Белый свет как электромагнитная волна состоит из. Свет как электромагнитная волна. Скорость света. Интерференция света: опыт Юнга; цвета тонких пленок

Белый свет как электромагнитная волна состоит из. Свет как электромагнитная волна. Скорость света. Интерференция света: опыт Юнга; цвета тонких пленок
Белый свет как электромагнитная волна состоит из. Свет как электромагнитная волна. Скорость света. Интерференция света: опыт Юнга; цвета тонких пленок

Свет - это форма энергии, видимая человеческим глазом, которую излучают движущиеся заряженные частицы.

Солнечный свет играет важную роль в жизни живой природы. Он необходим для роста растений. Растения преобразуют энергию солнечного света в химическую форму с помощью процесса фотосинтеза. Нефть, уголь и природный газ являются остатками растений, живших миллионы лет назад. Можно сказать, что это энергия преобразованного солнечного света.

Ученые с помощью экспериментов доказали, что время от времени свет ведет себя как частица, а в другое время как волна. В 1900 году квантовая теория Макса Планка объединила две точки зрения ученых на свет. И в современной физике свет рассматривают как поперечные электромагнитные волны, видимые человек, которые излучаются квантами света (фотонами) - частицами не имеющими массы и движущимися со скоростью

Характеристики света

Как любую волну, свет можно охарактеризовать длиной (λ), частотой (υ) и скоростью распространения в какой-либо среде (v). Связь между этими величинами демонстрирует формула:

Видимый свет лежит в диапазоне длин волн электромагнитного излучения от м (в порядке возрастания длины волны: фиолетовый, синий, зеленый, желтый, оранжевый, красный). Частота световой волны связана с его цветом.

Когда световая волна переходит из вакуума в среду, то происходит уменьшение ее длины и скорости распространения, частота световой волны остается неизменной:

n - показатель преломления среды, с - скорость света в вакууме.

Необходимо помнить, что скорость света:

  • в вакууме является универсальной постоянной во всех системах отчета;
  • в среде всегда меньше скорости света в вакууме;
  • зависит от среды, через которую он проходит;
  • в вакууме всегда больше скорости любой частицы, обладающей массой.

Волновая природа света

Волновая природа света была впервые проиллюстрирована с помощью экспериментов по дифракции и интерференции. Как и все электромагнитные волны, свет может проходить через вакуум, отражаться и преломляться. Поперечную природу света доказывает явление поляризации.

Интерференция

Световые волны, имеющие постоянную разность фаз и одинаковые частоты, производят видимый эффект интерференции, когда происходит усиление или ослабление результирующей волны.

Исаак Ньютон был одним из первых ученых, изучавших явление интерференции. В своем знаменитом эксперименте «Кольца Ньютона» он соединил выпуклую линзу с большим радиусом кривизны с плоской стеклянной пластиной. Если рассматривать эту оптическую систему через отраженный солнечный свет, наблюдается ряд концентрических светлых и темных сильно окрашенных кругов света. Кольца проявляются из-за тонкого слоя воздуха между линзой и пластиной. Свет, отраженный от верхней и нижней поверхности стекла, интерферирует и дает максимум интерференции в виде светлых, а минимум в виде темных колец.

Дифракция

Дифракция - это огибание световой волной препятствий. Явление можно наблюдать, когда препятствие по своим размерам сравнимо с длиной волны. Если объект намного больше длины волны от источника света, явление практически незаметно.

Результат дифракции - чередующиеся цветные и темные полосы света или концентрические окружности. Этот оптический эффект возникает в результате того, что волны, обогнувшие препятствие интерферируют. Такую картину дает отраженный от поверхности компакт-диска свет.

Гимназия 144

Реферат

Скорость света.

Интерференция света.

Стоячие волны.

ученика 11а класса

Корчагина Сергея

Санкт-Петербург 1997.

Свет – электромагнитная волна.

В XVII веке возникло две теории света: волновая и корпускулярная. Корпускулярную1 теорию предложил Ньютон, а волновую – Гюйгенс. Согласно представлениям Гюйгенса свет – волны, распространяющиеся в особой среде – эфире, заполняющем все пространство. Две теории длительное время существовали параллельно. Когда одна из теорий не объясняла какого-то явления, то оно объяснялось другой теорией. Например, прямолинейное распространение света, приводящее к образованию резких теней нельзя было объяснить исходя из волновой теории. Однако в начале XIX века были открыты такие явления как дифракция2 и интерференция3, что дало повод для мыслей, что волновая теория окончательно победила корпускулярную. Во второй половине XIX века Максвелл показал, что свет – частный случай электромагнитных волн. Эти работы послужили фундаментом для электромагнитной теории света. Однако в начале XX века было обнаружено, что при излучении и поглощении свет ведет себя подобно потоку частиц.

^ Скорость света.

Существует несколько способов определения скорости света: астрономический и лабораторные методы.

Впервые скорость света измерил датский ученый Ремер в 1676 г., используя астрономический метод. Он засекал время которое самый большой из спутников Юпитера Ио находился в тени этой огромной планеты. Ремер провел измерения в момент, когда наша планета была ближе всего к Юпитеру, и в момент, когда мы находились немного (по астрономическим понятиям) дальше от Юпитера. В первом случае промежуток между вспышками составил 48 часов 28 минут. Во втором случае спутник опоздал на 22 минуты. Из этого был сделан вывод, что свету необходимо 22 минуты, чтобы пройти расстояние от места предыдущего наблюдения до места настоящего наблюдения. Зная расстояние и время запаздывания Ио он вычислил скорость света, которая оказалась огромной, примерно 300 000 км/с4.

Впервые скорость света лабораторным методом удалось измерить французскому физику Физо в 1849 г. Он получил значение скорости света равное 313 000 км/с.

По современным данным, скорость света равна 299 792 458 м/с ±1.2 м/с.

^ Интерференция света.

Получить картину интерференции световых волн достаточно трудно. Причина этого в том, что световые волны, излучаемые различными источниками, не согласованы друг с другом. Они должны иметь одинаковые длины волн и постоянную разность фаз в любой точке пространства5. Равенства длин волн достичь нетрудно, используя светофильтры. Но осуществить постоянную разность фаз невозможно, из-за того, что атомы разных источников излучают свет независимо друг от друга6.

Тем не менее интерференцию света удается наблюдать. Например, радужный перелив цветов на мыльном пузыре или на тонкой пленке керосина или нефти на воде. Английский ученый Т.Юнг первым пришел к гениальной мысли, что цвет объясняется сложением волн, одна из которых отражается от наружней поверхности, а другая ¾ от внутренней. При этом происходит интерференция7 световых волн. Результат интерфе­ренции зависит от угла падения света на пленку, ее толщины и длины волны.

^ Стоячие волны.

Было замечено, что если раскачивать один конец веревки с правильно подобранной частотой (другой ее конец закреплен), то к закрепленному концу побежит непрерывная волна, которая затем отразится с потерей полуволны. Интерференция падающей и отраженной волны приведет к возникновению стоячей волны, которая будет выглядеть неподвижно. Устойчивость этой волны удовлетворякт условию:

L=nl/2, l=u/n, L=nu/n,

Где L ¾ длина веревки; n ¾ 1,2,3 и т.д.; u ¾ скорость рапространения волны, которая зависит от натяжения веревки.

Стоячие волны возбуждаются во всех телах способных совершать колебания.

Образование стоячих волн является резонансным явлением, которое происходит на резонансных или собственных частотах тела. Точки, где интерференция гасится, называют узлами, а точки, где интерференция усиливается, ¾ пучностями.

Свет ¾ электромагнитная волна……………………………………..2

Скорость света…………………………………………………………2

Интерференция света………………………………………………….3

Стоячие волны…………………………………………………………3

Физика 11 (Г.Я.Мякишев Б.Б.Ьуховцев)

Физика 10 (Н.М.Шахмаев С.Н.Шахмаев)

Опорные конспекты и тестовые задания (Г.Д.Луппов)

1 Латинское слово «корпускула» в переводе на русский язык означает «частица».

2 Огибание светом препятствий.

3 Явление усиления или ослабления света при наложении световых пучков.

4 Сам Ремер получил значение 215 000 км/с.

5 Волны, имеющие одинаковые длины и постоянную разность фаз называются когерентными.

6 Исключением являются лишь квантовые источники света ¾ лазеры.

7 Сложение двух волн, вследствие которого наблюдается устойчивая во времени усиления или ослабления результирующих световых колебаний в различных точках пространства.

Из теории электромагнитного поля, разработанной Дж. Максвеллом, следовало: электромагнитные волны распространяются со скоростью света - 300 000 км/с, что эти волны поперечны, так же как и световые волны. Максвелл предположил, что свет - это электромагнитная волна. В дальнейшем это предсказание нашло экспериментальное подтверждение.

Как и электромагнитные волны, распространение света подчиняется тем же законам:

Закон прямолинейного распространения света. В прозрачной однородной среде свет распространяется по прямым линиям. Этот закон позволяет объяснить, как возникают солнечные и лунные затмения.

При падении света на границу раздела двух сред часть света отражается в первую среду, а часть проходит во вторую среду, если она прозрачна, изменяя при этом направление своего распространения, т. е. преломляется.

ИНТЕРФЕРЕНЦИЯ СВЕТА

Предположим, что две монохроматические световые волны, накладываюсь друг на друга, возбуждают в определенной точке пространства колебания одинакового направления: х 1 = А 1 cos(t +  1) и x 2 = A 2 cos(t +  2). Под х понимают напряженность электрического Е или магнитного Н полей волны; векторы Е и Н колеблются во взаимно перпендикулярных плоскостях (см. § 162). Напряженности электрического и магнитного полей подчиняются принципу суперпозиции (см. § 80 и 110). Амплитуда результирующего колебания в данной точке A 2 = A 2 l + A 2 2 + 2A 1 A 2 cos( 2 - 1) (см. 144.2)). Так как волны когерентны, то cos( 2 -  1) имеет постоянное во времени (но свое для каждой точки пространства) значение, поэтому интенсивность результирующей волны (1~А 2)

В точках пространства, где cos( 2 -  1) > 0, интенсивность I > I 1 + I 2 , где cos( 2 -  1) < О, интенсивность I < I 1 +I 2 . Следовательно, при наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других - минимумы интенсивности. Это явление называется интерференцией света.

Для некогерентных волн разность ( 2 -  1) непрерывно изменяется, поэтому среднее во времени значение cos( 2 - 1) равно нулю, и интенсивность результирующей волны всюду одинакова и при I 1 = I 2 равна 2I 1 (для когерентных волн при данном условии в максимумах I = 4I 1 в минимумах I = 0).

Как можно создать условия, необходимые для возникновения интерференции световых волн? Для получения когерентных световых волн применяют метод разделения волны, излучаемой одним источником, на две части, которые после прохождения разных оптических путей накладываются друг на друга, и наблюдается интерференционная картина.

Пусть разделение на две когерентные волны происходит в определенной точке О. До точки М, в которой наблюдается интерференционная картина, одна волна в среде с показателем преломления n 2 прошла путь s 1 , вторая - в среде с показателем преломления n 2 - путь s 2 . Если в точке О фаза колебаний равна t, то в точке М первая волна возбудит колебание А 1 cos(t – s 1 /v 1), вторая волна - колебание А 2 cos(t – s 2 /v 2), где v 1 = c/n 1 , v 2 = c/n 2 - соответственно фазовая скорость первой и второй волны. Разность фаз колебаний, возбуждаемых волнами в точке М, равна

(учли, что /с = 2v/с = 2 0 где  0 - длина волны в вакууме). Произведение геометрической длины s пути световой волны в данной среде на показатель n преломления этой среды называется оптической длиной пути L, a  = L 2 – L 1 - разность оптических длин проходимых волнами путей - называется оптической разностью хода. Если оптическая разность хода равна целому числу длин волн в вакууме

то  = ± 2m, М обеими волнами, будут происходить в одинаковой фазе. Следовательно, (172.2) является условием интерференционного максимума.

Если оптическая разность хода

то  = ±(2m + 1), и колебания, возбуждаемые в точке М обеими волнами, будут происходить в противофазе. Следовательно, (172.3) является условием интерференционного минимума.

ПРИМЕНЕНИЕ ИНТЕРФЕРЕНЦИИ СВЕТА

Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны До- Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопии).

Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Прохождение света через каждую преломляющую поверхность линзы, например через границу стекло - воздух, сопровождается отражением 4% падающего потока (при показа теле преломления стекла 1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока. Таким образом, интенсивность прошедшего света ослабляется и светосила оптического прибора уменьшается. Кроме того, отражения от поверхностей линз приводят к возникновению бликов, что часто (например, в военной технике) демаскирует положение прибора.



Для устранения указанных недостатков осуществляют так называемое просветление оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показателем преломления, меньшим, чем у материала линзы. При отражении света от границ раздела воздух - пленка и пленка - стекло возникает интерференция когерентных лучей 1 и 2"(рис. 253).

Просветляющий слой

Толщину пленки d и показатели преломления стекла n с и пленки n можно подобрать так, чтобы волны, отраженные от обеих поверхностей пленки, гасили друг друга. Для этого их амплитуды должны быть равны, а оптическая разность хода равна - (см. (172.3)). Расчет показывает, что амплитуды отраженных лучей равны, если

(175.1)

Так как n с, n и показатель преломления воздуха n 0 удовлетворяют условиям n с > n > n 0 , то потеря полуволны происходит на обеих поверхностях; следовательно, условие минимума (предполагаем, что свет падает нормально, т. е. I = 0)

где nd - оптическая толщина пленки . Обычно принимают m = 0, тогда

Таким образом, если выполняется условие (175.1) и оптическая толщина пленки равна  0 /4, то в результате интерференции наблюдается гашение отраженных лучей. Так как добиться одновременного гашения для всех длин волн невозможно, то это обычно делается для наиболее восприимчивой глазом длины волны  0  0,55 мкм. Поэтому объективы с просветленной оптикой имеют синевато-красный оттенок.

Создание высокоотражающих покрытий стало возможным лишь на основе многолучевой интерференции . В отличие от двухлучевой интерференции, которую мы рассматривали до сих пор, многолучевая интерференция возникает при наложении большого числа когерентных световых пучков. Распределение интенсивности в интерференционной картине существенно различается; интерференционные максимумы значительно уже и ярче, чем при наложении двух когерентных световых пучков. Так, результирующая амплитуда световых колебаний одинаковой амплитуды в максимумах интенсивности, где сложение происходит в одинаковой фазе, в N раз больше, а интенсивность в N 2 раз больше, чем от одного пучка (N - число интерферирующих пучков). Отметим, что для нахождения результирующей амплитуды удобно пользоваться графическим методом, используя метод вращающегося вектора амплитуды (см. § 140). Многолучевая интерференция осуществляется в дифракционной решетке (см. § 180).

Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления (но одинаковой оптической толщиной, равной  0 /4), нанесенных на отражающую поверхность (рис. 254). Можно показать, что на границе раздела пленок (между двумя слоями ZnS с большим показателем преломления n 1 находится пленка криолита с меньшим показателем преломления n 2) возникает большое число отраженных интерферирующих лучей, которые при оптической толщине пленок  0 /4 будут взаимно усиливаться, т. е. коэффициент отражения возрастает. Характерной особенностью такой высокоотражательной системы является то, что она действует в очень узкой спектральной области, причем чем больше коэффициент отражения, тем уже эта область. Например, система из семи пленок для области 0,5 мкм дает коэффициент отражения   96% (при коэффициенте пропускания  3,5% и коэффициенте поглощения <0,5%). Подобные отражатели применяются в лазерной технике, а также используются для создания интерференционных светофильтров (узкополосных оптических фильтров).

Явление интерференции также применяется в очень точных измерительных приборах, называемых интерферометрами. Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно. На рис. 255 представлена упрощенная схема интерферометра Майкельсона.

Монохроматический свет от источника S падает под углом 45° на плоскопараллельную пластинку Р 1 . Сторона пластинки, удаленная от S, посеребренная и полупрозрачная, разделяет луч на две части: луч 1 (отражается от посеребренного слоя) и луч 2 (проходит через вето). Луч 1 отражается от зеркала М 1 и, возвращаясь обратно, вновь проходит через пластинку Р 1 (луч l"). Луч 2 идет к зеркалу М 2 , отражается от него, возвращается обратно и отражается от пластинки Р 1 (луч 2). Так как первый из лучей проходит сквозь пластинку Р 1 дважды, то для компенсации возникающей разности хода на пути второго луча ставится пластинка Р 2 (точно такая же, как и Р 1 , только не покрытая слоем серебра).

Лучи 1 и 2" когерентны; следовательно, будет наблюдаться интерференция, результат которой зависит от оптической разности хода луча 1 от точки О до зеркала М 1 и луча 2 от точки О до зеркала М 2 . При перемещении одного из зеркал на расстояние  0 /4 разность хода обоих лучей увеличится на  0 /2 и произойдет смена освещенности зрительного поля. Следовательно, по незначительному смещению интерференционной картины можно судить о малом перемещении одного из зеркал и использовать интерферометр Майкельсона для точного (порядка 10 -7 м) измерения длин (измерения длины тел, длины волны света, изменения длины тела при изменении температуры (интерференционный дилатометр)).

Российский физик В. П. Линник (1889-1984) использовал принцип действия интерферометра Майкельсона для создания микроинтерферометра (комбинация интерферометра и микроскопа), служащего для контроля чистоты обработки поверхности.

Интерферометры - очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д. Такие интерферометры получили название интерференционных рефрактометров. На пути интерферирующих лучей располагаются две одинаковые кюветы длиной l , одна из которых заполнена, например, газом с известным (n 0), а другая - с неизвестным (n z) показателями преломления. Возникшая между интерферирующими лучами дополнительная оптическая разность хода  = (n z – n 0)l . Изменение разности хода приведет к сдвигу интерференционных полос. Этот сдвиг можно характеризовать величиной

где m 0 показывает, на какую часть ширины интерференционной полосы сместилась интерференционная картина. Измеряя величину m 0 при известных l , m 0 и , можно вычислить n z , или изменение n z - n 0 . Например, при смещении интерференционной картины на 1/5 полосы при l = 10 см и  = 0,5 мкм (n z – n 0) = 10 -6 , т.е. интерференционные рефрактометры позволяют измерять изменение показателя преломления с очень высокой точностью (до 1/1 000 000).

Применение интерферометров очень многообразно. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впер вые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью интерферометров исследовалось также распространение света в движущихся телах, что привело к фундаментальным изменениям представлений о пространстве и времени.

В современной физике свет описывается либо как электромагнитные волны, либо как фотоны.

2.5.1. Электромагнитные волны

Электромагнитные волны включают в себя комбинацию электрических и магнитных полей. Рассмотрим электрический заряд. Он создает вокруг себя электрическое поле. Если заряд движется, он создает магнитное поле. Было теоретически показано и экспериментально подтверждено, что эти электрические и магнитные поля объединяются и вызывают возмущение, которое распространяется через пространство и называется электромагнитной волной. Эта волна является самораспространяющейся, поскольку изменяющееся электрическое поле вызывает изменение магнитного поля, которое затем вызывает новое изменение электрического поля и т. д. Таким образом, происходит постоянный обмен энергией между электрическим и магнитным полями.

Когда электромагнитная волна сталкивается с материей, ее электрические и магнитные поля заставляют заряженные частицы этой материи колебаться таким же образом, как в исходной волне. Это позволяет энергии передаваться через материал без перемещения самой материи. Все электромагнитные волны обладают следующими свойствами.

Они создаются движущимися зарядами.

Они являются поперечными волнами, в которых электрическое и магнитное поля взаимно перпендикулярны и перпендикулярны направлению распространения волн.

Они не требуют для своего распространения какого-либо материала, но могут распространяться сквозь материал без перемещения вещества.

Они все движутся в свободном пространстве с одинаковой относительной скоростью, которая называется скоростью света.

Количественно поведение электромагнитных волн описывается уравнениями Максвелла, однако их рассмотрение выходит за рамки данной книги, где мы концентрируемся на практических приложениях, а не на отвлеченной теории.

2.5.2. Фотоны

Фотоны рассматриваются как дискретные частицы электромагнитной энергии. Планк предположил, что энергия излучается вспышками, называемыми "квантами", в которых количество энергии пропорционально частоте. Это выражается формулой

где h - постоянная Планка (6,63 х 10 -34 Джоуль/сек.).

Квант света называется фотоном. У фотона есть некоторые свойства частицы, поскольку он дискретен и конечен. Свет, однако, это также и волна, что можно наблюдать в эффектах дифракции и интерференции. Таким образом оказывается, что свет одновременно частица и волна. Это противоречие, поскольку частица конечная и дискретная, тогда как волна бесконечная и непрерывная. Физики рассматривают обе теории как взаимно дополняющие друг друга, но не применяют их одновременно. Этот эффект известен как партикулярно-волновой дуализм света, а обе физические модели равно верны и полезны в описании различных оптических эффектов. Интересно заметить, что в обоих моделях имеются части, не согласующиеся друг с другом.

Свет в виде фотонов или волн движется в свободном пространстве со скоростью примерно 300000 км/с (3 х 10 8 м/с). Многие эффекты можно лучше рассмотреть, представляя свет как лучи, движущиеся по прямым линиям между оптическими компонентами или через них. Лучи изменяются (отражаются, преломляются, рассеиваются и т. д.) на оптических поверхностях утих устройств. Такое оптическое поведение

Согласно волновой теории свет представляет собой электромагнитную волну.

Видимое излучение (видимый свет) – электромагнитное излучение, непосредственно воспринимаемое человеческим глазом, характеризующееся длинами волн в диапазоне 400 – 750 нм, что соответствует диапазону частот 0,75·10 15 – 0,4·10 15 Гц. Световые излучения различных частот воспринимаются человеком как разные цвета.

Инфракрасное излучение – электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны около 0,76 мкм) и коротковолновым радиоизлучением (с длиной волны 1-2 мм). Инфракрасное излучение создает ощущение тепла, поэтому его часто называют тепловым.

Ультрафиолетовое излучение – невидимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн от 400 до 10 нм.

Электромагнитные волны – электромагнитные колебания (электромагнитное поле) распространяющиеся в пространстве с конечной скоростью, зависящей от свойств среды (в вакууме - 3∙10 8 м/с). Особенности электромагнитных волн, законы их возбуждения и распространения описываются уравнениями Максвелла. На характер распространения электромагнитных волн влияет среда, в которой они распространяются. Электромагнитные волны могут испытывать преломление, дисперсию, дифракцию, интерференцию, полное внутреннее отражение и другие явления, свойственные волнам любой природы. В однородной и изотропной среде вдали от зарядов и токов, создающих электромагнитное поле, волновые уравнения для электромагнитных (в т.ч. и для световых) волн имеют вид:

где и – соответственно электрическая и магнитная проницаемости среды, и – соответственно электрическая и магнитная постоянные, и – напряжённости электрического и магнитного поля, – оператор Лапласа. В изотропной среде фазовая скорость распространения электромагнитных волн равна Распространение плоских монохроматических электромагнитных (световых) волн описывается уравнениями:

kr ; kr (6.35.2)

где и – соответственно амплитуды колебаний электрического и магнитного полей, k – волновой вектор, r – радиус-вектор точки, – круговая частота колебаний, – начальная фаза колебаний в точке с координатой r = 0. Векторы E и H колеблются в одинаковой фазе. Электромагнитная (световая) волна поперечна. Векторы E , H , k ортогональны друг другу и образуют правую тройку векторов. Мгновенные значения и в любой точке связаны соотношением Учитывая, что физиологическое воздействие на глаз оказывает электрическое поле, уравнение плоской световой волны, распространяющейся в направлении оси можно записать следующим образом:


Скорость света в вакууме равна

. (6.35.4)

Отношение скорости света в вакууме к скорости света в среде называется абсолютным показателем преломления среды :

(6.35.5)

При переходе из одной среды в другую изменяются скорость распространения волны и длина волны , частота остается неизменной. Относительным показателем преломления второй среды относительно первой называется отношение

где и – абсолютные показатели преломления первой и второй среды, и – скорость света в первой и второй среде соответственно.