Ионообменные смолы: применение. Насколько они эффективны при очистке воды

  Ионообменные смолы: применение. Насколько они эффективны при очистке воды
Ионообменные смолы: применение. Насколько они эффективны при очистке воды

Ионообменные смолы - это нерастворимые на высокомолекулярном уровне соединения, которые могут показать реакцию при взаимодействии с ионами раствора. Они имеют трехмерную гелевую или макропористую структуры. Их еще называют ионитами.

Разновидности

Эти смолы бывают катионообменными (делятся на сильнокислотные и слабокислотные), анионообменными (сильноосновные, слабоосновные, с промежуточной и смешанной основою) и биполярными. Сильнокислотные соединения - это катиониты, которые могут обмениваться катионами вне зависимости от А вот слабокислотные могут функционировать при значении не ниже семи. Сильноосновные аниониты имеют свойство обмениваться анионами в растворах при любой при любых показателях рН. Этого, в свою очередь, лишены слабоосновные аниониты. В этой ситуации рН должен быть 1-6. Другими словами, смолы могут обменять ионы в воде, впитать одни, а взамен отдать те, которые ранее были запасены. А так как именно H 2 O - многокомпонентная структура, то нужно верно ее подготовить, выбрать химическую реакцию.

Свойства

Ионообменные смолы - полиэлектролиты. Они не растворяются. Многозарядный ион неподвижен, потому что имеет большую молекулярную массу. Он образует основу ионита, связан с небольшими подвижными элементами, которые имеют противоположный знак, и, в свою очередь, может обменивать их в растворе.

Производство

Если полимер, который не имеет свойства ионита, обработать химически, то произойдут изменения - регенерация ионообменной смолы. Это достаточно важный процесс. С помощью полимераналогичных превращений, а еще поликонденсации и полимеризации, получают иониты. Существует солевая и смешанно-солевая формы. Первая подразумевает натриевый и хлористый, а вторая - натрий-водородный, гидроксильно-хлоридный виды. В таких условиях выпускаются иониты. Мало того, в процессе они переводятся в рабочую форму, а именно водородную, гидроксильную и т. д. Такие материалы используют в разных сферах деятельности, например, в медицине и фармацевтике, в пищевой промышленности, на атомных электростанциях для очистки конденсата. Также может применяться ионообменная смола для фильтра смешанного действия.

Применение

Используется ионообменная смола для Кроме того, соединение может и обессолить жидкость. В связи с этим ионообменные смолы часто используют в теплоэнергетике. В гидрометаллургии ими пользуются для цветных и редких металлов, в химической промышленности ими очищают и разделяют разные элементы. Иониты также могут очистить сточные водоемы, а для органического синтеза они - целый катализатор. Таким образом, ионообменные смолы могут быть использованы в разных отраслях.

Промышленная очистка

На теплопередающих поверхностях может появляться накипь, а если она достигнет всего 1 мм, то расход топлива увеличится на 10%. Это все-таки большие потери. Мало того, оборудование быстрее изнашивается. Чтобы это предотвратить, нужно правильно организовывать водоподготовку. Для этого используется фильтр с ионообменной смолой. Именно очистив жидкость, можно избавиться от накипи. Способы бывают разные, но с повышением температуры их вариантов становится меньше.

Обработка H 2 O

Существует несколько способов для того, чтобы очистить воду. Можно воспользоваться магнитной и а можно отретушировать ее комплексонами, комплексонатами, ИОМС-1. Но более популярным вариантом считается фильтрация с помощью обмена ионов. Это заставит изменить состав элементов воды. Когда используют такой метод, H 2 O почти полностью обессоливается, загрязнения пропадают. Следует отметить, что такой очистки достаточно сложно добиться иными способами. Обработка воды с помощью ионообменных смол очень популярна не только в России, а и в других странах. Такая очистка имеет много достоинств и намного эффективнее прочих методов. Те элементы, которые удаляются, никогда не останутся осадком на дне, а дозировать реагенты не нужно постоянно. Сделать эту процедуру очень легко - конструкция фильтров однотипная. При желании можно воспользоваться автоматизацией. После очистки свойства будут сохраняться при любых колебаниях температуры.

Ионообменная смола Purolite A520E. Описание

Чтобы поглощать нитрат-ионы в воде, была создана макропористая смола. Она используется, чтобы очистить H 2 O в разных средах. Специально для этого появилась ионообменная смола Purolite A520E. Она способствует избавлению от нитратов даже при большом количестве сульфатов. Это значит, что, по сравнению с другими ионитами, эта смола наиболее эффективна и имеет лучшие характеристики.

Рабочая емкость

Purolite A520E имеет высокую селективность. Это помогает, вне зависимости от количества сульфатов, удалить нитраты качественно. Такими функциями не могут похвастаться остальные ионообменные смолы. Это обусловлено тем, что при содержании сульфатов в H 2 O снижается обмен элементами. Но благодаря селективности для Purolite A520E такое понижение не имеет особого значения. Хотя соединение имеет низкий, если сравнивать с другими, полный обмен, жидкость в больших количествах очищается достаточно качественно. При этом, если сульфатов будет мало, то справиться с обработкой воды и устранением нитратов смогут различные аниониты - как гелевые, так и макропористые.

Подготовительные операции

Чтобы смола Purolite A520E работала на 100%, она должна быть правильно подготовлена для выполнения функции очищения и подготовки H 2 O для пищевой индустрии. Следует отметить, что перед началом работы используемое соединение обрабатывают 6%-м раствором NaCl. При этом используют в два раза больший объем по сравнению с количеством самой смолы. После этого соединение обмывают пищевой водой (количество H 2 O должно быть в 4 раза больше). Только проведя такую обработку, можно приниматься за очистку.

Заключение

Благодаря свойствам, которыми обладают ионообменные смолы, ими можно пользоваться в пищевой индустрии не только для очистки воды, но и для обработки продуктов, различных напитков и прочего. На вид аниониты - это маленькие шарики. Именно к ним прилипают ионы кальция и магния, а они, в свою очередь, отдают ионы натрия в воду. В процессе промывки гранулы отпускают эти прилипшие элементы. Следует помнить о том, что в ионообменной смоле может упасть давление. Это скажется на ее полезных свойствах. На те или иные изменения влияют внешние факторы: температура, высота столбца и размер частиц, их скорость. Поэтому при обработке следует поддерживать оптимальное состояние среды. Часто пользуются анионитами в очистке воды для аквариума - они способствуют формированию хороших условий для жизни рыб и растений. Итак, ионообменные смолы нужны в разных индустриях, даже в домашних условиях, так как могут качественно очистить воду для дальнейшего ее использования.

Средний ресурс работы засыпки для умягчения воды составляет порядка 5 лет, после чего требуется произвести замену катионита утратившего свои рабочие характеристики.

Для наиболее длительного срока службы катионита требуется во время первого запуска правильно запрограммировать блок управления и обеспечить предварительную подготовку воды.

Требуемое качество воды поступающей в систему натрий-катионирования

Общая жесткость - до 20 мг.экв./л

Общее солесодержание - до 1000 мг/л

Общее железо - не более 0.3 мг/л

Температура воды - 5-35 оС

Цветность - не более 30 градусов

Нефтепродукты - отсутствие

Сульфиды и сероводород - отсутствие

Этапы замены катионита в системах натрий катионирования

Перед началом проведения работ необходимо организовать подачу воды в обход умягчителя по байпасной линии. Перекрыть вход и выход воды в умягчитель.

Для безопасной работы в ручном режиме перевести блок управления фильтра в режим регенерации для сброса давления. После чего перевести в рабочий режим. Затем обесточить систему умягчения воды и взяться за основную работу.

1. Отключенный от сети питания блок управления отсоединить от гидравлической обвязки и отсоединить солепровод реагентного бака.

2. Перед заменой катионита аккуратно выкрутите управляющий клапан.

3. Не повредив корпус фильтра освободить его от остатков воды и отработанного катионита.

4. Хорошо промыть и по возможности продезинфицировать внутреннюю полость корпуса.

5. Установить корпус на постоянное рабочее место.

6. Завинтить до упора управляющий клапан и выставить его на удобном месте для последующей эксплуатации.

7. После выбора оптимального положения аккуратно вывинтить клапан из баллона.

8. Во внутреннюю часть корпуса вставить центральную распределительную систему со щелевым колпачком. Вращательным движением установить щелевой колпачок в посадочное гнездо на дне баллона.

9. Верхнее отверстие центральной распределительной трубы обязательно закрыть пробкой или другим приспособлением, которое не даст во время засыпки попасть в распределительную систему ионообменной смоле. Единственное условие при засыпке пробка не должна провалиться в центральную трубку, это может вывести из строя систему управления.

10. Наполните баллон небольшим количеством воды ориентировочно на ¼ объема. Это количество будет буфером для засыпаемой ионообменной смолы .

11. Вставьте воронку в горловину баллона, которая обеспечит удобство при засыпке катионита.

12. Засыпьте через воронку требуемое количество гравия. После засыпки гравия нельзя вытаскивать центральный распределительный коллектор из баллона, так как при попытке поставить ее на место можно повредить нижний щелевой колпачок.

13. Загрузите в фильтр требуемое количество катионита.

14. Аккуратно уберите воронку, через которую производилась засыпка нового фильтрующего материала.

15. Уберите пробку или приспособление, которым закрывали отверстие в верхней части центральной распределительной трубки.

16. Удалите остатки пыли и фильтрующего материала с горловины корпус и резьбы.

17. Управляющий клапан с верхним щелевым колпачком насадите на центральную распределительную трубу.

18. Закрутите по часовой стрелке блок управления в корпус фильтра.

19. Подключите блок управления к центральной водопроводной сети и подайте электропитание на него.

20. Подключите реагентный солепровод к блоку управления.

21. После окончания все работ необходимо подать воду на установку и выпустить остатки воздуха из корпуса фильтра.

22. Проверить настройки автоматического управления и провести первичную регенерацию для отмывки катионита.

Фильтры для воды стали обязательным очищающим элементом в квартирах и загородных домах, а также на предприятиях.

Они, как и любая другая техника, нуждаются в обслуживании, в частности, особенного внимания заслуживает процедура регенерации картриджей с ионообменной смолой.

И если в одноступенчатых устройствах, а также фильтрах-насадках и кувшинах использованный картридж просто меняют на новый, с трехступенчатыми все сложнее.

Они состоят из картриджа механической очистки, доочистки угля и картриджа с ионообменной смолой. В связи с большим ресурсом работы устройства их нужно обслуживать или менять единожды в год.

Фильтр будет функционировать нормально, при одном условии — если будет проводиться регулярная регенерация, то есть восстановление свойств ионообменной смолы.

Технология регенерации смолы — как восстанавливается ионообменная смола в фильтре

Ионообменная смола представляет собой мелкие шарики янтаря, которые преобразовывают ионы магния и кальция в ионы натрия. Таким образом, вода становится менее жесткой, на бытовой технике не образуется накипь.

Зная показатели жесткости воды, можно прогнозировать примерный ресурс картриджа со смолой. Для этого показатель емкости делят на показатели жесткости воды, выраженные в мг-экв/литр.

Поглощение ионов магния и кальция – это обратимый процесс. При избыточном содержании ионов натрия будет обратная ситуация, то есть пойдет отдача ионов магния и кальция и поглощение ионов натрия.

Чтобы этого избежать, прибегают к так называемой регенерации, то есть восстановлению функций ионообменной смолы, чтобы она могла послужить вашему фильтру еще некоторое время.


Запустить процесс регенерации поможет обычная поваренная соль, так как эффективность регенерации фильтров солью давно доказана на практике.

Процесс регенерации может проводиться многократно, но смола все же постепенно начинает терять свои свойства за счет обогащения воды примесями, и рано или поздно ионообменную смолу придется менять.

В целом порядок проведения регенерации выглядит следующим образом:

  • перекрыть поступление воды,
  • включить кран, чтобы стравить давление,
  • вынуть картридж механической очистки, вымыть его, а также колбу, поставить на место,

Для регенерации системы без картриджа:

  • вынуть ионообменный картридж и пересыпать содержимое в кастрюлю или другую емкость,
  • залить смолу солевым раствором и оставить на 6-8 часов, периодически перемешивая,
  • промыть смолу несколько раз чистой водой,

Для регенерации системы с картриджем раствор заливают внутрь и выдерживают 8 часов, затем его сливают и повторяют процедуру;

  • после чего смолу нужно промыть кипяченой водой,
  • установить картридж на место,
  • вынуть картридж с углем, выполнить промывку, поставить на место,
  • включить воду и пропустить несколько минут, пока из воды не пропадет солевой привкус.

Вместо соли также могут использоваться питьевая сода и даже лимонная кислота.

Компания «Гейзер» — один из лидеров на отечественном рынке фильтров. Рассмотрим, как выполнить регенерацию в трехступенчатый моделях этого производителя.

  1. Перекрыть поступающую в устройство воду.
  2. Спустить давление, открыв кран.
  3. Выполнить механическую очистку фильтра.
  4. Подготовить 10% раствор поваренной соли. Емкость лучше взять больше, так как начнется процесс вспенивания.
  5. Держать устройство над раковиной и заливать 2 литрами солевого раствора так, чтобы смола не пролилась наружу.
  6. Установить картридж обратно в корпус и залить 0,5 л раствора до верха, оставить на 8-10 часов.
  7. Вынуть устройство и дать стечь раствору, затем еще раз залить 2 литра солевого раствора.
  8. После того, как раствор стечет, установить картридж обратно в корпус.
  9. Собрать фильтр.
  10. Включить воду на несколько минут, чтобы из воды пропал привкус соли.

Регенерация позволяет восстанавливать свойства картриджей B510-04 и KH.

Сменный модуль KH для систем Кристалл

1. Перекрыть воду, выпустить давление.
2. Вынуть KH, нажимая кнопку на крышке устройства.
3. Собрать идущий в комплекте переходник для регенерации или приобрести отдельно.
4. Отрезать дно бутылки из пластика и закрепить на переходнике.
5. Сделать раствор 2-2,5 литра поваренной соли.
6. Устройство с бутылкой и переходником поместить в кастрюлю, трубку переходника вывести в раковину.
7. Пропустить через смолу солевой раствор, а затем 2 литра чистой воды.
8. Установить устройство на место.

Модуль B510-04 для систем Трио

1. Отключить подачу воду и стравить давление.
2. Вынуть картридж.
3. Высыпать содержимое в емкость из пластика или металла.
4. Приготовить литровый раствор соли и залить содержимое картриджа, оставить на 6 часов, иногда помешивая.
5. Слить раствор и выполнить промывку кипяченой водой. Повторить процедуру дважды.
6. Поместить содержимое обратно в картридж и поставить его на место.
7. Не забыть о промывке механического картриджа.
8. Включить фильтр на 10 минут, после чего им можно вновь пользоваться.

Инструкция по регенерации картриджа фильтра Арагон

  1. Перекрыть воду, спустить давление.
  2. Приготовить раствор из 40 г лимонной кислоты и двух столовых ложек соды на один литр воды. Так как происходит вспенивание, посуда для раствора должна быть емкостью 1,5-2 литра. Воду нужно наливать постепенно.
  3. Картридж Арагон поставить в корпус, залить его раствором в количестве 0,6 л. Оставить на 12 часов, затем достать картридж и слить раствор.
  4. Далее потребуется дополнительная обработка оставшимся раствором. Делать это лучше над раковиной. Жидкость льют через горловину и оставляют до полного стекания.
  5. Затем нужно промыть устройство. Для этого используют сначала 3 литра чистой воды, которую заливают через горловину. Затем пленкой фиксируют ее и удаляют донную заглушку. Удерживая картридж вертикально, вливают еще 3 литра воды, после чего пленку удаляют, заглушку ставят на место. Останется поставить картридж на свое место в фильтре и включить устройство на несколько минут для промывки.

ВИДЕО ИНСТРУКЦИЯ

Таким образом, используя эту технологию, можно в домашних условиях без приобретения дорогостоящих средств, а лишь с использованием обычной соли можно неоднократно восстанавливать свойства ионообменных картриджей для вашего фильтра.

Катионит

Технический термин. Фильтрующая среда в засыпных автоматических установках для удаления солей жесткости из воды. Форма - ионообменная смола, сильноосновной катионит. Восстанавливает фильтрационные свойства при промывке раствором соли (NaCl).

Важнейшей областью применения катионитов (ионообменных смол) является водоподготовка. Фильтр ионообменная смола в котором является основным реагентом, позволяет получить деминерализованную воду для паросиловых установок, технологических процессов и бытовых нужд. Один из процессов, где незаменимы ионообменные смолы деионизация воды. Аниониты используют для очистки, извлечения, концентрирования и разделения веществ, для аналитических целей, а также как катализатор в органическом синтезе.

Смолы ионообменные принадлежат к группе синтетических ионитов и играют в ней ведущую по применению роль. Иониты - малорастворимые материалы, способные к ионному обмену, т.е. к поглощению из электролитов "+" или "-" ионов, и выделению взамен других ионов, имеющих заряд того же знака.

Виды ионообменных смол - катионитов

Ионообменные смолы - катиониты подразделяются на:

  • сильнокислотные ионообменные смолы, обменивающие катионы в растворах при любых значениях рН
  • слабокислотные ионообменные смолы, способные к обмену катионов в щелочных средах при рН > 7.

Катионит:

  • КУ-2-8
  • КУ-2-8чс
  • КУ-23

КАТИОНООБМЕННЫЕ СМОЛЫ (поликислоты, катиониты), синтетич. сетчатые полимеры, способные к обмену катионов в водных и водно-орг. р-рах электролитов. В полимерной матрице (каркасе) К. с. фиксированы ионогенные группы, способные диссоциировать на полианионы и компенсирующие их заряды подвижные катионы (противоионы), напр. (для одной группы) П-SO3HDП-SO3-+Н+, участвующие в ионном обмене с разл. др. катионами. Кислотность смолы определяется хим. строением ионогенных групп.

Регенерацию истощенного катионита можно осуществлять раствором хлорида кальция или гидроокиси кальция (известковой водой).

Регенерация истощенного катионита (сульфоугля) при МН4-"катионировании "производится раствором сульфата аммония, который отдает истощенному катиониту (сульфоуглю) катиониты аммония, а сам получает катиониты кальция и магния. Образующиеся растворы сернокислого кальция и сернокислого магния удаляются в дренаж.

Восстановление обменной способности истощенного катионита производят применением 2%-ного раствора серной кислоты; при этом водород кислоты переходит в катионит, а кальций и магний, полученные из питательной воды, замещают водород и образуют сернокислый кальций и магний, которые удаляются в дренаж.

Характер распределения поглощенного Са2+(и Mg2+) в слое нормально истощенного катионита и ионов водорода в слое нормально отрегенерирован-ного (обычным избытком кислоты) материала при Н-катионировании в основном такой же, как и при Na-катионировании. От природы поглощенного катиона зависит и степень регенерации Н-катионита. Так, натрий легче вытесняется Н+-ионами, чем Са2+. Чем меньше обменная емкость катионита по данному катиону, тем легче регенерируется насыщенный им катионит.

Регенерацию каждого фильтра проводят соответствующим раствором реагента определенной концентрации. Режим регенерации истощенного катионита считается оптимальным, если при минимальных расходах регенерирующего вещества обеспечивается глубокое умягчение воды при достаточно высокой рабочей емкости катионита. Обычно при регенерации Na-катионитного фильтра через него пропускаются 6...8 % раствор поваренной соли со скоростью 4...6 м/ч. Восстановление обменной емкости Н-катионита производится серной кислотой концентрацией 1 ...1,5 % со скоростью не менее 10 м/ч во избежание "загипсовывания" катионита. Удельный расход серной кислоты на регенерацию зависит от суммарного содержания хлоридного и сульфатного ионов в умягчаемой воде и составляет 75...225 г/г-экв для фильтров I ступени и 70 г/г-экв для фильтров И ступени. Для экономии реагентов обычно часть регенерационного раствора (последние порции) отводят в бак и используют для последующей регенерации. Растворы реагентов готовят на собственном фильтрате для каждой группы фильтров. Продолжительность подачи раствора составляет 15...30 мин.

Обменную способность ЫН4-катионита, скорость воды и ее расход на технологические операции при обслуживании фильтров можно принимать такими же, как и при Na-катионировании. Для регенерации истощенного катионита применяется раствор соли хлорида аммония (NH4C1) или раствор соли сульфата аммония [(NH4)2SO4]. В основном для регенерации применяется 2-3%-ный раствор сульфата аммония как более доступный и дешевый. Более высокая концентрация не допускается во избежание загипсования зерен катионита. Регенера-ционный раствор сульфата аммония следует подщелачивать содой, едким натрием или аммиаком до слабощелочной реакции по фенолфталеину, что необходимо для связывания остатков серной кислоты.

В процессе Na-катионирования не происходит понижения общего солесодержания умягченной воды. При умягчении воды катионит истощается и для восстановления он должен быть подвергнут регенерации, т. е. через слой истощенного катионита пропускают раствор поваренной соли. При этом катионы натрия вытесняют из катионита ранее поглощенные катионы кальция и магния, а катионит, обогащенный обменными катионами натрия, вновь получает способность умягчать воду.

Чтобы восстановить обменную способность истощенного натрий-катионитового материала, его подвергают обработке 5-10%-ным раствором поваренной соли. Этим процессом, называемым регенерацией, катионы натрия поваренной соли вытесняют из истощенного катионита катионы кальция и магния; последние переходят в раствор в виде хлористого кальция и хлористого магния и удаляются с промывочной водой в дренаж. Катионит же, обогащенный обменными катионами натрия, вновь получает способность умягчать жесткую воду.

Аналогичное действие оказывают противоионы в регенерационном растворе. При пропускании через фильтр раствора NaCl в нем возрастает концентрация вытесняемых из катионита катионов Са2+ и Mg2^ и он обедняется ионами Na+. Увеличение концентрации противоионов (Са2+ и Mg2+) в регенерационном растворе подавляет диссоциацию истощенного катионита и ослабляет процесс ионного обмена, то есть тормозит регенерацию ионита. В результате, по мере продвижения регенерационного раствора в нижние слои, некоторое количество катионов Са2+ и Mg2+ остается невы-тесненным, поэтому регенерация катионита протекает менее полно. Для устранения этого недостатка можно увеличить расход соли, что сильно ухудшает экономичность процесса. Значительно рациональнее применение противоточного катионирования, при котором устраняется неблагоприятное расположение в слое ионов, так как умягченная вода перед выходом из фильтра будет соприкасаться с наиболее хорошо отрегенериро-ванными слоями катионита, благодаря чему обеспечивается более глубокое умягчение воды. Метод противоточного катионирования позволяет значительно снизить расход реагентов на регенерацию катионита, приближаясь к стехиометрическим соотношениям.

Процесс обмена катионов в фильтре происходит до тех пор, пока катионит не истощится, т. е. перестанет умягчать воду. Для восстановления этой способности необходимо удалить из катионита удержанные им катионы, что делается путем так называемой регенерации (восстановления) катионита. Это производится путем пропускания через слой истощенного катионита: а) при натрий-катионировании - раствора поваренной соли; б) при водород-катионировании - серной.

Страница 12 из 39

На обессоливающих установках Н-катионитовые фильтры загружаются катионитом различных марок. Количество загружаемого в фильтр сухого катионита следует рассчитывать, исходя из необходимой высоты фильтрующего слоя катионита в набухшем состояния.
В Н-катионитовых фильтрах I ступени слой влажного катионита должен иметь высоту, допускающую возможность увеличения объема катионита при взрыхлении приблизительно на 50%. В Н-катионитовых фильтрах II и III ступеней слой влажного катионита по этим же условиям целесообразно иметь высотой 1,0-1,5 м.
Катионит после загрузки в фильтр держат з воде для набухания в течение 10-12 ч. После набухания катионит отмывается от загрязнений током воды снизу вверх. Сульфоуголь начинают взрыхлять при скорости подъема воды 7-8 м/ч и доводят его по мере осветления отмывных вод до 12-15 м/ч.
После окончания отмывки катионита фильтр вскрывают, снимают вручную верхний стой мелочи (толщина его зависит от качества катионита), досыпкой или отгрузкой катионита доводят высоту слоя до расчетной. После этого замеряют высоту слоя катионита в набухшем состояний.
Подготовка свежего катионита к работе производится его регенерацией избыточным количеством раствора кислоты. При отмывке определяют жесткость и кислотность отмывочных вод. В тех случаях. когда отмывка затягивается, а жесткость отмывочной воды долго не снижается, целесообразно произвести дополнительную регенерацию.
При первичных регенерациях пропускание регенерационного раствора 1,5-2.0%-ной серной кислоты производят медленно, в продолжении 1,5-2,0 ч, что увеличивает продолжительность контакта регенерационного раствора с катионитом и способствует его лучшей отработке. Ориентировочно расход 100%-ной серной кислоты составляет до 30 кг на 1 м 3 катионита; скорость фильтрования регенерационного раствора определяет время контакта его с катионитом; обычно она составляет 9-10 м/ч и окончательно устанавливается при наладке. Отмывочная вода фильтруется со скоростью - 10 м/ч.
Отмывка катионита в фильтрах 1 ступени производится осветленной водой.
Регенерационный раствор кислоты для регенерации Н-катионитовых фильтров I, II и III ступеней готовится только на Н-катионированной воде.
Отмывка катионита заканчивается при жесткости отмывочной воды ~ 50 мкг-экв/кг и кислотности, превышающей содержание суммы ионов SO«,-+Cl“ в исходной воде не более 500 мкг-экв/кг.
Первичная регенерация Н-катионитовых фильтров II ступени проводится с теми же расходами кислоты, концентраций регенерационного раствора и скоростью его пропускания, что и Н-катионитовые фильтры I ступени. Отмывка Н-катионитового фильтра II ступени осуществляется частично обессоленной и декарбонизованной водой. Н-катионитовые фильтры II ступени отмывают до кислотности фильтрата 0,15 мг-экв/кг.
Длительность предварительной подготовки фильтра к эксплуатации зависит от качества катионита и может колебаться от нескольких часов до суток.
В течение I-2 суток после ввода фильтра в эксплуатацию после регенерации вода может быть слегка опалесцирующей (мутной); примерно через 2 суток после включения фильтра в работу вся катионированная вода должна выходить совершенно прозрачной.