Коэффициент конвективной теплопередачи. Конвективный теплообмен

Коэффициент конвективной теплопередачи. Конвективный теплообмен
Коэффициент конвективной теплопередачи. Конвективный теплообмен

Размер: px

Начинать показ со страницы:

Транскрипт

1 основ теплотехники РАСЧЕТ КОЭФФИЦИЕНТА КОНВЕКТИВНОЙ ТЕПЛООТДАЧИ (основные критериальные уравнения) Методические указания к выполнению практических и лабораторных занятий Иваново

2 Составитель Редактор В.В. Бухмиров Д.В. Ракутина Методические указания предназначены для студентов, обучающихся по специальностям теплотехнического профиля, и дневного и заочного отделений и изучающих курс Тепломассообмен или Теплотехника. Методические указания содержат наиболее апробированные критериальные формулы для расчета коэффициента конвективной теплоотдачи в однофазных средах и при изменении агрегатного состояния вещества. В приложении приведены физические свойства некоторых жидкостей и газов, применяемых в теплоэнергетике. Методические указания могут быть полезны студентам при решении задач по теме «Конвективный теплообмен» во время проведения практических и лабораторных занятий, а также при выполнении контрольных и домашних заданий. Методические указания утверждены цикловой методической комиссией ТЭФ. Рецензент кафедра теоретических основ теплотехники Ивановского государственного энергетического университета 2

3 1. Конвективная теплоотдача при свободном движении текучей среды Nu f(gr,pr), Pr 0, Теплоотдача при свободной конвекции около вертикальных пластин и вертикальных труб (критериальные формулы В.П. Исаченко ) Местный (локальный) и средний коэффициенты теплоотдачи при ламинарном режиме течения жидкости (10 3 < Ra 10 9) рассчитывают по формулам : при T w = const Nu f,x 0,25 f,x 0,55 Ra ; (1.1) t Nu f,h 0,25 f 0,73 Ra ; (1.2) t при q w = const Nu f,x 0,25 f,x 0,60 Ra ; (1.3) t Nu f,h 0,25 f 0,75 Ra. (1.4) В формулы (1.1) (1.4) входит поправка, учитывающая зависимость физических свойств текучей среды от температуры: 0,25 Prf t Pr, (1.5) w где критерий Прандтля Prf принимают по справочным данным для текучей среды при определяющей температуре флюида, а критерий Прандтля Pr w принимают по справочным данным для текучей среды при температуре стенки. Определяющие параметры: R 0 = x локальная координата по высоте для формул (1.1) и (1.3); R 0 = h высота вертикальной пластины или высота вертикальной трубы для формул (1.2) и (1.4); T 0 = T f температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя). t 3

4 Местный (локальный) и средний коэффициенты теплоотдачи при развитом турбулентном режиме течения флюида (Ra) при T w = const и при q w = const находят по формулам : Nu f,x 0,333 f,x 0,15 Ra ; (1.6) t Nu 0,333 f 0,15 Ra f. (1.7) t Определяющие параметры: R 0 = x локальная координата по высоте для формулы (1.6); R 0 = h высота вертикальной пластины или вертикальной трубы для формулы (1.7); T 0 = T f температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя). Замечание. Поправку, учитывающую изменение физических t свойств среды в зависимости от температуры, рассчитывают по формуле (1.5) Переходный режим течения флюида наступает при числах Релея 9 f,x Ra 610 отличается неустойчивостью течения. В приближенных расчетах теплоотдачи при переходном режиме В.П. Исаченко рекомендует использовать формулы (1.6) и (1.7) для турбулентного режима течения Теплоотдача при свободной конвекции около горизонтальных пластин (критериальные формулы В. П. Исаченко ) Средний коэффициент теплоотдачи на поверхности горизонтальных пластин можно приближённо рассчитать по формулам для вертикальной поверхности (1.2), (1.4) и (1.7) с последующим введением поправок на расположение теплоотдающей поверхности : для поверхности теплообмена обращенной вверх 1, (1.8) гор, 3 расчет для поверхности теплообмена обращенной вниз 0, (1.9) гор, 7 расчет 4

5 где расчет коэффициент теплоотдачи, рассчитанный по одной из формул (1.2), (1.4) или (1.7). Определяющие параметры: R 0 min(a, b), где a и b размеры прямоугольной пластины; T 0 = T f температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя) Теплоотдача при свободном движении текучей среды при малых числах Рэлея (Ra md 1) Такого рода теплообмен возникает около тонких проволок и режим течения в этом случае называют пленочным. Для расчета среднего коэффициента теплоотдачи при пленочном течении рекомендуем использовать следующие критериальные формулы: а) по данным пленочный режим течения имеет место при числах Рэлея d 10 2 Ram: Nu m,d 0,058 m,d 0,675 Ra ; (1.10) б) по данным Л.С. Эйгенсона пленочный режим течения на тонких нагретых проволоках (d = 0,22мм) существует при числах Рэлея Ra m, d 1: Nu m, d 0,5 ; (1.11) в) по данным М.А. Михеева. пленочный режим существует при числах,d 3 Ra m 10 и только в этом случае можно использовать формулу (1.11). В диапазоне Ra 3 2 m,d наблюдается переходный от пленочного к ламинарному режим течения, для которого М.А. Михеев рекомендует формулу : Nu m,d 1/8 m,d 1,18 Ra. (1.12) Определяющие параметры: T T 0,5 (T T) средняя температура пограничного слоя; 0 m f R наружный диаметр проволоки. 0 d н w 5

6 1.4. Теплоотдача при свободной конвекции около горизонтальных цилиндров (труб) (критериальная формула И.М. Михеевой ) Средний коэффициент теплоотдачи при ламинарном режиме течения 3 8 (Raf,d) по данным И.М. Михеевой равен : Nu f,d 0,25 f,d 0,5 Ra (1.13) t Определяющие параметры: T0 T f температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя); R наружный диаметр трубы (цилиндра). 0 d н Замечание. Поправку t, учитывающую изменение физических свойств среды в зависимости от температуры, рассчитывают по формуле (1.5) Теплоотдача при свободной конвекции около вертикальных пластин, вертикальных труб, горизонтальных пластин, горизонтальных труб и шаров (критериальная формула М.А. Михеева) По данным академика М.А. Михеева средний коэффициент теплоотдачи при свободном движении текучей среды около тел, указанных в заголовке раздела, можно рассчитать по единой формуле: Nu n m CRa m, (1.14) где коэффициенты C и n в зависимости от режима течения приведены в табл Таблица 1.1. Значения коэффициентов С и n в формуле (1.14) Ra m Gr Pr Режим течения C n m m <10-3 Пленочный 0, Переходный от пленочного к ламинарному 1,18 1/ Ламинарный и переходный к турбулентному 0,54 1/4 > Турбулентный 0,135 1/3 6

7 Определяющие параметры: T T 0,5 (T T) средняя температура пограничного слоя; 0 m f w R 0 d н наружный диаметр горизонтальных труб и шаров; R 0 = h высота вертикальной пластины или высота вертикальной трубы; R 0 min(a, b), где a и b размеры прямоугольной пластины. При этом в зависимости от расположения теплоотдающей (тепловоспринимающей) поверхности коэффициент теплоотдачи либо увеличивают на 30 %, либо уменьшают на 30% (см. формулы (1.8) и (1.9)) Теплообмен при свободном движении текучей среды в ограниченном пространстве В узких щелях, плоских и кольцевых каналах, прослойках различной формы плотность теплового потока q рассчитывают по формулам стационарной теплопроводности в плоской стенке, вводя при этом понятие эквивалентного коэффициента теплопроводности : экв (Tw1 Tw) ; (1.15) q 2 где экв эквивалентный коэффициент теплопроводности; толщина щели или узкого канала; T w1 и T w2 температура на стенках узкой прослойки. Эквивалентный коэффициент теплопроводности определяют по формуле: (1.16) экв f к где f коэффициент теплопроводности текучей среды; ε к коэффициент конвекции поправка, учитывающая увеличение теплового потока вследствие свободной конвекции в щели . Коэффициент конвекции зависит от критерия Рэлея: 3 а) при значениях Raf 10: к 1 ; (1.17) б) при значениях 10 Ra 10: 3 0,3 к 0,105 Ra f f 6 ; (1.18) 7

8 6 f 0,2 к 0,40 Ra f 10 в) при значениях 10 Ra 10:. (1.19) В приближенных расчетах вместо двух уравнений (1.18) и (1.19) для 3 всей области значений аргументов Raf 10 можно использовать зависимость : 0,25 к 0,18 Ra f. (1.20) Определяющие параметры: T 0,5 (T T) средняя температура текучей среды в щели; T0 f w1 w2 R ширина щели Конвективная теплоотдача при вынужденном движении текучей среды в трубах и каналах Nu f(re,gr,pr), Pr 0, Теплоотдача при движении флюида в прямых гладких трубах При движении жидкостей и газов в трубах и каналах существуют ламинарный (Re f, d 2300), турбулентный (Ref,d 10) и переходный от ламинарного к турбулентному (2300 Re f 10) режимы течения флюида. Определяющие параметры для расчета критерия Рейнольдса: T 0 T f 0,5 Tf,вх Tf,вых средняя температура флюида в трубе; R0 d вн внутренний диаметр трубы; G / f средняя по сечению трубы скорость движения флюида. w Теплоотдача при ламинарном режиме движения текучей среды в трубах (Re 2300) Теплоотдача в трубах при стабилизированном течении и стабилизированном теплообмене может быть рассчитана при T w = const и при q w = const по приближенной формуле : 8,d 4 4

9 Nu 4, (2.1) t где поправку t рассчитывают по формуле (1.5). Определяющие параметры в формуле (2.1): T 0 T f 0,5 Tf,вх Tf,вых средняя температура флюида в трубе; R0 d вн внутренний диаметр трубы; G / f средняя по сечению трубы скорость движения флюида. w 0 При ламинарном режиме движения в прямых гладких трубах и наличии участков гидродинамической и тепловой стабилизации для более точной аппроксимации экспериментальных данных выделяют два подрежима: ламинарный вязкостный и ламинарный вязкостногравитационный. Ламинарный вязкостный режим течения имеет место при числах Рэлея Ra < 810 5, а ламинарный вязкостногравитационный режим при числах Рэлея Ra При этом определяющие параметры для расчета критерия Рэлея находят по формулам: T0 0,5 Tw T f T f 0,5 Tf,вх Tf,вых; R0 d вн внутренний диаметр трубы., где Теплоотдача при ламинарном вязкостном режиме движения текучей среды в трубах (R e 2300; Ra <) Средний по внутренней поверхности трубы длиной коэффициент теплоотдачи рассчитывают по формуле Б.Г.Петухова 3, которая получена при (Ped) и: 0 w f 1 3 Nu 1,55(Ped) (). (2.2) Определяющие параметры: T 0 0,5 Tw T f вн 9 f w 0.14, где T 0,5 T T f ; f,вх f,вых R0 d вн внутренний диаметр трубы; G / f средняя по сечению трубы скорость движения флюида. w 0 Замечание. Значение w выбирают для флюида при температуре стенки T w. Величина поправка, учитывающая влияние на теплоотдачу гидродинамической стабилизации потока на начальном участке теплообмена:

10 1 7 0,6 (Re d) 1 2,5 Re d при (Re d) 0, 1 ; (2.3) при (Re d) 0, 1 1, (2.4) где длина трубы. Определяющие параметры в формулах (2.3) и (2.4): T 0 T f 0,5 Tf,вх Tf,вых средняя температура флюида в трубе; R0 d вн внутренний диаметр трубы; G / f средняя по сечению трубы скорость движения флюида. w 0 Теплоотдача при ламинарном вязкостно-гравитационном режиме движения текучей среды в трубах (Re 2300; Ra) Средний коэффициент теплоотдачи при ламинарном вязкостногравитационном режиме течения может быть рассчитан по критериальному уравнению М. А. Михеева : 0,33 f,d 0,33 f Nu f,d 0,15 Re Pr (Gr Pr) f,d f 0,1 t. (2.5) Определяющие параметры: T T 0,5 T средняя температура флюида в трубе; 0 f f,вх Tf,вых R0 d вн внутренний диаметр трубы; G / f средняя по сечению трубы скорость движения флюида. w 0 Замечание. Поправку t, учитывающую изменение физических свойств среды в зависимости от температуры, рассчитывают по формуле (1.5). Поправочный коэффициент, учитывающий влияние на теплоотдачу процесса гидродинамической стабилизации потока на начальном участке теплообмена равен: при d 50 значение находят по данным таблицы 2.1; при d

11 Таблица 2.1 Значение при вязкостно-гравитационном режиме течения флюида d ,9 1,7 1,44 1,28 1,18 1,13 1,05 1,02 1, Теплоотдача при турбулентном режиме движения текучей среды в трубах (Re 10 4) Средний коэффициент теплоотдачи при турбулентном течении флюида в прямых гладких трубах рассчитывают по формуле М. А. Михеева : 0,8 f,d 0,43 f Nu f,d 0,021 Re Pr t. (2.6) Замечание. Поправку t, учитывающую изменение физических свойств среды в зависимости от температуры, рассчитывают по формуле (1.5). Поправочный коэффициент, учитывающий влияние на теплоотдачу процесса гидродинамической стабилизации потока на начальном участке теплообмена равен: при d < d ; при d > 50 = 1. Более точные значения в зависимости от критерия Рейнольдса приведены в табл Таблица 2.2. Значение при турбулентном режиме течения флюида l/d Re ,65 1,50 1,34 1,23 1,17 1,13 1,07 1,51 1,40 1,27 1,18 1,13 1,10 1,05 1,34 1,27 1,18 1,13 1,10 1,0 8 1,04 1,28 1,22 1,15 1,10 1,08 1,06 1,03 1,14 1,11 1,08 1,05 1,04 1,03 1,02 1,01 11

12 Определяющие параметры: T 0 T f 0,5 Tf,вх Tf,вых средняя температура флюида в трубе; R0 d вн внутренний диаметр трубы; G / f средняя по сечению трубы скорость движения флюида. w Теплоотдача при переходном режиме движения текучей среды в трубах (2300 < Re < 10 4) Переходный режим течения характеризуется перемежаемостью ламинарного и турбулентного течений. В этом случае коэффициент теплоотдачи можно рассчитать по формуле : 0,43 f,d Nu K Pr, (2.7) f,d 0 t где комплекс K 0 зависит от числа Рейнольдса (см. табл. 2.3.), а поправку рассчитывают также как и при турбулентном режиме течения флюида. Таблица 2.3. Зависимость комплекса К 0 от числа Рейнольдса Re ,2 2,3 2,5 3,0 3,5 4, K 0 2,2 3,6 4,9 7,2 16, Замечание. Поправку t, учитывающую изменение физических свойств среды в зависимости от температуры, рассчитывают по формуле (1.5). Определяющие параметры: T 0 T f 0,5 Tf,вх Tf,вых средняя температура флюида в трубе; R0 d вн внутренний диаметр трубы; G / f средняя по сечению трубы скорость движения флюида. w 0 Переходный режим течения флюида в прямых гладких трубах также можно рассчитать по методике, изложенной в учебнике : 12

13 Nu Nu (1), (2.8) турб Nu лам где Nu лам и Nu турб числа Нуссельта, рассчитанные по формулам (2.1) и (2.6) для стабилизированного ламинарного и турбулентного режимов течения соответственно, γ коэффициент перемежаемости равный: 1exp(1 Re/ 2300). (2.9) Теплоотдача при движении газов в трубах Для газов критерий Прандтля Pr f 0,7 1, 0 и практически не зависит от температуры, поэтому температурная поправка t (Prf / Prw) 1. С учетом этого формулы (2.5), (2.6) и (2.7) можно упростить и записать в виде: 0,25 ламинарный режим Nu f,d 0,33 f,d 0,1 f,d 0,146 Re Gr ; (2.10) турбулентный режим Nu f,d 0,8 f,d 0,018 Re ; (2.11) переходный режим Nu f,d 0,86 K0. (2.12) Замечание. При наличии больших температурных напоров и турбулентном режиме течения газов коэффициенты теплоотдачи могут отличаться от значений, вычисленных по уравнениям (2.10), (2.11) и (2.12). В этом случае расчет необходимо проводить по формулам (2.5), (2.6) и (2.7), принимая в качестве температурной поправки выражение: где m Tf t, (2.13) T w T f средняя температура газа в трубе, Кельвин; 13 T w средняя температура стенки трубы, Кельвин; m 0, 4 если T w > T f и m 0, если T w < T f.

14 Определяющие параметры: T 0 T f 0,5 Tf,вх Tf,вых средняя температура газа в трубе; R0 d вн внутренний диаметр трубы; G / f средняя по сечению трубы скорость движения флюида. w Теплоотдача при движении текучей среды в каналах произвольного поперечного сечения Все вышеприведенные критериальные формулы для расчета теплоотдачи в круглой трубе применимы и для расчета коэффициента теплоотдачи при течении жидкостей и газов в каналах другой (не круглой) формы поперечного сечения (прямоугольной, треугольной, кольцевой и т.д.), при продольном омывании пучков труб, заключенных в канал произвольного поперечного сечения, а также при движении жидкости, не заполняющей всего сечения канала. При этом в качестве характерного размера следует применять эквивалентный или гидравлический диаметр канала: R d d 4f P, (2.14) 0 "экв г где f площадь поперечного сечения потока, м 2 ; P смоченный периметр канала, м Теплоотдача при турбулентном движении текучей среды в изогнутых трубах При движении флюида в изогнутых трубах (коленах, змеевиках) происходит его дополнительная турбулизация и, как следствие, увеличение коэффициента теплоотдачи. Для расчета теплоотдачи в изогнутых трубах необходимо число Нуссельта, рассчитанное по формуле (2.6), умножить на поправочный коэффициент: 11,8 d R, (2.15) г вн где d вн внутренний диаметр трубы, а R г радиус гиба. г 14

15 3. Конвективная теплоотдача при вынужденном внешнем обтекании тел Nu f(re, Pr), Pr 0, Продольное обтекание пластины и внешней поверхности трубы Толщина гидродинамического пограничного слоя на расстоянии x от передней кромки пластины (трубы) при течении жидкости или газа с постоянными физическими свойствами вдоль пластины или вдоль внешней поверхности трубы равна : при Rex ,5 / x 4,64 / Re x ; (3.1) при Rex ,2 / x 0,376 / Re x. (3.2) Определяющие параметры: T 0 = T f температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя); R 0 x продольная координата; w 0 скорость невозмущенного потока (за пределами гидродинамического пограничного слоя) Местный и средний по поверхности коэффициенты теплоотдачи при ламинарном течении флюида (Re <) вдоль пластины или внешней поверхности трубы по данным и равны: при T w =const 0, 25 Nu x 0,332Re Pr Pr Pr ; (3.3) x f w Pr Pr 0, 25 Nu 0,664Re Pr ; (3.4) 0,5 1 3 при q w =const 0, 25 Nu x x f 0,46Re Pr Pr Pr ; (3.5) 0,5 1 3 f w w Pr Pr 0, 25 Nu 0,69 Re Pr. (3.6) f w 15

16 Местный и средний коэффициенты теплоотдачи при турбулентном течении флюида (Re) вдоль пластины или внешней поверхности трубы по данным равны: Nu x 0,8 x 0,43 Pr Pr 0, 25 0,0296 Re Pr ; (3.7) f w 0,8 0,43 Pr Pr 0, 25 Nu 0,037Re Pr (3.8) f w Определяющие параметры: T 0 = T f температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя); R 0 x продольная координата в формулах (3.3), (3.5) и (3.7); R 0 длина пластины или трубы в формулах (3.4), (3.6) и (3.8); w 0 скорость невозмущенного потока (за пределами гидродинамического пограничного слоя) Теплоотдача при поперечном обтекании одиночной трубы Средний по поверхности трубы или цилиндра коэффициент теплоотдачи по данным равен: 0,4 1 Re 40, Nu 0,76Re Pr t q ; (3.9) 3 0,5 40 Re 10, Nu 0,52 Re Pr t q ; (3.10) 3 5 0,6 10 Re 210, Nu 0,26Re Pr t q ; (3.11) 5 7 0, Re 10, Nu 0,023 Re Pr t q, (3.12) 0,37 0,37 0,37 0,4 Замечания. 1. Поправку t, учитывающую изменение физических свойств среды в зависимости от температуры, рассчитывают по формуле (1.5). 2. Поправку q, учитывающую сужение потока в самом узком сечении канала (см. рис.1.3), рассчитывают по формуле: q 2 1 d H 0, 8 (3.13) 16

17 3. Поправку ε φ, учитывающую влияние угла атаки набегающего потока (угол атаки угол между вектором скорости и осью трубы) на коэффициент теплоотдачи, принимают по данным табл. 3.1, приведенной в задачнике : Поправка на угол атаки набегающего потока Таблица 3.1. φº ε φ 1,0 1,0 0,99 0,93 0,87 0,76 0,66 Для приближенного расчета ε φ предложены формулы, аппроксимирующие экспериментальные данные: по данным по данным 2 1 0,54 cos ; (3.14) sin. (3.15) Определяющие параметры: T 0 = T f температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя); R наружный диаметр трубы; w 0 d н 0 w max G / f min максимальная скорость потока в самом узком поперечном сечении канала в ограниченном потоке (рис. 3.1.а) или скорость набегания неограниченного потока (рис. 3.1.б). 17

18 w max d d H w 0 w max а) б) Рис.3.1. Поперечное обтекание одиночной трубы в ограниченном (а) и неограниченном потоке (б) 3.3. Теплоотдача при поперечном обтекании трубного пучка Средний коэффициент теплоотдачи α 3 для третьего ряда пучка труб и всех последующих рядов труб в пучке по направлению движения флюида при 10 3 Re210 5 по данным равен: n 1 3 0,25 Prf w s Nu 3 CRe Pr Pr (3.16) где C 0, 26 и n 0, 65 при коридорном расположении труб в пучке (рис.3.2.а); C 0, 41 и n 0, 60 при шахматном расположении труб в пучке (рис.3.2.б). Замечания. 1. Поправку ε φ, учитывающую влияние угла атаки набегающего потока (угол атаки угол между вектором скорости и осью трубы) на коэффициент теплоотдачи, рассчитывают по формуле (3.14) или по формуле (3.15). Более точные значения поправки ε φ для пучка труб в зависимости от угла атаки φ приведены в табл. 3.2, приведенной в задачнике . Таблица 3.2. Поправка на угол атаки набегающего потока в трубном пучке φº ε φ 1,0 1,0 0,98 0,94 0,88 0,78 0,67 0,52 0,42 18

19 2. Поправку ε s, учитывающую взаимное расположение труб в пучке, рассчитывают по формулам: для глубинных рядов труб коридорного пучка d 0, 15 ; (3.17) s S 2 для глубинных рядов труб шахматного пучка s S S 1 6, если S 1 /S 2 2, (3.18) 1 2 s = 1,12, если S 1 /S 2 2; (3.19) где S 1 поперечный шаг труб в пучке; S 2 продольный шаг труб в пучке. Определяющие параметры: 0 T 0,5 Tf,вх Tf,вых T средняя температура флюида в пучке; f R 0 d н наружный диаметр трубы; w 0 w max G / f min максимальная скорость потока в самом узком поперечном сечении пучка Средний коэффициент теплоотдачи для труб первого ряда по направлению потока в коридорных и шахматных пучках равен: 0. (3.20) 1, 6 3 Средний коэффициент теплоотдачи для труб второго ряда в коридорных и шахматных пучках соответственно равен: коридорный пучок 2 0, 93 ; (3.21) шахматный пучок 2 0, 7 3, (3.22) где 3 коэффициент теплоотдачи для труб третьего ряда пучка Средний коэффициент теплоотдачи для всего пучка при его обтекании жидкостью или газом (Re=) в зависимости от числа рядов по ходу движения флюида (n3) равен: 1 2 n n 2, (3.23) где n 2 число рядов труб по направлению движения флюида (жидкости или газа). 19

20 Т f, вх d Т f, вых w s 1 w s 2 а) Т f, вх d Т f, вых w w s 1 s 2 б) Рис.3.2. Геометрические параметры шахматного (а) и коридорного (б) пучков. 4. Конвективный теплообмен при изменении агрегатного состояния вещества В зависимости от фазового состояния флюида различают конвективный теплообмен в однофазной среде и конвективный теплообмен при фазовых превращениях, к которому относят теплообмен при конденсации (переход пара в жидкость) и теплообмен при кипении (переход жидкости в пар). 20

21 4.1. Теплоотдача при пленочной конденсации паров Средний коэффициент теплоотдачи при пленочной конденсации паров на вертикальной поверхности рассчитывают по формуле Нуссельта : 2 3 gr 4 пл пл 0,943, (4.1) пл Т н Тw H где g 9, 8 м/с 2 ускорение свободного падения; r скрытая теплота парообразования, Дж/кг; пл коэффициент теплопроводности плен- динамический коэффициент вязкости ки конденсата, Вт/(м К); пл конденсата, Па с; пл плотность пленки, кг/м 3 ; T н температура насыщения при данном давлении; T w температура стенки; H высота вертикальной поверхности. Определяющие параметры: T температура насыщения при данном давлении; 0 T н R 0 H высота вертикальной пластины или высота трубы Средний коэффициент теплоотдачи при пленочной конденсации на наклонной поверхности рассчитывают по формуле : 4 накл вертик cos, (4.2) где вертик коэффициент теплоотдачи, рассчитываемый по формуле (4.1) для вертикальной поверхности; угол между направлением силы тяжести и осью, направленной вдоль поверхности теплообмена Средний коэффициент теплоотдачи при пленочной конденсации на горизонтальной трубе при ламинарном течении пленки конденсата рассчитывают по формуле Нуссельта : 2 3 gr пл пл 0,728 4, (4.3) пл (Tн Tw) dтр где g 9, 8 м/с 2 ускорение свободного падения; r скрытая теплота парообразования, Дж/кг; пл коэффициент теплопроводности плен- 21

22 ки конденсата, Вт/(м К); пл динамический коэффициент вязкости конденсата, Па с; пл плотность пленки, кг/м 3 ; T н температура насыщения при данном давлении; T w температура стенки; d тр наружный диаметр трубы, м. Формула (4.3) справедлива для ламинарного режима течения пленки, который существует при выполнении условия: где пл d тр 0,5 пл 20 g, (4.4) пл сила поверхностного натяжения пленки, Н/м; g 9, 8 м/с 2 ускорение свободного падения; пл плотность пленки, кг/м 3. Определяющие параметры: T температура насыщения при данном давлении; 0 T н R наружный диаметр трубы. 0 d тр Формулы для расчета локальных коэффициентов теплоотдачи, теплоотдачи при волновом и турбулентном течении пленки, а также толщины конденсатной пленки приведены в литературе 1-3, Теплоотдача при кипении жидкостей Пузырьковое кипение в большом объеме Для расчета теплоотдачи при кипении воды в большом объеме используют следующие формулы2,3, 8: 2,33 0,5 н 38,7 T p (4.5) 0,7 0,15 н 3,0 q p, (4.6) где p н давление насыщения, бар; q плотность теплового потока, Вт/м 2. T T w T н перегрев жидкости в пограничном слое. 22

23 Пленочное кипение в большом объеме Используя аналогию процессов конденсации и пленочного кипения для расчета коэффициента теплоотдачи при пленочном кипении можно использовать следующие формулы: кипение на вертикальной поверхности 3 gr 4 п ж п п 0,943 ; (4.7) п T H кипение на горизонтальной трубе где п и п п, 3 gr п ж п п 0,728 4, (4.8) п T dтр плотность, коэффициент теплопроводности и динамический коэффициент вязкости пара; ж плотность жидкости; r скрытая теплота парообразования. В качестве определяющей температуры в формулах (4.7) и (4.8) принята температура насыщения при данном давлении. 23

24 Перечень основных обозначений а коэффициент температуропроводности, м 2 /с; c удельная массовая теплоемкость, Дж/(кг К); d диаметр, м; F площадь поверхности теплообмена, м 2 ; f площадь поперечного сечения, м 2 ; g ускорение силы тяжести, м/с 2 ; G массовый расход, кг/с; h высота, м; удельная энтальпия, Дж/кг; P периметр, м; l линейный размер, м; длина, м; p давление, Па; p перепад давлений, Па; q поверхностная плотность теплового потока, Вт/м 2 ; q l линейная плотность теплового потока, Вт/м; Q тепловой поток, Вт; r радиус, м; скрытая теплота парообразования, Дж/кг; T температура, 0 С или К; w скорость, м/с; х координата, м; степень сухости пара; α коэффициент теплоотдачи, Вт/(м 2 К); коэффициент объемного расширения, К -1 ; толщина стенки, м; толщина пограничного слоя, м; коэффициент теплопроводности, Вт/(м К); динамический коэффициент вязкости, Па с; кинематический коэффициент вязкости, м 2 /с; плотность, кг/м 3 ; коэффициент поверхностного натяжения, Н/м. Критерии (числа) подобия R Nu 0 критерий (число) Нуссельта; 3 g Gr R 0 T 2 0 критерий Грасгофа; 24

25 с р Pr критерий Прандтля; a Ra Gr Pr критерий Рэлея; w 0 R 0 w 0 R 0 Re критерий Рéйнольдса; w 0 R 0 Pe Re Pr критерий Пеклé. a Индексы w стенка; f флюид текучая среда (жидкость или газ); кр критический; экв эквивалентный; г гидравлический; тур турбулентный; лам ламинарный; знак осреднения; 0 относится к определяющему параметру; вх вход; вых выход. Определяющие (характерные) величины R 0 определяющий (характерный) размер, м; T 0 определяющая (характерная) температура, 0 С; w 0 определяющая (характерная) скорость, м/с; T 0 определяющая (характерная) разность температур, 0 C (К); 25

26 Приложение Таблица 1. Физические свойства сухого воздуха (B=1, Па) T, 0 C, c p, кг/м 3 кдж/(кг K). 10 2, Вт/(м K). 10 6, Па c. 10 6, м 2 /c a 10 6 м 2 /с Pr ,584 1,515 1,453 1,395 1,342 1,013 1,013 1,013 1,009 1,009 2,04 2,12 2,20 2,28 2,36 14,6 15,2 15,7 16,2 16,7 9,23 10,04 10,80 12,79 12,43 14,6 15,2 15,7 16,2 16,7 0,728 0,728 0,723 0,716 0,293 1,247 1,205 1,165 1,128 1,005 1,005 1,005 1,005 1,005 2,44 2,51 2,59 2,67 2,76 17,2 17,6 18,1 18,6 19,1 13,28 14,16 15,06 16,00 16,96 17,2 17,6 18,1 18,6 19,1 0,707 0,705 0,703 0,701 0,093 1,060 1,029 1,000 0,972 1,005 1,005 1,009 1,009 1,009 2,83 2,90 2,96 3,05 3,13 19,6 20,1 20,6 21,1 21,5 17,95 18,97 20,02 21,09 22,10 19,6 20,1 20,6 21,1 21,5 0,698 0,696 0,694 0,692 0,946 0,898 0,854 0,815 0,779 1,009 1,009 1,013 1,017 1,022 3,21 3,34 3,49 3,64 3,78 21,9 22,8 23,7 24,5 25,3 23,13 25,45 27,80 30,09 32,49 21,9 22,8 23,7 24,5 25,3 0,688 0,686 0,684 0,682 0,746 0,674 0,615 0,566 0,524 1,026 1,038 1,047 1,059 1,068 3,93 4,27 4,60 4,91 5,21 26,0 27,4 29,7 31,4 33,0 34,85 40,61 48,33 55,46 63,09 26,0 27,4 29,7 31,4 33,0 0,680 0,677 0,674 0,676 0,456 0,404 0,362 0,329 0,301 1,093 1,114 1,135 1,156 1,172 5,74 6,22 6,71 7,18 7,63 36,2 39,1 41,8 44,3 46,7 79,38 96,89 115,4 134,8 155,1 36,2 39,1 41,8 44,3 46,7 0,687 0,699 0,706 0,713 0,277 0,257 0,239 1,185 1,197 1,210 8,07 8,50 9,15 49,0 51,2 53,5 177,1 199,3 233,7 49,0 51,2 53,5 0,719 0,722 0,724 26

27 Таблица 2. Физические параметры двуокиси углерода СО 2 (B= Па) T, 0 С, c p, кг/м 3 кдж/(кгк) 10 2, Вт/(мК) 10 6, 10 6, Нс/м 2 м 2 /c а10 6 м 2 /c Рr Таблица 3. Физические параметры азота N 2 (B= Па) T, 0 С, кг/м 3 c р, кдж/(кгк) 10 2, Вт/(мК) 10 6, 10 6, Нс/м 2 м 2 /c а10 6 м 2 /c Рr Таблица 4. Физические параметры водорода Н 2 (B= Па) T, 0 С, кг/м 3 c р, кдж/(кгк) 10 2, Вт/(мК) 10 6, 10 6, Нс/м 2 м 2 /c а10 6 м 2 /c Рr

28 Таблица 5. Физические свойства метана СH 4 (B= Па) T, 0 C, c p, кг/м 3 кдж/(кг K) 10 3, Вт/(м K) 10 6, Па с 10 6, м 2 /с а10 6 м 2 /c Pr Таблица 6. Физические свойства этана C 2H 6 (B= Па) T, 0 C c, p, кг/м 3 кдж/(кг K) 10 3, Вт/(м K) 10 6, Па с 10 6, м 2 /с а10 6 м 2 /c Pr Таблица 7. Физические свойства газообразного пропана C 3H 8 (B= Па) T, 0 C, c p, кг/м 3 кдж/(кг K) 10 3, Вт/(м K) 10 6, Па с 10 6, м 2 /с а10 6 м 2 /c Pr

29 Таблица 8. Физические свойства воды на линии насыщения T, p 10-5, c, p, a C Па кг/м 3 кдж/ Вт/ ,. 10 6, м (кг K) (м K) 2 /c Па. c м 2 /c. 10 4,. 10 4, K -1 Н/м Pr ,013 1,013 1,013 1,013 1,013 1,013 1,013 1,013 1,013 1,013 1,013 1,43 999,9 999,7 998,2 995,7 992,2 988,1 983,2 977,8 971,8 965,3 958,4 951,0 4,212 4,191 4,183 4,174 4,174 4,174 4,179 4,187 4,195 4,208 4,220 4,223 55,1 57,4 59,9 61,8 63,5 64,8 65,9 66,8 67,5 68,0 68,3 68,5 13,1 13,7 14,3 14,9 15,3 15,7 16,0 16,3 16,6 16,8 16,9 17,5 653,3 549,4 469,9 406,1 355,1 314,9 282,5 259,0 1,789 1,306 1,006 0,805 0,659 0,556 0,478 0,415 0,365 0,326 0,295 0,272-0,63 +0,7 1,82 3,21 3,87 4,49 5,11 5,70 6,32 6,95 7,52 8,08 756,4 741,6 726,9 712,2 696,5 676,9 662,2 643,5 625,9 607,2 588,6 569,0 13,67 9,52 7,02 5,42 4,31 3,54 2,93 2,55 2,21 1,95 1,75 1,98 2,7 3,61 4,76 6,18 7,92 10,03 12,55 15,55 19,08 23,20 27,98 943,1 934,8 926,1 917,0 907,4 897,3 886,9 876,0 863,0 852,8 840,3 823,3 4,250 4,266 4,287 4,313 4,346 4,380 4,417 4,459 4,505 4,555 4,614 4,681 68,6 68,6 68,5 68,4 68,3 67,9 67,4 67,0 66,3 65,5 64,5 63,7 17,1 17,2 17,2 17,3 17,3 17,3 17,2 17,1 17,0 16,9 16,6 16,4 237,4 217,8 201,1 186,4 173,6 162,8 153,0 144,2 136,4 130,5 124,6 119,7 0,252 0,233 0,217 0,203 0,191 0,181 0,173 0,165 0,158 0,153 0,148 0,145 8,64 9,19 9,72 10,3 10,7 11,3 11,9 12,6 13,3 14,1 14,8 15,9 548,4 528,8 507,2 486,6 466,0 443,4 422,8 400,2 376,7 354,1 331,6 310,0 1,74 1,36 1,26 1,17 1,10 1,05 1,00 0,96 0,93 0,91 0,89 0,48 39,78 46,94 55,05 64,19 74,45 85,92 98,70 112,9 128,65 146,08 165,37 186,74 210,53 813,6 799,0 784,0 767,9 750,7 732,3 512,5 691,1 667,1 640,2 610,1 574,4 528,0 450,5 4,766 4,844 4,949 5,070 5,230 5,485 5,736 6,071 6,574 7,244 8,165 9,504 13,984 40,321 62,8 61,8 60,5 59,0 57,4 55,8 54,0 52,3 50,6 48,4 45,7 43,0 39,5 33,7 16,2 15,9 15,6 15,1 14,6 13,9 13,2 12,5 11,5 10,4 9,17 7,88 5,36 1,86 114,8 109,9 105,9 102,0 98,1 94,2 91,2 88,3 85,3 81,4 77,5 72,6 66,7 56,9 0,141 0,137 0,135 0,133 0,131 0,129 0,128 0,128 0,128 0,127 0,127 0,126 0,126 0,126 16,8 18,1 19,1 21,6 23,7 26,2 29,2 32,9 38,2 43,3 53,4 66,5 261,9 237,4 214,8 191,3 168,7 144,2 120,7 98,10 76,71 56,70 38,16 20,21 4,709 0,87 0,86 0,87 0,88 0,90 0,93 0,97 1,03 1,11 1,22 1,39 1,60 2,35 6,79 29

30 30 Таблица 9. Физические свойства водяного пара в состоянии насыщения T, 0 C p 10-5, Па, кг/м 3 r, кдж/кг c p, кдж/ (кг К) 10 2, Вт/(м К) 10 6, Па с 10 6, м 2 /с Pr 0,0061 0,0123 0,0234 0,0424 0,0738 0,1233 0,1992 0,3116 0,4736 0,7011 1,013 1,43 1,98 2,7 3,61 4,76 6,18 7,92 10,03 12,55 15,55 19,08 23,20 27,98 33,48 39,78 46,94 55,05 64,19 74,45 85,92 98,70 112,9 128,65 146,08 165,37 186,74 210,53 0,1302 0,1981 0,2932 0,4232 0,598 0,826 1,121 1,496 1,966 2,547 3,258 4,122 5,157 6,394 7,862 9,588 11,62 13,99 16,76 19,98 23,72 28,09 33,19 39,15 46,21 54,58 64,72 77,10 92,76 113,6 144,0 203,0 2202,8 2174,3 2145,0 2114,4 2082,6 2049,5 2015,2 1978,8 1940,7 1900,5 1857,8 1813,0 1765,6 1715,8 1661,4 1604,4 1542,9 1476,3 1404,3 1325,2 1238,1 1139,7 1027,1 893,1 719,7 438,4 1,861 1,869 1,877 1,885 1,895 1,907 1,923 1,942 1,967 1,997 2,135 2,177 2,206 2,257 2,315 2,395 2,479 2,583 2,709 2,856 3,023 3,199 3,408 3,634 3,881 4,158 4,468 4,815 5,234 5,694 6,280 7,118 8,206 9,881 12,35 16,24 23,03 56,52 1,697 1,770 1,824 1,883 1,953 2,034 2,122 2,214 2,309 2,407 2,372 2,489 2,593 2,686 2,791 2,884 3,012 3,128 3,268 3,419 3,547 3,722 3,896 4,094 4,291 4,512 4,803 5,106 5,489 5,827 6,268 6,838 7,513 8,257 9,304 10,70 12,79 17,10 9,156 9,493 9,746 9,989 10,270 10,586 10,921 11,272 11,620 11,960 11,97 12,46 12,85 13,24 13,54 13,93 14,32 14,72 15,11 15,60 15,99 16,38 16,87 17,36 17,76 18,25 18,84 19,32 19,91 20,60 21,29 21,97 22,86 23,94 25,21 26,58 29,14 33,7 328,9 200,7 127,5 83,88 56,90 39,63 28,26 20,02 15,07 11,46 8,85 6,89 5,47 4,39 3,57 2,93 2,44 2,03 1,71 1,45 1,24 1,06 0,913 0,794 0,688 0,600 0,526 0,461 0,403 0,353 0,310 0,272 0,234 0,202 0,166 1,00 1,00 1,00 1,00 1,00 0,99 0,99 0,99 0,99 0,99 1,08 1,09 1,09 1,11 1,12 1,16 1,18 1,21 1,25 1,30 1,36 1,41 1,47 1,54 1,61 1,68 1,75 1,82 1,90 2,01 2,13 2,29 2,50 2,86 3,35 4,03 5,23 11,10

31 Таблица 10. Физические свойства масла МК T, 0 C, c p, кг/м 3 кдж/(кг K), Вт/(м K) 10 4, Па с 10 6, м 2 /с 10 4, К -1 Pr ,0 903,0 894,5 887,5 879,0 1,645 1,712 1,758 1,804 1,851 0,1510 0,1485 0,1461 0,1437 0,2 342,0 186,2 8,56 8,64 8,71 8,79 8,5 864,0 856,0 848,2 840,7 1,897 1,943 1,989 2,035 2,081 0,1389 0,1363 0,1340 0,1314 0,4 603,3 399,3 273,7 202,1 110,6 69,3 46,6 32,3 24,0 8,95 9,03 9,12 9,20 9,0 825,0 817,0 809,2 801,6 2,127 2,173 2,219 2,265 2,311 0,1264 0,1240 0,1214 0,1188 0,2 110,4 87,31 70,34 56,90 17,4 13,4 10,7 8,7 7,1 9,37 9,46 9,54 9,65 9,3 113,5 Таблица 11. Физические свойства трансформаторного масла T, 0 C, c p, кг/м 3 кдж/(кг K), Вт/(м K) 10 4, Па с 10 6, м 2 /с 10 4, К -1 Pr ,5 886,4 880,3 874,2 868,2 1,549 1,620 1,666 1,729 1,788 0,1123 0,1115 0,1106 0,1008 0,8 335,5 198,2 128,5 89,4 70,5 37,9 22,5 14,7 10,3 6,80 6,85 6,90 6,95 7,1 856,0 850,0 843,9 837,8 1,846 1,905 1,964 2,026 2,085 0,1082 0,1072 0,1064 0,1056 0,3 49,5 38,6 30,8 25,4 7,58 5,78 4,54 3,66 3,03 7,05 7,10 7,15 7,20 7,8 71,3 59,3 50,8 825,7 819,6 2,144 2,202 2,261 0,1038 0,1030 0,3 18,1 15,7 2,56 2,20 1,92 7,30 7,35 7,40 43,9 38,8 34,9 31

32 Таблица 12. Физические свойства масла МС-20 в зависимости от температуры T, 0 C, c p, кг/м 3 кдж/(кг K), Вт/(м K) 10 4, Па с 10 6, м 2 /с 10 4, К -1 Pr ,3 903,6 897,9 892,3 886,6 881,0 875,3 1,951 1,980 2,010 2,043 2,072 2,106 2,135 0,136 0,135 0,135 0,134 0,132 0,131 0,24 6,24 6,31 6,35 6,38 6,42 6,6 864,0 858,3 852,7 847,0 2,165 2,198 2,227 2,261 2,290 0,129 0,128 0,127 0,126 0,5 498,3 336,5 234,4 171,7 91,9 58,4 39,2 27,5 20,3 6,51 6,55 6,60 6,64 6,3 835,7 830,0 824,4 818,7 2,320 2,353 2,382 2,420 2,445 0,124 0,123 0,122 0,121 0,4 101,0 79,76 61,80 53,17 15,7 12,1 9,61 7,5 6,5 6,73 6,77 6,82 6,87 6, Таблица 13. Теплофизические свойства масла АМТ-300 T o C P н кпа кг/м 3 Вт/(мК) h" кдж/кг с р кдж/(кг К) 10 6 м 2 /с Pr ,9 1,3 1,8 2,8 4,2 6,5 10,2 15,8 24,8 30,9 66,6 90,120 0,119 0,117 0,115 0,114 0,112 0,111 0,108 0,106 0,104 0,102 0,100 0,099 0,095 0,093 0,091 0,088 0,086 31,2 64,0 96,5 134,5 170,0 208,2 248,0 288,0 330,0 374,0 418,0 462,0 510,0 556,0 612,0 672,0 715,0 770,0 1,60 1,68 1,73 1,81 1,87 1,94 2,01 2,08 2,14 2,22 2,28 2,34 2,42 2,48 2,53 2,62 2,68 2,6 16,8 8,46 5,17 4,44 2,47 1,77 1,31 1,09 0,914 0,775 0,663 0,569 0,507 0,465 0,406 0,6 53,8 39,7 29,8 22,9 19,9 16,5 15,0 13,1 11,8 10,8 10,1 9,3 8,5 32

33 Таблица 14. Физические свойства аммиачного пара в состоянии насыщения T, 0 C p 10 5, Па. r, кдж/кг, кг/м,7464 1,2443 1,9788 3,0253 4,2 1358,6 1554,6 1296,5 1262,5 0,645 1,038 1,604 2,390 3,396 10,776 12,133 16,1 1187,2 1143,5 1100,6 4,859 6,694 9,034 12,005 Таблица 15. Физические свойства жидкого аммиака в состоянии насыщения T, 0 C p 10 5, Па., c p, Дж/(кг K), кг/м 3 Вт/(м K) 10 6, м 2 /с 10 4, К -1 Pr ,7464 1,2443 1,9788 3,0253 4,0 677,7 665,0 652,0 638,6 4,442 4,47 4,401 4,549 4,594 0,629 0,608 0,585 0,563 0,540 0,355 0,304 0,264 0,245 17,28 18,32 19,32 20,25 21,12 1,95 1,77 1,56 1,38 1,396 10,776 12,133 16,7 610,3 595,2 579,5 4,646 4,708 4,777 4,860 0,518 0,494 0,472 0,449 0,234 0,227 0,222 0,216 22,54 23,86 25,66 33,14 1,31 1,32 1,335 1,33 33

34 Таблица 16. Физические свойства дымовых газов (В=1, Па; р =0,13; р O =0,11; CO 2 H 2 p N 2 =0,76) T, 0 C, кг/м 3 с Р, кдж/(кг K) 10 2, Вт/(м K) a 10 6, м 2 /с 10 6, Па с 10 6, м 2 /с Pr ,295 0,950 0,748 0,617 0,525 0,457 0,405 0,363 0,330 0,301 0,275 0,257 0,240 1,042 1,068 1,097 1,122 1,151 1,185 1,214 1,239 1,264 1,290 1,306 1,323 1,340 2,28 3,13 4,01 4,84 5,70 6,56 7,42 8,27 9,15 10,0 10,90 11,75 12,62 16,9 30,8 48,9 69,9 94,3 121,1 150,9 183,8 219,7 258,0 303,4 345,5 392,4 15,8 20,4 24,5 28,2 31,7 34,8 37,9 40,7 43,4 45,9 48,4 50,7 53,0 12,20 21,54 32,80 45,81 60,38 76,30 93,1 131,8 152,5 174,3 197,1 221,0 0,72 0,69 0,67 0,65 0,64 0,63 0,62 0,61 0,60 0,59 0,58 0,57 0,56 34

35 T, C, Вт / (м K) ср, кдж / (кг K) а 10 6, м 2 /с v 10 8, м 2 /с Бухмиров В.В. Расчет коэффициента теплоотдачи (справочник)_v.6 Таблица 17. Физические свойства ртути и некоторых расплавленных металлов Металл Ртуть Hg T пл=-38,9 о C; T кип=357 о C; r пл=11,72 кдж/кг; r ис=291,8 кдж/кг, кг/м,90 8,95 9,65 10,3 11,7 0,1390 0,1373 0,1373 0,1373 0,1373 4,36 4,89 5,30 5,72 6,64 11,4 9,4 8,6 8,0 7,1 Pr ,72 1,92 1,62 1,40 1,07 Олово Sn T пл=231,9 о C; T кип=2270 о C; r пл=58,2 кдж/кг; r ис=3015 кдж/кг Висмут Bi T пл=271 о C; T кип=1477 о C; r пл=50,2 кдж/кг; r ис=855,4 кдж/кг Литий Li T пл=179 о C; T кип=1317 о C; r пл=661,5 кдж/кг; r ис=19595 кдж/кг Сплав 56,5% Bi+43,5% Pb; T пл=123,5 о C; T кип=1670 о C ,1 33,7 33,1 32,6 13,0 14,4 15,8 17,2 37,2 39,0 41,9 45,3 9,8 10,3 11,4 12,6 14,0 0,255 0,255 0,255 0,255 0,151 0,151 0,151 0,151 4,187 4,187 4,187 4,187 0,146 0,146 0,146 0,146 0,146 19,2 19,0 18,9 18,8 8,61 9,72 10,8 11,9 17,2 18,3 20,3 22,3 6,39 6,67 7,50 8,33 9,44 27,0 24,0 20,0 17,3 17,1 14,2 12,2 10,8 111,0 92,7 81,7 73,4 28,9 24,3 18,7 15,7 13,6 1,41 1,26 1,06 0,92 1,98 1,46 1,13 0,91 6,43 5,03 4,04 3,28 4,50 3,64 2,50 1,87 1,44 Сплав 25% Na+75% K T пл= -11 о C; T кип=784 о C ,2 24,5 25,8 27,1 28,4 29,6 30,9 1,143 1,072 1,038 1,005 0,967 0,934 0,900 23,9 27,6 31,0 34,7 39,0 43,6 48,8 60,7 45,2 36,6 30,8 26,7 23,7 21,4 2,51 1,64 1,18 0,89 0,69 0,54 0,44 Натрий Na T пл=97,8 о C; T кип=883 о C; r пл=113,26кдж/кг; r ис=4208 кдж/кг; ,9 81,4 70,9 63,9 57,0 1,356 1,327 1,281 1,273 1,273 68,3 67,8 63,0 58,9 54,2 59,4 50,6 39,4 33,0 28,9 0,87 0,75 0,63 0,56 0,53 35

36 Литература 1. Задачник по тепломассообмену / Ф.Ф. Цветков, Р.В. Керимов, В.И.Величко; Под ред. Ф.Ф. Цветков. М. :Издательство МЭИ, с. 2. Исаченко В.П.,Осипов В.А., Сукомел А.С. Теплопередача. - М.:Энергоиздат, с. 3. Краснощеков Е.А., Сукомел А.С. Задачник по теплопередаче. - М.: Энергия, с. 4. Михеев М.А. Основы теплопередачи. - М. - Л.: ГЭИ, с. 5. Галин Н.М., Кириллов Л.П. Тепломассообмен (в ядерной энергетике). М.: Энергоатомиздат, с. 6. Теплотехнический справочник/под.ред. В.Н. Юренева и П.Д. Лебедева. Т М., Энергия с. 7. Проиышленные печи.справочное руководство для расчётов и проектирования / Казанцев Е.И. М., Металлургия, с. 8. Промышленная теплоэнергетика и теплотехника: Справочник М., Чечёткин А.В. Высокотемпературные теплоносители. - М., Энергия, Практикум по теплопередаче: Учеб. пособие для вузов/ А.П. Солодов, Ф.Ф. Цветков, А.В. Елисеев, В.А. Осипова; Под ред. А.П. Солодова. М.: Энергоатомиздат, с. 36

37 Содержание 1. Конвективная теплоотдача при свободном движении текучей среды Теплоотдача при свободной конвекции около вертикальных пластин и вертикальных труб (критериальные формулы В.П. Исаченко ) Теплоотдача при свободной конвекции около горизонтальных пластин (критериальные формулы В. П. Исаченко ) Теплоотдача при свободном движении текучей среды при малых числах Рэлея (Ra md 1) Теплоотдача при свободной конвекции около горизонтальных цилиндров (труб) (критериальная формула И.М. Михеевой ) Теплоотдача при свободной конвекции около вертикальных пластин, вертикальных труб, горизонтальных пластин, горизонтальных труб и шаров (критериальная формула М.А. Михеева) Теплообмен при свободном движении текучей среды в ограниченном пространстве 7 2. Конвективная теплоотдача при вынужденном движении текучей среды в трубах и каналах Теплоотдача при движении флюида в прямых гладких трубах Теплоотдача при ламинарном режиме движения текучей среды в трубах (Re 2300) Теплоотдача при турбулентном режиме движения текучей среды в трубах (Re 10 4) Теплоотдача при переходном режиме движения текучей среды в трубах (2300 < Re < 10 4) Теплоотдача при движении газов в трубах Теплоотдача при движении текучей среды в каналах произвольного поперечного сечения Теплоотдача при турбулентном течении флюида в изогнутых трубах Конвективная теплоотдача при вынужденном внешнем обтекании тел Продольное обтекание пластины и внешней поверхности трубы Теплоотдача при поперечном обтекании 37

38 одиночной трубы Теплоотдача при поперечном обтекании трубного пучка Конвективный теплообмен при изменении агрегатного состояния вещества Теплоотдача при пленочной конденсации паров Теплоотдача при кипении жидкостей Пузырьковое кипение в большом объеме Пленочное кипение в большом объеме 23 Перечень основных обозначений 24 Приложение 26 Литература 36 38

39 РАСЧЕТ КОЭФФИЦИЕНТА КОНВЕКТИВНОЙ ТЕПЛООТДАЧИ (основные критериальные уравнения) Методические указания к выполнению практических и лабораторных занятий Составитель: БУХМИРОВ Вячеслав Викторович Редактор М.А. Иванова Лицензия ЛР от г. Подписано в печать. Формат / 16. Печать плоская. Усл.печ.л.0,93. Тираж. Заказ. Ивановский государственный энергетический университет Отпечатано в Иваново, ул. Рабфаковская, 34 39


12 июня 2017 г. Совместный процесс конвекции и теплопроводности называется конвективным теплообменом. Естественная конвекция вызывается разностью удельных весов неравномерно нагретой среды, осуществляется

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Ивановский государственный энергетический университет имени В.И.Ленина» Кафедра теоретических

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.И. ЛЕНИНА» Кафедра теоретических

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ

ТЕПЛОПЕРЕДАЧА План лекции: 1. Теплоотдача при свободном движении жидкости в большом объёме. Теплоотдача при свободном движении жидкости в ограниченном пространстве 3. Вынужденное движение жидкости (газа).

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.И. ЛЕНИНА» Кафедра теетических

ОСНОВЫ ТЕОРИИ ТЕПЛООБМЕНА Лекция 5 План лекции: 1. Общие понятия теории конвективного теплообмена. Теплоотдача при свободном движении жидкости в большом объёме 3. Теплоотдача при свободном движении жидкости

Теплообмен при ламинарном течении жидкости в трубах Механизм процесса теплоотдачи при течении жидкости в прямых гладких трубах является сложным. Интенсивность теплообмена может изменяться в широких пределах

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И.

Расчет теплообменных аппаратов Расчет теплообменного аппарата включает определение необходимой поверхности теплопередачи, выбор типа аппарата и вариант конструкции готового теплообменника, удовлетворяющих

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный энергетический университет

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный энергетический университет

3.5. Лабораторная работа: «Исследование коэффициента теплопередачи при вынужденном течении жидкости в трубе круглого сечения» 3.5.. Введение В данной лабораторной работе рассматривается установка, позволяющая

Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра теплотехники и теплогазоснабжения РАСЧЕТ РЕКУПЕРАТИВНОГО

Теплообмен при свободном движении жидкости Конвективный теплообмен в свободном потоке возникает в связи с изменением плотности жидкости от нагревания. Если тело имеет более высокую температуру, чем окружающая

ВЕРТИКАЛЬНЫЙ ТРУБЧАТЫЙ ТЕПЛООБМЕННЫЙ АППАРАТ Содержание Введение. Постановка задачи.. Количество передаваемой теплоты.. Коэффициент теплоотдачи к наружной поверхности трубки. 3. Коэффициент теплоотдачи

4.3.4. Лабораторная работа 4 Вопрос 1(5005) Критерий Нуссельта характеризует... 1). Интенсивность конвективного теплообмена Интенсивность теплоотдачи с поверхности твердого тела в подвижный 2). теплоноситель

Министерство образования и науки Российской Федерации Составители: В.В. БУХМИРОВ Федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановский государственный энергетический

Бухмиров В.В. Лекции по ТМО декабрь, 8_часть_в7 РАЗДЕЛ. Конвективный теообмен в однофазных средах.. Основные понятия и определения Конвекция теоты осуществляется за счет перемещения макрообъемов среды

Расчет теплообменного аппарата «труба в трубе» Задание: Определить поверхность нагрева и число секций теплообменника типа «труба в трубе». Нагреваемая жидкость (вода) движется по внутренней стальной трубе

Министерство образования Российской Федерации Ивановский государственный энергетический университет Кафедра теоретических основ теплотехники ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕПЛОТЕХНИКИ ТЕПЛОМАССОБМЕН Программа дисциплины,

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра теплоэнергетики РАСЧЁТ ТЕПЛООБМЕННИКА ТИПА «ТРУБА В ТРУБЕ» МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Ивановский государственный энергетический университет имени В.И. Ленина» Кафедра теоретических

Теплообмен при поперечном омывании одиночной трубы Процесс теплоотдачи в поперечном потоке жидкости, омывающей одиночную круглую трубу, характеризуется рядом особенностей. Плавное, безотрывное омывание

Министерство образования Российской Федерации Московский государственный технический университет им. Н.Э. Баумана В.П. Усачев, В.П. Григорьев, В.Г. Костиков Экспериментальное определение закона теплообмена

ОСНОВНЫЕ ПРЕДСТАВЛЕНИЯ О ПРОЦЕССЕ КОНДЕНСАЦИИ Если пар соприкасается со стенкой, температура которой ниже температуры насыщения, то пар конденсируется и конденсат оседает на стенке. При этом различают

Калькулятор теплообменного аппарата. Калькулятор теплообменника предназначен для ввода параметров греющего и нагреваемого теплоносителей на паспортном режиме, а так же для ввода геометрических характеристик

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.И. ЛЕНИНА» Кафедра теоретических

Программа составлена на основе федерального государственного образовательного стандарта высшего образования (уровень подготовки кадров высшей квалификации) по направлению подготовки 13.06.01 Электро- и

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный энергетический университет

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОУ ВПО «Ивановский государственный энергетический университет имени В.И.Ленина» Кафедра теоретических основ теплотехники Определение коэффициента теплоотдачи при конденсации

Лекция 16. Теплоотдача при вынужденном поперечном омывании труб и пучков труб Обтекание трубы поперечным потоком жидкости характеризуется рядом особенностей. Плавное, безотрывное обтекание цилиндра (рис..,а)

Московский государственный технический университет имени НЭ Баумана Факультет «Энергомашиностроение» Кафедра «Теплофизика» ВН Афанасьев, НВ Кукшинов «ТЕПЛОПЕРЕДАЧА» Электронное учебное издание Методические

Расчет кожухотрубного теплообменника Общие сведения Кожухотрубные теплообменники наиболее широко распространены в пищевых производствах. Это объясняется следующими их достоинствами компактностью, невысоким

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра машин и аппаратов

ISSN 77-98 Наукові праці ДонНТУ. Металургія Випуск (77) УДК 6.8.: 6.8-9: 6. С.М. Сафьянц, Ю.А. Боев, А.С. Сафьянц АНАЛИЗ ОСОБЕННОСТЕЙ ТЕПЛООТДАЧИ В ЖАРОТРУБНЫХ КОТЛАХ МАЛОЙ МОЩНОСТИ В работе рассматриваются

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.И.

Парогенераторы АЭС Тема. Теплообмен при кипении ПГ АЭС 2014/2015 уч.г. 1 Основные вопросы Классификация режимов кипения. Определение границ участков с характерными условиями теплообмена. Рекомендации по

Ахременков Ан. А., Цирлин А.М. Математическая модель жидкостного погружного охлаждения вычислительных устройств Аннотация В работе предложена модель системы охлаждения вычислительных устройств при их непосредственном

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙCКОЙ ФЕДЕРАЦИИ Брянский государственный технический университет УТВЕРЖДАЮ Ректор университета О.Н. Федонин 2014 г. ПЕЧИ ЛИТЕЙНЫХ ЦЕХОВ РАСЧЕТ ПАРАМЕТРОВ ТЕПЛООБМЕНА

Лабораторная работа 10 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛООТДАЧИ ПРИ ЕСТЕСТВЕННОЙ КОНВЕКЦИИ НА ОБОГРЕВАЕМОМ ЦИЛИНДРЕ 1.Цель работы Определение коэффициента теплоотдачи трубы при свободной конвекции воздуха

УДК 536.4 Горбунов А.Д. д-р техн. наук, проф., ДГТУ ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛООТДАЧИ ПРИ ТУРБУЛЕНТНОМ ТЕЧЕНИИ В ТРУБАХ И КАНАЛАХ АНАЛИТИЧЕСКИМ МЕТОДОМ Аналитический расчёт коэффициента теплоотдачи

УДК 621.783.2:536.25 Похилько А.С. студент, Национальная металлургическая академия Украины (НМетАУ) Румянцев В.Д. к.т.н., проф., НМетАУ РАСЧЕТ НАГРЕВА МЕТАЛЛА В КАМЕРНОЙ ПЕЧИ С ВЫДВИЖНЫМ ПОДОМ, ПРИ УСЛОВИИ

Лабораторная работа 2 ИЗУЧЕНИЕ СОВРЕМЕННОО ПЛАСТИНЧАТОО ТЕПЛООБМЕННИКА. НАЗНАЧЕНИЕ Установка предназначена для экспериментальное определение коэффициента теплопередачи в в пастинчатом теплообменнике 2.

Методика расчета температурного состояния головных частей элементов ракетно-космической техники при их наземной эксплуатации # 09, сентябрь 2014 Копытов В. С., Пучков В. М. УДК: 621.396 Россия, МГТУ им.

Д т н С Я Давыдов, д т н Н П Косарев, д т н Н Г Валиев, к т н В Н Корюков ФГБОУ ВПО «Уральский государственный горный университет», г Екатеринбург, Россия ФГАОУ ВПО «Уральский федеральный университет»,

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тульский государственный университет» Политехнический институт Кафедра «Автомобили

Лекция 4 3. Элементы теории размерности 3.1 П-теорема Понятие размерности физической величины тесно связано с процессом измерения, в котором физическую величину сравнивают с некоторым ее эталоном (единица

РАСЧЕТ ТЕПЛООБМЕННОГО АППАРАТА Целью выполнения расчетов является получение практических навыков по правильному использованию основных зависимостей и формул, излагаемых в разделах рабочей программы 7 Теория

Лекция 6 Расчет коэффициента теплоотдачи Расчет коэффициента теплоотдачи для сред, не меняющих агрегатное состояние. Для расчета коэффициентов теплоотдачи 1 и в уравнениях (8.3) и (8.4) можно воспользоваться

Лабораторная работа: «Определение среднео коэффициента теплоотдачи при вынужденном ламинарном движении жидкости в крулой трубе» 1. Введение В данной лабораторной работе рассматривается установка, позволяющая

В Ы В О Д Для исследуемой стенки теплоотдача по всей ее поверхности приблизительно одинакова, и градиенты температуры на рядом расположенных участках могут быть вызваны различной температурой на ее внутренней

ОБЩИЕ ПРЕДСТАВЛЕНИЯ О ПРОЦЕССЕ КИПЕНИЯ Кипением называют процесс образования пара внутри объема перегретой относительно температуры насыщения жидкости. Этот начальный перегрев, т. е. превышение температуры

РАСЧЕТЫ ПО ТЕПЛООБМЕНУ 2 СОДЕРЖАНИЕ ПРЕДИСЛОВИЕ... 3 1. ТЕПЛОПРОВОДНОСТЬ... 3 1.1. Общие сведения, понятия и определения... 3 1.2. Стационарная теплопроводность... 5 1.2.1. Теплопроводность через плоскую

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НИЗКОТЕМПЕРАТУРНЫХ И ПИЩЕВЫХ ТЕХНОЛОГИЙ

УДК: 621.039.6.536.24 ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТЕПЛООБМЕНА ПО ДЛИНЕ ГОРИЗОНТАЛЬНОЙ ТРУБЫ ПРИ ТЕЧЕНИИ ЖИДКОМЕТАЛЛИЧЕСКОГО ТЕПЛОНОСИТЕЛЯ В ПОПЕРЕЧНОМ МАГНИТНОМ ПОЛЕ Л.Г. Генин 1, В.Г. Жилин 2, Ю.П.

Согласно уравнению конвективной теплоотдачи, называемому также законом Ньютона-Рихмана, тепловой поток прямо пропорционален разности температур стенки и жидкости и площади поверхности теплообмена. Коэффициент пропорциональности в этом уравнении называют средним коэффициентом конвективной теплоотдачи:

, (1)

где Q - тепловой поток, Вт; q = Q/F - поверхностная плотность теплового потока, Вт/м 2 ; - средний коэффициент конвективной теплоотдачи, Вт/(м 2 ∙К); - температурный напор теплоотдачи, о С; - температура поверхности теплообмена (стенки), о С; - температура жидкости вдали от стенки, о С; F - площадь поверхности теплообмена (стенки), м 2 .

Независимо от направления теплового потока (от стенки к жидкости или наоборот) будем считать его положительным, то есть будем использовать модуль разности температур.

Величина коэффициента теплоотдачи зависит от большого числа различных факторов: а) физических свойств жидкости; б) скорости движения жидкости; в) формы, размеров и ориентации в пространстве поверхности теплообмена; г) величины температурного напора, направления теплообмена и т.п. Поэтому его теоретическое определение в большинстве случаев невозможно.

Выражения (1)-(3) позволяют опытным путем определить средний коэффициент теплоотдачи посредством измерения величин Q, F, и :

, (4)

то есть средний коэффициент теплоотдачи численно равен тепловому потоку, передаваемому через единицу поверхности теплообмена при единичном температурном напоре (1 о С или 1 К).

3. Локальный (местный) коэффициент конвективной теплоотдачи

Средний коэффициент теплоотдачи является важной, но не всегда достаточной характеристикой процессов теплообмена. Во многих случаях требуются значения коэффициентов теплоотдачи в отдельных точках поверхности теплообмена, то есть локальные (местные) значения. Локальные коэффициенты характеризуют теплоотдачу в окрестности заданной точки (x) и входят в состав локального уравнения теплоотдачи:

или , (6)

где dF – элементарная (бесконечно малая) поверхность теплообмена в окрестности точки x, м 2 ; - элементарный тепловой поток, Вт; - локальная плотность теплового потока, Вт/м 2 ; - локальный коэффициент конвективной теплоотдачи, Вт/(м 2 ∙К); - локальный температурный напор, о С; - локальная температура поверхности (стенки), о С; - температура жидкости вдали от стенки (полагаем, что она постоянна вдоль всей поверхности теплообмена), о С.

Из выражений (5) и (6) следует, что локальные коэффициенты теплоотдачи в принципе могут быть найдены опытным путем посредством измерения величин , dF, и , относящихся к соответствующему бесконечно малому участку:

. (7)

На практике вдоль поверхности выделяют необходимое количество конечных, но достаточно малых участков и производят измерения для каждого i-го участка поверхности:

, (8)

где - среднее для i-го участка значение коэффициента теплоотдачи, Вт/(м 2 ∙К); - площадь поверхности i-го участка, м 2 ; - тепловой поток в пределах i-го участка, Вт; - среднее для i-го участка значение температуры поверхности; - средняя плотность теплового потока в пределах i-го участка, Вт/м 2 ; i = 1,2,…,n – номер очередного участка; n - количество участков.

При теплоотдаче на вертикальной поверхности выделяют n одинаковых по высоте участков (см. рис.4). Если измерять температуру поверхности на границах выделенных участков, начиная с ее нижней кромки (i=1), то средняя для i-го участка температура определится по формуле

. (9)

Среднее для малого i-го участка значение коэффициента теплоотдачи (8) является приближенным значением локального коэффициента теплоотдачи (7). Чем меньше размеры участка, тем точнее получаемый результат.

Результаты большого количества опытов по определению коэффициентов теплоотдачи (8) обобщают в виде эмпирических (опытных) критериальных уравнений (см.разд.5). В дальнейшем эти уравнения используют в инженерных расчетах для определения коэффициентов теплоотдачи.

4. Характер изменения локального коэффициента теплоотдачи

Локальное уравнение теплоотдачи (5)-(6) можно записать в следующем виде:

, (10)

где - локальное термическое сопротивление теплоотдачи, м 2 ∙К/Вт.

Таким образом, при теплоотдаче локальная поверхностная плотность теплового потока () прямо пропорциональна локальному температурному напору и обратно пропорциональна локальному термическому сопротивлению теплоотдачи .

Практически все термическое сопротивление теплоотдачи сосредоточено около поверхности стенки в пределах теплового пограничного слоя, при этом локальное термическое сопротивление пропорционально локальной толщине этого слоя.

При теплоотдаче в условиях свободной конвекции около нагретой вертикальной поверхности (рис.2) пограничный слой формируется вдоль поверхности по ходу потока. Толщина слоя возрастает снизу вверх, и при достаточной высоте поверхности первоначально ламинарный пограничный слой постепенно преобразуется в турбулентный.

В области ламинарного (слоистого) течения локальный коэффициент теплоотдачи уменьшается по высоте поверхности в силу увеличения толщины пограничного слоя и, следовательно, в силу увеличения его локального термического сопротивления (см. рис.2).

В переходной области наблюдается увеличение коэффициента теплоотдачи вопреки возрастанию толщины пограничного слоя. Это происходит из-за дополнительного конвективного переноса теплоты образующимися вихрями.

В области развитого турбулентного течения толщина пограничного слоя продолжает расти, но в такой же степени возрастает вихревой конвективный перенос теплоты, поэтому термическое сопротивление и коэффициент теплоотдачи остаются постоянными, то есть перестают меняться по высоте поверхности (см. рис.2).

Рис.2. Пограничный слой и локальная теплоотдача:

1 - стенка (поверхность теплообмена); 2 - гидродинамический пограничный слой; 3 - гидродинамическое "ядро потока"

5. Расчет локального коэффициента теплоотдачи

с помощью критериальных уравнений

При свободной конвекции локальный коэффициент теплоотдачи на вертикальной поверхности можно рассчитать по критериальным эмпирическим формулам следующего вида:

, (11)

где C, n и 0,25 - эмпирические (определяемые из опыта) постоянные; - локальное число Нуссельта; - локальное число Релея; Pr, - числа Прандтля, взятые при определяющей температуре и при температуре стенки соответственно. Подробнее см. в разд. 6.

Значения эмпирических постоянных (табл.1) зависят от режима свободного движения жидкости. Режим свободного движения в данной точке x поверхности теплообмена определяется величиной локального числа Релея в этой точке.

Таблица 1. Значения эмпирических постоянных

Для газов сомножитель близок к единице, так как в силу слабой зависимости числа Прандтля газов от температуры, поэтому для газов формула (11) принимает более простой вид:

Рассчитав локальное число Нуссельта, определяют входящий в него локальный коэффициент теплоотдачи (см. разд. 6).

Числа (критерии) подобия

Каждый критерий подобия представляет собой безразмерный комплекс (комбинацию), составленный из физических величин, влияющих на процесс: определяющей температуры (разности температур), определяющей скорости (при вынужденной конвекции), определяющего размера, – и физических свойств жидкости. В итоге каждый критерий подобия характеризует определенное соотношение физических эффектов, характерных для рассматриваемого явления.

Один из критериев подобия в уравнении является определяемым (искомым), все другие являются определяющими критериями, то есть играют роль независимых переменных, влияющих на теплоотдачу.

Рассмотрим локальные числа (критерии) подобия.

Число Нуссельта : , (12)

где - локальный коэффициент конвективной теплоотдачи, Вт/(м 2 ∙К); x – координата, в которой ищется локальный коэффициент теплоотдачи, м (см. разд.7); - коэффициент теплопроводности жидкости, Вт/(м∙К).

Это определяемый критерий подобия, так как в его состав входит искомый коэффициент теплоотдачи . Число Нуссельта можно рассматривать как относительный коэффициент теплоотдачи: , где - масштаб отнесения, имеющий ту же размерность, что и коэффициент теплоотдачи . То есть число Нуссельта характеризует интенсивность теплоотдачи или, точнее, соотношение интенсивностей теплоотдачи и теплопроводности жидкости . Если найдено число Нуссельта, например, с помощью (11) или (11 а), то

Это главный определяющий критерий подобия. По его численному значению определяется режим свободного движения жидкости: ламинарный, переходный, турбулентный. Различным режимам движения соответствует различный физический механизм переноса теплоты, что выражается в различных значениях эмпирических постоянных С и n в уравнениях типа (11) и (11а) (см. также разд.9).

Число Релея можно рассматривать как отношение подъемной силы теплового пограничного слоя к силе трения, обусловленной вязкостью.

Число Грасгофа : , (16)

где g – ускорение силы тяжести, м/с 2 ; - термический коэффициент объемного расширения жидкости, 1/К; - локальный температурный напор, о С ( - локальная температура поверхности (стенки), о С; - температура жидкости вдали от стенки, о С).Эта страница нарушает авторские права

Cтраница 1


Коэффициенты конвективного теплообмена в этом случае бывают порядка 10 ккал / м2 ч град. Обнаружено, что коэффициенты лучистого теплообмена при температурах, равных приблизительно температуре атмосферы, бывают порядка 2 ккал / м2 - ч - град. Это значит, что в таких условиях невозможно никакое точное измерение обычным термометром.  

Коэффициент конвективного теплообмена а является функцией теплофизических свойств, температуры и скорости движения теплоносителя, а также конфигурации и размеров поверхности теплообмена.  

Коэффициенты конвективного теплообмена а внутренних поверхностях сген и окон: Р 3 и пр 4 ккал / м1 час грид.  

Коэффициенты конвективного теплообмена между газами и трубами в теплообменниках или насадкой в регенераторах определяются по формулам, приведенным в справочниках и специальных руководствах. Ряд их приведен в соответствующих разделах этой книги. Во всех случаях для повышения интенсивности конвективного теплообмена надо стремиться к наибольшей равномерности смывания всех поверхностей нагрева газами, уменьшать до оптимальных размеров сечения каналов, образованных материалом в слое, через который протекает теплоноситель, увеличивать скорость потока до величин, оправдываемых технико-экономическими расчетами.  

Коэффициент конвективного теплообмена в слое воздуха (снаружи) значительно меньше, чем в слое воды или пара (внутри прибора), поэтому сопротивление внешнему теплообмену RH для отопительного прибора сравнительно велико. Следовательно, для увеличения теплового потока необходимо развивать внешнюю поверхность отопительного прибора. В приборах это выполняют созданием специальных выступов, приливов и оребрения. Однако при этом уменьшается коэффициент теплопередачи.  

Коэффициент конвективного теплообмена между средой и помещенным в нее телом при одинаковых скоростях движения для жидкостей во много раз больше, чем для газов. Жидкости непрозрачны для тепловых лучей, газы - прозрачны. Поэтому при измерениях температуры газов необходимо считаться с влиянием на температуру измерителя лучистого теплообмена между поверхностью измерителя и стенками трубы.  

Коэффициенты конвективного теплообмена между насадкой и горячим газом или воздухом определяют из экспериментальных данных.  


Коэффициент конвективного теплообмена ак сильно зависит от диаметра волокна и относительной скорости среды вследствие резкого изменения толщины ламинарного пограничного слоя, сопоставимого с диаметром волокна.  

Коэффициенты конвективного теплообмена насадки и горячих газов или воздуха определяются по экспериментальным данным.  

Коэффициент конвективного теплообмена стен помещения с содержащимся в нем воздухом равен 11 36 вт / м2 - град.  

Следовательно, коэффициент конвективного теплообмена зависит от способа подвода тепла, и при комплексном теплообмене (конвекция и радиация) он значительно выше по сравнению только с конвективным теплообменом при прочих равных условиях.  

Средние значения коэффициента конвективного теплообмена на вертикальных поверхностях ограждений в помещении без особой погрешности можно определить по формуле (1.64), так как перепадам температур и геометрическим размерам нагретых и охлажденных поверхностей, имеющим место в действительности, обычно соответствует в основном турбулентный режим. Все рассмотренные формулы, в том числе и (1.64), написаны для вертикальной свободно расположенной поверхности.  

Для определения коэффициента конвективного теплообмена обычно используют критериальные уравнения. Эти уравнения при характерных для помещения условиях теплообмена приведены в табл. 5 для вынужденной и свободной конвекции. Они относятся к условиям движения у поверхности пластины. Для них характерны однонаправленность и равномерность, одним словом, упорядоченность движения.  

Среднее значение коэффициента конвективного теплообмена сц, (иногда обозначается оц) в пределах от 0 до произвольного сечения / можно определить на основе теоремы о среднем интегральном.  

α – характеризует интенсивность конвективного теплообмена и зависит от скорости теплоносителя, теплоемкости, вязкости, от формы поверхности и тд.

[Вт/(м 2 град)].

Коэффициент теплоотдачи численно равен мощности теплового потока, передаваемому одному квадратному метру поверхности при разности температур между теплоносителем и поверхностью в 1°С.

Основной и наиболее трудной проблемой в расчётах процессов конвективной теплоотдачи является нахождение коэффициента теплоотдачи α . Современные методы описания процесса коэф. теплопроводности, основанные на теориипограничного слоя , позволяют получить теоретические (точные или приближённые) решения для некоторых достаточно простых ситуаций. В большинстве же встречающихся на практике случаев коэффициент теплоотдачи определяют экспериментальным путём. При этом как результаты теоретических решений, так и экспериментальные данные обрабатываются методамитеории подобия и представляются обычно в следующем безразмерном виде:

Nu =f (Re, Pr ) - для вынужденной конвекции и

Nu =f (Gr Re, Pr ) - для свободной конвекции,

где
- число Нуссельта,- безразмерный коэффициент теплоотдачи (L - характерный размер потока,λ - коэффициент теплопроводности);Re =- число Рейнольдса, характеризующее соотношение сил инерции и внутреннего трения в потоке (u - характерная скорость движения среды, υ - кинематический коэффициент вязкости);

Pr =- число Прандтля, определяющее соотношение интенсивностей термодинамических процессов (α – коэффициент температуропроводности);

Gr =
- число Грассгофа, характеризующее соотношение архимедовых сил, сил инерции и внутреннего трения в потоке (g - ускорение свободного падения,β - термический коэффициент объёмного расширения).

  • От чего зависит коэффициент теплоотдачи? Порядок его величины для различных случаев теплообмена.

Коэффициент конвективной теплоотдачи α тем больше, чем больше коэффициент теплопроводностиλ и скорость потокаw , чем меньше коэффициент динамической вязкости υ и больше плотностьρ и чем меньше приведенный диаметр каналаd .

Наиболее интересным с точки зрения технических приложений случаем конвективного теплопереноса является конвективная теплоотдача, то есть процесс двух конвективных теплообменов, протекающий на границе раздела двух фаз (твердой и жидкой, твердой и газообразной, жидкой и газообразной). При этом задача расчета состоит в нахождении плотности теплового потока на границе раздела фаз, то есть величины, показывающей, какое количество тепла получает или отдает единица поверхности раздела фаз за единицу времени. Помимо указанных выше факторов, влияющих на процесс конвективного теплообмена, плотность теплового потока зависит также от формы и размеров тела, от степени шероховатости поверхности, а также от температур поверхности и теплоотдающей или тепловоспринимающей среды.

Для описания конвективной теплоотдачи используется формула:

q = α(Т 0 ст ) ,

где q - плотность теплового потока на поверхности, Вт/м 2 ; α - коэффициент теплоотдачи, вт/(м 2 ·°С);T 0 иТ ст - температуры среды (жидкости или газа) и поверхности соответственно. ВеличинуT 0 - Т ст часто обозначают ΔТ и называетсятемпературным напором . Коэффициент теплоотдачиα характеризует интенсивность процесса теплоотдачи; он возрастает при увеличении скорости движения среды и при переходе от ламинарного режима движения к турбулентному в связи с интенсификацией конвективного переноса. Он также всегда больше для тех сред, у которых выше коэффициент теплопроводности. Коэффициент теплоотдачи существенно повышается, если на поверхности происходит фазовый переход (например, испарение или конденсация), всегда сопровождающийся выделением (поглощением) скрытой теплоты. На значение коэффициента теплоотдачи сильное влияние оказываетмассообмен на поверхности.

КОНВЕКТИВНЫЙ ТЕПЛООБМЕН (ТЕПЛООТДАЧА)

Процесс теплообмена между поверхностью твердого тела и жидкостью, имеющих разные температуры, называется теплоотдачей. Теплоотдача обычно сопровождается теплопроводностью. Совместный процесс конвекции и теплопроводности называется конвективной теплоотдачей.

Согласно закону Ньютона-Рихмана тепловой поток в процессе теплоотдачи пропорционален коэффициенту теплоотдачи, площади поверхности теплообмена и разности температур поверхности тела и жидкости.

Q = (t с – t ж)F , 2.17

В расчетах разность температур t с – t ж берут по абсолютной величине. Коэффициент теплоотдачи α Вт/(м 2 ·К) характеризует интенсивность процесса теплоотдачи и зависит от большого числа факторов:

= ƒ (t ж, t ст, d, λ, ν, ω, ℓ, ġ, β Х …….) 2.18

где: t ж -температура жидкости, 0 С; t ст – температура стенки, 0 С; d –диаметр трубы, м;

λ – теплопроводность жидкости, Вт/ (м К): ω –скорость течения жидкости, м/с; ℓ – определяющий размер (для труб – диаметр), м; g – ускорение свободного падения, 9,8 м/с 2 ;

β – коэффициент объемного расширения, 1/К; Х – характер течения жидкости; ν – кинематический коэффициент вязкости, м 2 /с.

Из формулы 2.18 видно, что коэффициент теплоотдачи определить сложно, т.к. он зависит от большого числа переменных.

Существует два способа решения задач конвективного теплообмена: аналитический и с применением теории подобия.

При аналитическом решении задач конвективного теплообмена составляются дифференциальные уравнения, учитывающие тепловые и динамические явления в рассматриваемом процессе. Вывод таких уравнений рассматривается в специальной литературе.

Конвективный теплообмен в несжимаемой однофазной среде описывается следующими уравнениями.

Уравнение теплоотдачи:

α = -(λ/θ) (∂t / ∂n) n=0, где θ = t – t 0 . 2.19

Дифференциальное уравнение теплопроводности (сплошности) имеет вид:

∂t /∂τ = а 2 t = [∂ 2 t / ∂x 2 +∂ 2 t / ∂y 2 + ∂ 2 t / ∂z 2 ] λ /с ρ 2.20

где: ∂t /∂τ – температурное поле исследуемого объекта, которое зависит от изменения температуры по осям, т.е. от оператора Лапласа,

2 t = ∂ 2 t /∂x 2 + ∂ 2 t / ∂y 2 + ∂ 2 t /∂ z 2 , 2.21

и от теплофизических свойств: коэффициента температуропроводности – а (м 2 /с), удельной теплоемкости – с (кДж/(кг К) и плотности ρ (кг/м 3)

Дифференциальное уравнение движения:

∂ω/ ∂τ = gβ – 1/ρ ( ρ) + ν 2 ω. 2.22

Дифференциальное уравнение сплошности:

∂ω х / ∂х + ∂ω у / ∂у + ∂ω z / ∂z = 0 или div = 0 2.23

Приведенные дифференциальные уравнения конвективного теплообмена 2.19 – 2.22 описывают бесчисленное множество процессов. Чтобы решить конкретную задачу, к приведенным уравнениям следует присоединить условия однозначности. Условия однозначности дают математическое описание частных случаев. Условия однозначности состоят:

1)из геометрических условий, характеризующих форму и размеры тела или системы, в которой протекает процесс;

2) физических условий, характеризующих физические свойства среды;

3) граничных условий, определяющих особенности протекания процесса на границах жидкой среды;

4) временных или начальных условий, характеризующих особенности процесса в начальный момент времени; для стационарных процессов эти условия отпадают.

Решение приведенных систем дифференциальных уравнений и условий однозначности с большим количеством переменных получается сложным. Поэтому большое значение приобретает экспериментальный путь исследования и применение теории подобия.

В основе теории подобия лежат три теоремы.

Первая терема подобия: у подобных явлений числа подобия численно одинаковы.

Вторая теорема подобия: если физическое явление описывается системой дифференциальных уравнений, то всегда существует возможность представить их в виде уравнений подобия.

Третья теорема подобия: подобны те явления, условия однозначности которых подобны, и числа подобия, составленные из условий однозначности, численно одинаковы.

Сущность теории подобия состоит в том, что размерные физические величины, влияющие на конвективный теплообмен, объединяются в безразмерные комплексы, причем так, что число комплексов меньше числа величин, из которых составлены эти комплексы. Комплексам или числам подобия присваиваются имена ученых, внесших большой вклад в исследование процессов теплопереноса и гидродинамики

Полученные безразмерные комплексы рассматриваются как новые переменные. Они отражают не только влияние одиночных факторов, но и их совокупности, что упрощает описание исследуемого процесса. Теория подобия является теоретической базой эксперимента, облегчает анализ процессов. Рассмотрим применение теории подобия для исследования конвективных процессов теплоотдачи.

Из формулы 2.17 видно, интенсивность конвективного теплообмена характеризуется коэффициентом теплоотдачи, который зависит, в частности, от определяющего размера, площади теплообменной поверхности, температуропроводности, теплопроводности, температурного напора, скорости движения жидкости, коэффициента кинематической вязкости и т. д.

Из этих величин составлены безразмерные комплексы – числа подобия (критерии подобия).

число Нуссельта Nu = αℓ / λ 2.24

число Рейнольдса Re = ωℓ / ν 2.25

число Грасгофа Gr = g β Δt ℓ 3 / ν 2 2.26

число Прандтля Рr = ν /а 2.27

Число Нуссельта – определяемое число, т.к. в него входит искомый коэффициент теплоотдачи. Числа Рейнольдса, Грасгофа, Прандтля – определяющие. Они состоят из величин, известных до решения задачи. В общем виде

Nu= ƒ (Rе, Gr, Рr) 2.28

Для решения задач приведенное уравнение записывается в степенном виде:

Nu = c Rе m Gr n Рr r 2.29

Различают естественное (свободное) и вынужденное течение жидкости.

Естественная конвекция возникает за счет разности плотностей холодных и горячих частиц жидкости около поверхности нагрева. Интенсивность теплового расширения характеризуется температурным коэффициентом объемного расширения β Для газов, которые в большинстве случаев можно считать идеальными, коэффициент объемного расширения определяется равенством

При естественной конвекции уравнение 2.28 упрощается:

Nu= с (Gr, Рr) n 2.31

Вынужденная конвекция создается внешним источником (насосом, вентилятором). Для вынужденной конвекции уравнение 2.28 имеет вид:

Nu = с Rе m Pr n 2.32

Задачей эксперимента является определение конкретного вида функциональной связи в уравнении подобия, т.е. следует найти числовые значения коэффициентов, показателей степеней и т.д.

Nu ℓ /λ 2.33

Как показали экспериментальные исследования, режим течения определяется скоростью потока.

О. Рейнольдс опытным путем установил, что при движении жидкости встречаются два вида потока, подчиняющимся различным законам. В одном виде потока все частицы движутся только по параллельным траекториям и движение длительно совпадает с направлением всего потока. Жидкость движется спокойно, без пульсаций. Такое движение названо ламинарным. При ламинарном течении в трубе число Рейнольдса менее 2300.

Во втором типе потока происходит непрерывное перемешивание всех слоев жидкости. Поток представляет беспорядочную массу хаотически движущихся частиц. Такой тип потока называется турбулентным. При турбулентном течении число Рейнольдса более 10 4 .

При числах Рейнольдса более 2000, но менее 1 . 10 4 движение жидкости нестабильное. Режим течения называется переходным.

Теоретическое исследование задач конвективного теплообмена основано на теории пограничного слоя, разработанной Л. Прандтлем.

Введены понятия теплового и динамического пограничных слоев.

Если температуры стенки и жидкости неодинаковы, то вблизи стенки образуется тепловой пограничный слой, в котором происходит изменение температуры. Вне пограничного слоя температура жидкости одинакова и равна температуре потока.

Тонкий пограничный слой жидкости вблизи поверхности, в котором происходит изменение скорости от значения скорости невозмущенного потока вдали от стенки до нуля непосредственно на стенке, называется динамическим пограничным слоем.

Рис.2.4 Распределение температуры и скорости в тепловом

и динамическом пограничном слое

С увеличением вязкости толщина динамического слоя увеличивается, с увеличением скорости потока толщина динамического слоя уменьшается. Течение в динамическом слое может быть как ламинарным, так и турбулентным и определяется числом Рейнольдса.

Толщины теплового и пограничного слоев могут не совпадать. Соотношение толщин динамического и теплового пограничных слоев определяется безразмерным числом Прандтля. Для вязких жидкостей, например, масел, Рr>1. Для вязких жидкостей, например, масел толщина динамического пограничного слоя больше толщины теплового пограничного слоя. Для газов Рr ≈ 1и толщины слоев приблизительно одинаковы. Для жидких металлов Рr < 1, толщина теплового пограничного слоя больше толщины динамического пограничного слоя.

Если движение внутри теплового пограничного слоя ламинарное, то теплообмен осуществляется теплопроводностью. С увеличением скорости в пограничном слое и появлением турбулентности следует учитывать интенсивность перемешивания жидкости.

В процессе продольного обтекания какого-либо тела безграничным потоком жидкости с постоянной скоростью течения в непосредственной близости от поверхности тела скорость течения должна падать до нуля.

При решении задач конвективного теплообмена следует обращать внимание на то, какая температура для данного уравнения подобия принимается за определяющую, т.к. физические параметры жидкостей и газов изменяются с изменением температуры.

Для простейших случаев, когда температура потока изменяется в небольших пределах, среднюю температуру жидкости можно определить как среднеарифметическую у входа в канал t 1 и выхода из канала t 2: t ж = 0,5 (t 1 – t 2).

Для более точных расчетов пользуются формулой

t ж = 0, 5 (t 1 – t 2) (∆t б - ∆t м)/ ℓn (∆t б /∆t м), 2.34

где ∆ t б и ∆ tм – температурные напоры в начальном и конечном сечении трубы или канала.

В некоторые числа подобия входит линейный размер, причем, берут тот размер, которым определяется развитие процесса. Для труб определяющим размером при течении жидкости внутри трубы является внутренний диаметр, при внешнем обтекании – наружный диаметр трубы, для каналов некруглого сечения - принимается эквивалентный диаметр dэкв = 4F / S, где F – площадь поперечного сечения канала, S – полный (смоченный) периметр канала. При обтекании плиты за определяющий размер принимается ее длина по направлению движения потока.

Следует обратить внимание на аналогию процессов тепло и массопереноса.

Рассмотренное выше уравнение теплопроводности – закон Фурье (уравнение 2.3) аналогичен основному закону процесса диффузии (молекулярного переноса массы) – закону Фика.

m = - D grad c i 2.35

где m плотность потока массы, кг / (м 2 с); D – коэффициент диффузии, м 2 / с; с i – концентрация массы рассматриваемого компонента в единице объема вещества, кг/м 3 . Сопоставим эти законы:

Q = -λgrad t F m = - D grad c i F

Одинаковые математические записи законов Фурье и Фика отражают аналогию переноса массы и теплоты. Например, в газах носители массы и теплоты одни и те же: Каждая молекула вместе с собственной массой переносит и энергию. Вблизи поверхности образуется тонкий пограничный слой, в котором концентрация вещества будет изменяться от состояния насыщения у поверхности до концентрации вещества в потоке.

Уравнение массоотдачи в направлении у (поперек потока) имеет вид

β = (D / c 0 - c ж) (∂с / ∂у) 2.36

Уравнение переноса массы диффузией и концентрацией

ω х (∂с /∂х) + ω у (∂с/∂у) = D [(∂ 2 c/∂х 2) + (∂ 2 с/∂у 2) 2.37

Уравнения сплошности и движения (2.20 и 2.22) останутся без изменения.

Аналогичны по записи числа Nu и Рr

Nu =αℓ/λ Nu д = βℓ/ D – иногда его называют числом Шервуда 2.38

Рr = ν/ а Рr д = ν/ D - иногда его называют числом Шмитда 2.39

Nu = Nu д; Рr = Рr д 2.40

Одни и те же безразмерные уравнения при одних и тех же граничных условиях дадут одни и те же решения, пригодные для описания процессов как теплоодачи, так и массоодачи.

βℓ / D = α ℓ/λ , тогда 2.41

β / D = α / λ2.42

При больших перепадах температур или концентраций аналогия процессов тепло и массообмена нарушается, т.к. зависимости теплофизических свойств от температуры и концентрации неодинаковы.