же, как обыкновенное смешанное число со знаменателем, кратным 10. Исключение составляют только дроби без целого значения, тогда при чтении нужно произносить «ноль целых».

Например, 45/1000 нужно произнести как сорок пять тысячных , в то же время 0,045 будет звучать как ноль целых сорок пять тысячных .

Смешанное число с целой частью равной 7 и дробью 17/100, что запишется как 7,17, в обоих случаях будет прочитано как семь целых семнадцать сотых .

Роль разрядов в записи дробей

Верно отметить разряд - это то, что требует математика. Десятичные дроби и их значение могут существенно измениться, если записать цифру не в том месте. Впрочем, это было справедливо и раньше.

Для прочтения разрядов целой части десятичной дроби нужно просто воспользоваться правилами, известными для натуральных чисел. А в правой части они зеркально отражаются и по-другому читаются. Если в целой части звучало "десятки", то после запятой это будут уже "десятые".

Наглядно это можно увидеть в этой таблице.

Таблица разрядов десятичной дроби
класс тысячи единицы , дробная часть
разряд сот. дес. ед. сот. дес. ед. десятая сотая тысячная десятитысячная

Как правильно записать смешанное число десятичной дробью?

Если в знаменателе стоит число, равное 10 или 100, и прочие, то вопрос о том, как дробь перевести в десятичную, несложен. Для этого достаточно по-другому переписать все ее составные части. В этом помогут такие пункты:

    немного в стороне написать числитель дроби, в этот момент десятичная запятая располагается справа, после последней цифры;

    переместить запятую влево, здесь самое главное - правильно сосчитать цифры — передвинуть ее нужно на столько позиций, сколько нолей в знаменателе;

    если их не хватает, то на пустых позициях должны оказаться нули;

    нули, которые были в конце числителя, теперь не нужны, и их можно зачеркнуть;

    перед запятой приписать целую часть, если ее не было, то здесь тоже окажется нуль.

Внимание. Нельзя зачеркивать нули, которые оказались окружены другими цифрами.

О том, как быть в ситуации, когда в знаменателе число не только из единицы и нулей, как дробь переводить в десятичную, можно прочитать чуть ниже. Это важная информация, с которой обязательно стоит ознакомиться.

Как дробь перевести в десятичную, если знаменатель - произвольное число?

Здесь возможны два варианта:

    Когда знаменатель можно представить в виде числа, которое равно десяти в любой степени.

    Если такую операцию проделать нельзя.

Как это проверить? Нужно разложить знаменатель на множители. Если в произведении присутствуют только 2 и 5, то все хорошо, и дробь легко преобразуется в конечную десятичную. В противном случае, если появляются 3, 7 и другие простые числа, то результат будет бесконечным. Такую десятичную дробь для удобства использования в математических операциях принято округлять. Об этом будет речь немного ниже.

Изучает, как получаются такие десятичные дроби, 5 класс. Примеры здесь будут очень кстати.

Пусть в знаменателях находятся числа: 40, 24 и 75. Разложение на простые множители для них будет такое:

  • 40=2·2·2·5;
  • 24=2·2·2·3;
  • 75=5·5·3.

В этих примерах только первая дробь может быть представлена в виде конечной.

Алгоритм перевода обыкновенной дроби в конечную десятичную

    Проверить разложение знаменателя на простые множители и убедиться в том, что оно будет состоять из 2 и 5.

    Добавить к этим числам столько 2 и 5, чтобы их стало равное количество. Они дадут значение дополнительного множителя.

    Произвести умножение знаменателя и числителя на это число. В результате получится обыкновенная дробь, под чертой у которой стоит 10 в некоторой степени.

Если в задаче эти действия выполняются со смешанным числом, то его сначала нужно представить в виде неправильной дроби. А уже потом действовать по описанному сценарию.

Представление обыкновенной дроби в виде округленной десятичной

Этот способ того, как дробь переводить в десятичную, кому-то покажется даже проще. Потому что в нем нет большого количества действий. Нужно только разделить значение числителя на знаменатель.

К любому числу с десятичной частью справа от запятой можно приписать бесконечное количество нулей. Этим свойством и нужно воспользоваться.

Сначала записать целую часть и поставить после нее запятую. Если дробь правильная, то написать ноль.

Потом полагается выполнить деление числителя на знаменатель. Так, чтобы количество цифр у них было одинаковым. То есть приписать справа у числителя нужное количество нолей.

Выполнять деление в столбик до тех пор, пока не будет набрано нужное количество цифр. Например, если округлить нужно будет до сотых, то в ответе их должно быть 3. В общем, цифр должно быть на одну больше, чем нужно получить в итоге.

Записать промежуточный ответ после запятой и округлить по правилам. Если последняя цифра - от 0 до 4, то ее нужно просто отбросить. А когда она равна 5-9, то стоящую перед ней нужно увеличить на единицу, отбросив последнюю.

Возврат от десятичной дроби к обыкновенной

В математике встречаются задачи, когда десятичные дроби удобнее представить в виде обыкновенных, в которых есть числитель со знаменателем. Можно вздохнуть с облегчением: эта операция возможна всегда.

Для этой процедуры нужно сделать следующее:

    записать целую часть, если она равна нулю, то ничего писать не надо;

    провести дробную черту;

    над ней записать цифры из правой части, если первыми идут нули, то их нужно зачеркнуть;

    под чертой написать единицу с таким количеством нолей, сколько цифр стоит после запятой в первоначальной дроби.

    Это все, что нужно сделать, чтобы перевести десятичную дробь в обыкновенную.

    Что можно делать с десятичными дробями?

    В математике это будут определенные действия с десятичными дробями, которые ранее выполнялись для других чисел.

    Ими являются:

      сравнение;

      сложение и вычитание;

      умножение и деление.

    Первое действие, сравнение, похоже на то, как это делалось для натуральных чисел. Чтобы определить, какое больше, нужно сравнивать разряды целой части. Если они окажутся равными, то переходят к дробной и так же по разрядам сравнивают их. То число, где окажется большая цифра в старшем разряде, и будет ответом.

    Сложение и вычитание десятичных дробей

    Это, пожалуй, самые простые действия. Потому что выполняются по правилам для натуральных чисел.

    Так, чтобы выполнить сложение десятичных дробей, их нужно записать друг под другом, разместив запятые в столбик. При такой записи слева от запятых оказываются целые части, а справа — дробные. И теперь нужно сложить цифры поразрядно, как это делается с натуральными числами, снеся вниз запятую. Начинать сложение нужно с самого маленького разряда дробной части числа. Если в правой половине не хватает цифр, то дописывают нули.

    При вычитании действуют так же. И здесь действует правило, которое описывает возможность занять единицу у старшего разряда. Если в уменьшаемой дроби после запятой меньше цифр, чем у вычитаемого, то в ней просто приписывают нули.

    Немного сложнее обстоит дело с заданиями, где нужно выполнить умножение и деление десятичных дробей.

    Как умножить десятичную дробь в разных примерах?

    Правило, по которому производится умножение десятичных дробей на натуральное число, такое:

      записать их в столбик, не обращая внимания на запятую;

      перемножить, как если бы они были натуральными;

      отделить запятой столько цифр, сколько их было в дробной части исходного числа.

    Частным случаем является пример, в котором натуральное число равно 10 в любой степени. Тогда для получения ответа нужно просто передвинуть запятую вправо на столько позиций, сколько нулей в другом множителе. Иными словами, при умножении на 10 запятая сдвигается на одну цифру, на 100 - их будет уже две, и так далее. Если цифр в дробной части не хватает, то нужно записать на пустых позициях нули.

    Правило, которым пользуются, когда в задании нужно произвести умножение десятичных дробей на другое такое же число:

      записать их друг под другом, не обращая внимания на запятые;

      умножить, как если бы они были натуральными;

      отделить запятой столько цифр, сколько их было в дробных частях обеих исходных дробях вместе.

    Частным случаем выделяются примеры, в которых один из множителей равен 0,1 или 0,01 и далее. В них нужно выполнить перемещение запятой влево на количество цифр в представленных множителях. То есть если умножается на 0,1, то запятая сдвигается на одну позицию.

    Как разделить десятичную дробь в разных заданиях?

    Деление десятичных дробей на натуральное число выполняется по такому правилу:

      записать их для деления в столбик, как если бы они были натуральными;

      делить по привычному правилу до тех пор, пока не закончится целая часть;

      поставить в ответ запятую;

      продолжить деление дробной составляющей до получения в остатке нуля;

      если нужно, то можно приписать нужное количество нулей.

    Если целая часть равна нулю, то и в ответе ее тоже не будет.

    Отдельно стоит деление на числа, равные десятке, сотне и так далее. В таких задачах нужно передвинуть запятую влево на количество нулей в делителе. Бывает, что цифр в целой части не хватает, тогда вместо них используют нули. Можно заметить, что эта операция подобна умножению на 0,1 и подобным ей числам.

    Чтобы выполнить деление десятичных дробей, нужно воспользоваться этим правилом:

      превратить делитель в натуральное число, а для этого перенести в нем запятую вправо до конца;

      выполнить перемещение запятой и в делимом на такое же число цифр;

      действовать по предыдущему сценарию.

    Выделяется деление на 0,1; 0,01 и прочие подобные числа. В таких примерах запятая сдвигается вправо на число цифр в дробной части. Если они закончились, то нужно приписать недостающее количество нулей. Стоит отметить, что это действие повторяет деление на 10 и подобные ему числа.

    Заключение: все дело в практике

    Ничто в учебе не дается легко и без усилий. Для надежного освоения нового материала требуются время и тренировка. Математика не исключение.

    Чтобы тема про десятичные дроби не вызывала затруднений, нужно решать с ними примеров как можно больше. Ведь было время, когда и сложение натуральных чисел ставило в тупик. А теперь все нормально.

    Поэтому, перефразируя известную фразу: решать, решать и еще раз решать. Тогда и задания с такими числами будут выполняться легко и непринужденно, как очередная головоломка.

    Кстати, и головоломки поначалу решаются сложно, а потом нужно делать привычные движения. Так же и в математических примерах: пройдя по одному пути несколько раз, потом уже не будешь задумываться над тем, куда повернуть.


Эта статья про десятичные дроби . Здесь мы разберемся с десятичной записью дробных чисел, введем понятие десятичной дроби и приведем примеры десятичных дробей. Дальше поговорим о разрядах десятичных дробей, дадим названия разрядов. После этого остановимся на бесконечных десятичных дробях, скажем о периодических и непериодических дробях. Дальше перечислим основные действия с десятичными дробями. В заключение установим положение десятичных дробей на координатном луче.

Навигация по странице.

Десятичная запись дробного числа

Чтение десятичных дробей

Скажем пару слов о правилах чтения десятичных дробей.

Десятичные дроби, которым соответствуют правильные обыкновенные дроби, читаются также как и эти обыкновенные дроби, только еще предварительно добавляется «ноль целых». Например, десятичной дроби 0,12 отвечает обыкновенная дробь 12/100 (читается «двенадцать сотых»), поэтому, 0,12 читается как «нуль целых двенадцать сотых».

Десятичные дроби, которым соответствуют смешанные числа, читаются абсолютно также как эти смешанные числа. Например, десятичной дроби 56,002 соответствует смешанное число , поэтому, десятичная дробь 56,002 читается как «пятьдесят шесть целых две тысячных».

Разряды в десятичных дробях

В записи десятичных дробей, также как и в записи натуральных чисел, значение каждой цифры зависит от ее позиции. Действительно, цифра 3 в десятичной дроби 0,3 означает три десятых, в десятичной дроби 0,0003 – три десяти тысячных, а в десятичной дроби 30 000,152 – три десятка тысяч. Таким образом, мы можем говорить о разрядах в десятичных дробях , так же как и о разрядах в натуральных числах .

Названия разрядов в десятичной дроби до десятичной запятой полностью совпадают с названиями разрядов в натуральных числах. А названия разрядов в десятичной дроби после запятой видны из следующей таблицы.

Например, в десятичной дроби 37,051 цифра 3 находится в разряде десятков, 7 – в разряде единиц, 0 стоит в разряде десятых, 5 – в разряде сотых, 1 – в разряде тысячных.

Разряды в десятичной дроби также различаются по старшинству. Если в записи десятичной дроби двигаться от цифры к цифре слева на право, то мы будем перемещаться от старших к младшим разрядам . Например, разряд сотен старше разряда десятых, а разряд миллионных младше разряда сотых. В данной конечной десятичной дроби можно говорить о старшем и младшем разряде. К примеру, в десятичной дроби 604,9387 старшим (высшим) разрядом является разряд сотен, а младшим (низшим) - разряд десятитысячных.

Для десятичных дробей имеет место разложение по разрядам. Оно аналогично разложению по разрядам натуральных чисел . Например, разложение по разрядам десятичной дроби 45,6072 таково: 45,6072=40+5+0,6+0,007+0,0002 . А свойства сложения от разложения десятичной дроби по разрядам позволяют перейти к другим представлениям этой десятичной дроби, например, 45,6072=45+0,6072 , или 45,6072=40,6+5,007+0,0002 , или 45,6072=45,0072+0,6 .

Конечные десятичные дроби

До этого момента мы говорили лишь о десятичных дробях, в записи которых после десятичной запятой находится конечное число цифр. Такие дроби называют конечными десятичными дробями.

Определение.

Конечные десятичные дроби – это десятичные дроби, в записях которых содержится конечное число знаков (цифр).

Приведем несколько примеров конечных десятичных дробей: 0,317 , 3,5 , 51,1020304958 , 230 032,45 .

Однако не всякая обыкновенная дробь может быть представлена в виде конечной десятичной дроби. К примеру, дробь 5/13 не может быть заменена равной ей дробью с одним из знаменателей 10, 100, … , следовательно, не может быть переведена в конечную десятичную дробь. Подробнее об этом мы поговорим в разделе теории перевод обыкновенных дробей в десятичные дроби .

Бесконечные десятичные дроби: периодические дроби и непериодические дроби

В записи десятичной дроби после запятой можно допустить возможность наличия бесконечного количества цифр. В этом случае мы придем к рассмотрению так называемых бесконечных десятичных дробей.

Определение.

Бесконечные десятичные дроби – это десятичные дроби, в записи которых находится бесконечное множество цифр.

Понятно, что бесконечные десятичные дроби мы не можем записать в полном виде, поэтому в их записи ограничиваются лишь некоторым конечным числом цифр после запятой и ставят многоточие, указывающее на бесконечно продолжающуюся последовательность цифр. Приведем несколько примеров бесконечных десятичных дробей: 0,143940932… , 3,1415935432… , 153,02003004005… , 2,111111111… , 69,74152152152… .

Если внимательно посмотреть на две последние бесконечные десятичные дроби, то в дроби 2,111111111… хорошо видна бесконечно повторяющаяся цифра 1 , а в дроби 69,74152152152… , начиная с третьего знака после запятой, отчетливо видна повторяющаяся группа цифр 1 , 5 и 2 . Такие бесконечные десятичные дроби называют периодическими.

Определение.

Периодические десятичные дроби (или просто периодические дроби ) – это бесконечные десятичные дроби, в записи которых, начиная с некоторого знака после запятой, бесконечно повторяется какая-нибудь цифра или группа цифр, которую называют периодом дроби .

Например, периодом периодической дроби 2,111111111… является цифра 1 , а периодом дроби 69,74152152152… является группа цифр вида 152 .

Для бесконечных периодических десятичных дробей принята особая форма записи. Для краткости условились период записывать один раз, заключая его в круглые скобки. Например, периодическая дробь 2,111111111… записывается как 2,(1) , а периодическая дробь 69,74152152152… записывается как 69,74(152) .

Стоит отметить, что для одной и той же периодической десятичной дроби можно указать различные периоды. Например, периодическую десятичную дробь 0,73333… можно рассматривать как дробь 0,7(3) с периодом 3 , а также как дробь 0,7(33) с периодом 33 , и так далее 0,7(333), 0,7(3333), … Также на периодическую дробь 0,73333… можно посмотреть и так: 0,733(3) , или так 0,73(333) и т.п. Здесь, чтобы избежать многозначности и разночтений, условимся рассматривать в качестве периода десятичной дроби самую короткую из всех возможных последовательностей повторяющихся цифр, и начинающуюся с самой близкой позиции к десятичной запятой. То есть, периодом десятичной дроби 0,73333… будем считать последовательность из одной цифры 3 , и периодичность начинается со второй позиции после запятой, то есть, 0,73333…=0,7(3) . Еще пример: периодическая дробь 4,7412121212… имеет период 12 , периодичность начинается с третьей цифры после запятой, то есть, 4,7412121212…=4,74(12) .

Бесконечные десятичные периодические дроби получаются при переводе в десятичные дроби обыкновенных дробей, знаменатели которых содержат простые множители, отличные от 2 и 5 .

Здесь же стоит сказать о периодических дробях с периодом 9 . Приведем примеры таких дробей: 6,43(9) , 27,(9) . Эти дроби являются другой записью периодических дробей с периодом 0 , и их принято заменять периодическими дробями с периодом 0 . Для этого период 9 заменяют периодом 0 , а значение следующего по старшинству разряда увеличивают на единицу. Например, дробь с периодом 9 вида 7,24(9) заменяется периодической дробью с периодом 0 вида 7,25(0) или равной ей конечной десятичной дробью 7,25 . Еще пример: 4,(9)=5,(0)=5 . Равенство дроби с периодом 9 и соответствующей ей дроби с периодом 0 легко устанавливается, после замены этих десятичных дробей равными им обыкновенными дробями.

Наконец, повнимательнее рассмотрим бесконечные десятичные дроби, в записи которых отсутствует бесконечно повторяющаяся последовательность цифр. Их называют непериодическими.

Определение.

Непериодические десятичные дроби (или просто непериодические дроби ) – это бесконечные десятичные дроби, не имеющие периода.

Иногда непериодические дроби имеют вид, схожий с видом периодических дробей, например, 8,02002000200002… - непериодическая дробь. В этих случаях следует быть особо внимательными, чтобы заметить разницу.

Отметим, что непериодические дроби не переводятся в обыкновенные дроби, бесконечные непериодические десятичные дроби представляют иррациональные числа .

Действия с десятичными дробями

Одним из действий с десятичными дробями является сравнение, также определены четыре основных арифметических действия с десятичными дробями : сложение, вычитание, умножение и деление. Рассмотрим отдельно каждое из действий с десятичными дробями.

Сравнение десятичных дробей по сути базируется на сравнении обыкновенных дробей , отвечающих сравниваемым десятичным дробям. Однако перевод десятичных дробей в обыкновенные является достаточно трудоемким действием, да и бесконечные непериодические дроби не могут быть представлены в виде обыкновенной дроби, поэтому удобно использовать поразрядное сравнение десятичных дробей. Поразрядное сравнение десятичных дробей аналогично сравнению натуральных чисел . Для получения более детальной информации рекомендуем изучить материал статьи сравнение десятичных дробей, правила, примеры, решения .

Переходим к следующему действию - умножению десятичных дробей . Умножение конечных десятичных дробей проводится аналогично вычитание десятичных дробей, правила, примеры, решения умножению столбиком натуральных чисел. В случае периодических дробей умножение можно свести к умножению обыкновенных дробей . В свою очередь умножение бесконечных непериодических десятичных дробей после их округления сводится к умножению конечных десятичных дробей. Рекомендуем к дальнейшему изучению материал статьи умножение десятичных дробей, правила, примеры, решения .

Десятичные дроби на координатном луче

Между точками и десятичными дробями существует взаимно однозначное соответствие.

Разберемся, как строятся точки на координатном луче, соответствующие данной десятичной дроби.

Конечные десятичные дроби и бесконечные периодические десятичные дроби мы можем заменить равными им обыкновенными дробями, после чего построить соответствующие обыкновенные дроби на координатном луче . Например, десятичной дроби 1,4 отвечает обыкновенная дробь 14/10 , поэтому точка с координатой 1,4 удалена от начала отсчета в положительном направлении на 14 отрезков, равных десятой доле единичного отрезка.

Десятичные дроби можно отмечать на координатном луче, отталкиваясь от разложения данной десятичной дроби по разрядам. Например, пусть нам нужно построить точку с координатой 16,3007 , так как 16,3007=16+0,3+0,0007 , то в данную точку можно попасть, последовательно откладывая от начала координат 16 единичных отрезков, 3 отрезка, длина которых равна десятой доле единичного, и 7 отрезков, длина которого равна десятитысячной доле единичного отрезка.

Такой способ построения десятичных чисел на координатном луче позволяет сколь угодно близко приблизиться к точке, отвечающей бесконечной десятичной дроби.

Иногда возможно точно построить точку, соответствующую бесконечной десятичной дроби. Например, , тогда этой бесконечной десятичной дроби 1,41421… соответствует точка координатного луча, удаленная от начала координат на длину диагонали квадрата со стороной 1 единичный отрезок.

Обратный процесс получения десятичной дроби, соответствующей данной точке на координатном луче, представляет собой так называемое десятичное измерение отрезка . Разберемся, как оно проводится.

Пусть наша задача заключается в том, чтобы попасть из начала отсчета в данную точку координатной прямой (или бесконечно приблизиться к ней, если попасть в нее не получается). При десятичном измерении отрезка мы можем последовательно откладывать от начала отсчета любое количество единичных отрезков, далее отрезков, длина которых равна десятой доле единичного, затем отрезков, длина которых равна сотой доле единичного, и т.д. Записывая количество отложенных отрезков каждой длины, мы получим десятичную дробь, соответствующую данной точке на координатном луче.

К примеру, чтобы попасть в точку М на приведенном выше рисунке, нужно отложить 1 единичный отрезок и 4 отрезка, длина которых равна десятой доле единичного. Таким образом, точке М соответствует десятичная дробь 1,4 .

Понятно, что точкам координатного луча, в которые невозможно попасть в процессе десятичного измерения, соответствуют бесконечные десятичные дроби.

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.