Значение и эффективность биохимической очистки. Очистка сточных вод биохимическими методами. Состав бытовых сточных вод

Значение и эффективность биохимической очистки. Очистка сточных вод биохимическими методами. Состав бытовых сточных вод
Значение и эффективность биохимической очистки. Очистка сточных вод биохимическими методами. Состав бытовых сточных вод

Биохимическое окисление проводят как в естественных условиях на полях фильтрации, орошения и биологических прудах, так и в искусственно созданных условиях на биофильтрах и в аэротенках. Поля фильтрации, поля орошения и биофильтры функционируют за счет почвенных биоценозов; биологические пруды и аэротенки-биоценозов водоемов. На нефтебазах используют капельные и высоконагружаемые биофильтры. Для проведения биохимической очистки сточные воды, содержащие нефтепродукты, смешивают с хозяйственно-бытовыми.[ ...]

Биохимическую очистку ¡сточных вод нефтеперерабатывающих заводов рекомендуется проводить в смеси с бытовыми сточными водами или со сточными водами нефтехимических производств.[ ...]

Биохимическая очистка сточных вод базируется либо на использовании широкого круга водных микроорганизмов, которые входят в состав разнообразных ценозов - илов, биопленки и т. п., либо на применении адаптированных, высокоактивных микроорганизмов, особенно их ассоциаций, или, наконец, на внедрении в технику очистки иммобилизованных (адсорбированных или химически закрепленных на твердых поверхностях) биологических катализаторов - ферментов.[ ...]

Биохимическая очистка сточных вод вследствие чрезвычайно высокой их концентрации и щелочности становится возможной только после снижения их активной реакции и БПК путем подкис-ления и последующего сбраживания в метантенках (1, 4].[ ...]

Биохимическая очистка сточных вод осуществляется в результате сложного комплекса взаимосвязанных физических, химических и биологических процессов. По этой причине решение вопросов надежного автоматического управления системами аэрации сточных вод является сложной и весьма актуальной практической задачей. Системы аэрации сточных вод широко применяются на очистных станциях различной пропускной способности. Большая энергоемкость этих систем приводит к значительным эксплуатационным затратам.[ ...]

Биохимическая очистка сточных вод от органических загрязнений проводится под воздействием сложного комплекса организмов, развивающегося в активном иле очистного сооружения. Активный ил представляет собой хлопьевидный осадок, напоминающий хлопья гидроксида железа, и состоит в основном из бактерий, заключенных в слизь зоогелей; в нем находятся также актиномицеты, водные грибы и дрожжи. Качественный и количественный состав отдельных групп активного ила зависит от состава и концентрации загрязняющих веществ в очищаемой воде. В воде аэротенков могут присутствовать простейшие организмы. С физико-химической точки зрения активный ил - это коллоид, существующий при рН=4-9 с отрицательным зарядом.[ ...]

Биохимический процесс очистки сточных вод может протекать в аэробных и анаэробных условиях. Первый происходит в присутствии растворенного в воде кислорода. Этот процесс в сущности представляет собой модификацию протекающего в природе естественного процесса самоочищения водоемов. Биологическое окисление исходных органических загрязнений сточных вод в аэробных условиях гетеротрофными бактериями приводит к образованию новой биомассы, содержащей диоксид углерода, воду и биологически неокисляемые растворенные вещества. Для аэробной биохимической очистки сточны:-: вод используют в основном биологические пруды, аэрируемые лагуны, биофильтры и аэротенки. Наибольшее распространение среди методов биоочистки промышленных сточных вод получили процессы с использованием активного ила, проводимые в аэротенках.[ ...]

Биохимическая очистка сточных вод в зависимости от требований к спуску сточных вод в водоем может быть полная и неполная (см. § 87).[ ...]

Биохимическая очистка является одним из основных методов очистки сточных вод НПЗ как цри повторном их использовании в системах оборотного водоснабжения, так и цри сбросе их в водоем. В настоящее время основным сооружением биохимической очистки сточных вод является аэротенк. Однако большая продолжительность обработки сточных вод в аэротенках, значительная емкость сооружений,большой расход воздуха и электроэнергии заставляют искать пути интенсификации этого процесса для снижения капитальных и эксплуатационных затрат.[ ...]

При биохимической очистке сточных вод одноатомные фенолы (сам фенол, крезолы) легко окисляются до углекислого газа и воды. В отличие от этого окисление фенолов более сложного строения, а также нафтолов, антролов и особенно двух- и многоатомных фенолов (например, гидрохинона, пирокатехина) протекает значительно труднее и сопровождается образованием целого ряда биохимически стабильных органических продуктов .[ ...]

Локальная очистка сточных вод от эмульгаторов, не способных к биохимическому распаду. Широко применяемый в промышленности в качестве эмульгатора некаль не разрушается в процессе биохимической очистки сточных вод и при известных концентрациях угнетает процессы нитрации и окисления других органических соединений. Кроме того, присутствие некаля в воде значительно ухудшает ее органолептические свойства. Возможность применения метода ионообмена для извлечения некаля из промывных вод основана на способности сильноосновных анионитов (например АВ-16) селективно обменивать ион хлора на анион вгор-бутилнафталинсульфокислоты. Регенерация анионита производится водно-спиртовыми растворами хлористого натрия. После отгонки спирта и части воды из регенерирующего раствора и охлаждения его некаль выпадает в виде кристаллов, а маточник возвращается в цикл ионообмена или регенерации.[ ...]

Устройства биохимической очистки сточных вод являются обычно конечным звеном очистного комплекса, поэтому описанию методов их контроля и регулирования посвящены две последние главы. В главе VII рассматриваются новые приборы для измерения содержания растворенного кислорода, БПК, концентрации активного ила, окислительно-восстановительного потенциала, уровнемеры специального назначения. Некоторые из этих приборов разработаны в Советском Союзе с участием авторов и их сотрудников и впервые освещаются в непериодической печати. Содержание главы VIII составляет материал некоторых новых работ, посвященных построению математической модели процесса БХО, а также анализу и синтезу систем его регулирования.[ ...]

В связи с этим сточные воды, содержащие жирные кислоты, необходимо подвергать возможно полной очистке с помощью различных физико-химических методов, доводя содержание жирных кислот до 1,5 г/л (БПКполн 1500-2000 мг 02/л). Биохимическая очистка сточных вод с большей концентрацией жирных кислот неизбежно ведет к безвозвратной потере большого количества ценных промышленных продуктов

Другим методом биохимической очистки сточных вод является создание биологических прудов, в которых используется способность природных вод к самоочищению. Биологические пруды представляют собой водоемы площадью 0,5-1,0 га, в которых сточные воды могут очищаться в аэробных и анаэробных условиях. Анаэробные пруды служат для предварительной очистки высококонцентрированных сточных вод: за 30-50 суток обеспечивается снижение БПК в воде на 50-70 %. Глубина таких прудов достигает 2,5-3 м.[ ...]

В Советском Союзе биохимическая очистка является одним из основных методов очистки нефтьсодержащих сточн ных вод перед сбросом в водоемы. При этом следует отметить, что основными наиболее эффективными сооружениями биохимической очистки сточных вод на отечественных НПЗ и НХЗ являются аэротенки. Сравнивая в целом состояние биохимической очистки сточных вод НПЗ и НХЗ в СССР и за рубежом, можно сказать, что наша страна находится на уровне ведущих зарубежных стран, а по глубине очистки даже превосходит многие страны.[ ...]

Сущность процесса биохимической очистки. Впервые в СССР метод биохимической очистки сточных вод НПП предложен в 1975 г. Я.А.Карелиным и Г.И.Воробьевой. Этот метод очистки сточных вод основан на способности микроорганизмов использовать для питания находящиеся в сточных водах органические вещества (органические кислоты, спирты, белки, углеводы и т.д.), которые для них являются источником углерода. Азот, фосфор и калий, которые также необходимы для жизнедеятельности, микроорганизмы получают из различных соединений: азот - из аммиака, нитратов, аминокислот, фосфор и калий - из минеральных солей.[ ...]

Процесс биохимической очистки сточных вод от органических веществ в аэротенках состоит из таких этапов: адсорбция и коагуляция активным илом взвешенных и коллоидных частиц, окисление микроорганизмами растворенных и адсорбированных илом органических соединений, нитрификация и регенерация активного ила. Избыточный активный ил удаляется из сооружения.[ ...]

Вторым важным приемом биохимической очистки сточных вод является аэрация их в аэротенках с активным илом. Механически осветленную сточную воду подводят в открытые резервуары коридорного типа и интенсивно перемешивают с достаточным количеством воздуха барботированием или с помощью перемешивающих приспособлений (щетки или мешалки). Бактерии активного ила образуют хлопья, свободно взвешенные в воде. Через соответствующие промежутки времени (минимум 1 ч) обработанная сточная вода отводится для отстаивания; часть активного ила снова возвращают в аэротенк, а избыточную часть его удаляют.[ ...]

Разработана технология биохимической очистки сточных вод от ионов тяжелых металлов: Сг, Си2+, 2п2+, №2+, Бе2+, Ре3+. Суть метода заключается в обработке сточной воды накопительной культурой суль-фатвосстанавливающих бактерий, которые в анаэробных условиях при наличии органического питания восстанавливают содержащиеся в воде сульфаты в нерастворимые сульфиды, которые легко отстаиваются и удаляются в виде шлама. Процесс очистки происходит в специальных сооружениях - биовосстановителях.[ ...]

Загрязненность фенольных вод каменноугольной смолой обычно находится в пределах 0,5 г/дм3 в отдельные периоды может увеличиваться до 1 г/дм3 и более. Загрязненность взвешенными веществами, главным образом бактериальным илом, происходит в процессе биохимической очистки сточных вод и находится в пределах до 1 г/дм3. По данным исследований, оптимальная температура отстаивания фенольных вод 35-40 °С, pH 7,0-7,5.[ ...]

Одной из важнейших задач при биохимической очистке сточных вод в аэротенках является обеспечение кислородом микроорганизмов, которые производят окисление органических примесей в воде. Процесс очистки сточных вод в аэротенке состоит из ряда параллельных и последовательных стадий превращений веществ, участвующих в биохимических реакциях. Изменения, происходящие при этом с кислородом, могут быть представлены следующим образом. При подаче воздуха в воду образуются пузырьки, из которых кислород переходит в иловую смесь и, перемешиваясь, равномерно распределяется в ней. Затем растворенный кислород адсорбируется бактериальными клетками, входящими в состав хлопков активного ила, и расходуется на окисление органических веществ, также адсорбированных хлопками ила. В результате синтеза белков в клетке и деления ее образуются новые живые организмы. Кроме того, образуются продукты распада органических веществ - углекислота, вода, продукты неполного распада органических примесей, которые отводятся от хлопка активного ила в воду. Газообразные продукты распада удаляются из воды в процессе аэрации.[ ...]

Другой проблемой, связанной с биохимической очисткой сточных вод II системы, является содержание в них трудноокисляющихся веществ (нефти и нефтепродуктов), различных сернистых соединений, фенолов, а также значительного количества минеральных солей.[ ...]

Установлено, что ход процесса биохимической очистки сточных вод зависит от соотношений между количествами растворенного кислорода (окислителя), растворенных и диспергированных органических веществ (восстановителей) и ферментов, которые продуцируются бактериями (катализаторов). Редокс-потенциал позволяет определять непосредственно эти соотношения, выражая их в единицах электрического потенциала - милливольтах.[ ...]

При проектировании сооружений биохимической очистки сточных вод и анализе их работы обычно используют следующие расчетные параметры: скорость биологического окисления, стехиометрические коэффициенты для акцепторов электронов, скорость роста и физические свойства биомассы активного ила. Изучение химических изменений во взаимосвязи с биологическими превращениями, происходящими в биореакторе, дает возможность получить достаточно полное представление о работе сооружения. Для анаэробных систем, к которым можно отнести анаэробные фильтры, такие сведения нужны, чтобы обеспечить оптимальное значение pH среды, являющегося основным фактором нормальной работы очистных сооружений. В некоторых аэробных системах, например, в таких, в которых происходит нитрификация, контроль pH среды также необходим для обеспечения оптимальной скорости роста микроорганизмов. Для закрытых очистных сооружений, вошедших в практику в конце 60-х годов, в которых используется чистый кислород (окси-тенк), изучение химических взаимодействий стало необходимым не только для регулирования pH, но и для инженерного расчета газопроводного оборудования.[ ...]

Нефтепродукты тормозят процесс биохимической очистки сточных вод в аэротенках при 50 мг/л . Нефтяная пленка на поверхности воды пропитывает перья у перелетных птиц, они не могут взлететь и погибают.[ ...]

Задачей санитарной техники является не только очистка сточных вод, но и отделение очищенной жидкости от всей массы организмов, ведущих процесс. Поэтому одним из условий работы сооружений при биохимической очистке сточных вод является образование хлопка активного ила, способного к быстрому осаждению. До работ Мак Кинней и др. считалось, что свойство образовывать хлопок активного ила присуще лишь 1ооц 1оеа гат ета.[ ...]

Использование уплотненных ценозов резко ускоряло биохимическую очистку сточных вод от химических загрязнений. Так, очистка нефтесодержащих стоков с добавкой хозяйственно-бытовых сточных вод (соотношение 5:1), содержащих 10 -150 мг/л нефтепродуктов, ХПК в среднем 1080 мг 02/л, ВПК5 120 мг/л, БПКП0ЛН 340 мг 02/л, биохимический показатель 0,31, характеризовалась следующими показателями. Неполная биохимическая очистка в одну ступень при периоде аэрации 2-2,5 ч и концентрации активного ила 18 г/л снизила ХПК на 80%, содержание нефтепродуктов - на 75%, БПК5 - на 70%, БПКполн - на 72%.[ ...]

Схемой же США предусматривается обессоливание всех сточных вод НПЗ, что обусловливает повышенные примерно в 3 раза (исходя из доли сточных вод ЗЛОУ) капитальные затраты на обессоливание. Второй особенностью, связанной с дополнительными затратами, является биохимическая очистка сточных вод ЭЛОУ в составе общезаводского потока. С другой стороны, этой схемой предусмотрено отведение продувочной воды водоблоков, как не требующей очистки, в обход очистных сооружений (с последующим смешением с общезаводским потоком очищенных сточных вод перед совместным обессоливанием). Это решение уменьшает размер капиталовложений в систему очистки сточных вод примерно на одну треть (исходя из доли продувочной воды градирен). Следует также отметить, что при таком разделении содержание ингибиторов, биоцидов и других добавок в сточных водах перед биохимической очисткой значительно снижается. В условиях зарубежных НПЗ подобное разделение сточных вод оказывается возможным ввиду постоянного контроля над утечками нефтепродуктов, являющихся основным источником, загрязнения оборотной воды органическими веществами.[ ...]

Основным направлением совершенствования организации биохимической очистки сточных вод традиционно является создание крупных кустовых (городских) сооружений. Экономические преимущества этого направления обусловлены ярко выраженным эффектом агрегатной концентрации процессов очистки. С ростом концентрации производственных процессов затраты монотонно возрастают, но постоянные и переменные расходы увеличиваются в разной степени. Это позволяет реализовать процедуру выбора типа сооружений как оптимизационную. Поскольку большинство видов производственных расходов (особенно затраты, связанные с созданием и использованием основных фондов) растут в меньшей степени, чем масштаб производственной деятельности, удельные величины этих затрат на единицу объема очищенных стоков или массы извлеченных из них загрязнений сокращаются.[ ...]

Акрилонитрил оказывает вредное действие на сооружения биохимической очистки сточных вод; концентрация более 20 мг/л тормозит сбраживание осадка сточных вод в анаэробных условиях .[ ...]

Основой для разработки методов двух- и многоступенчатой биохимической очистки сточных вод является идея культивирования на очистных станциях активных илов, приспособленных к окислению отдельных групп органических загрязнений. Считается, что чем ближе адаптация (специализация) активного ила к данному виду загрязнений, тем успешнее проходит процесс биохимической очистки. Одним из путей для инженерной реализации этой идеи является создание ступенчатой биохимической очистки, на каждой ступени которой функционирует определенная культура активного ила. Понятно, что чем больше разница в скоростях биохимического окисления отдельных компонентов сточных вод, чем выше их начальные концентрации, тем эффективнее применение ступенчатой схемы очистки.[ ...]

Наиболее существенным вопросом наладки и пуска сооружений биохимической очистки сточных вод является наращивание активного ила в аэротенках или биопленки в биологических фильтрах.[ ...]

Окситенк ВНИИводгео является комбинированным сооружением для биохимической очистки сточных вод с применением технического кислорода . Для достижения максимальной эффективности использования подаваемого в сооружение кислорода часть окситенка (реактор), в котором происходит насыщение иловой смеси кислородом, герметизируется. Отделение очищенной воды от активного ила происходит в открытом резервуаре-илоотделителе. Перемешивание иловой смеси и насыщение ее кислородом осуществляется механическим поверхностным аэратором, кислород поступает в окситенк автоматически по мере падения давления газа в реакционной зоне. Удаление инертных газов (азота и углекислого газа) также автоматизировано. Окситенк ВНИИводгео работает по принципу аэротенка-смесителя, обеспечивая полную биохимическую очистку промышленных сточных вод с БЙКП0ЛН - 250-300 мг 02/л.[ ...]

Наибольшее распространение получили малогабаритные блочные установки биохимической очистки сточных вод на базе активного ила типа КУ пропускной способностью от 25 до 400 м3/сутки. Конденсатсодержащие сточные воды образуются на различных этапах добычи и промысловой подготовки газа. Это, прежде всего, сточные воды, получаемые в процессе основного производства (конденсационные и пластовые воды из сепараторов, рефлюксная вода из десорберов, вода от охлаждения насосов перекачки конденсата), составляющие до 90%, а также сточные воды вспомогательных объектов. Метанол, гликоли и газовый конденсат являются также основными загрязнителями сточных вод ГПЗ.[ ...]

Разность между ХПК и БПК характеризует наличие примесей, не окисляющихся биохимическим путем, и количество органических веществ, идущих на построение клеток микроорганизмов. Для бытовых сточных вод БПКполн составляет 85-90% от ХПК- По соотношению БПКполн/ХПК можно судить о возможности применения определенного метода очистки сточных вод. Если соотношение БПК/ ХПК>0,5, то это указывает на возможность применения биохимической очистки сточной воды; при соотношении БПК/ХПК [ ...]

Финская фирма «Экора» запатентовала установки типа ХКН, на которых применена биохимическая очистка сточных вод с введением реагентов перед аэротенком (симультанное осаждение). Установка действует периодически, поэтому она рекомендуется для объектов с большим колебанием расхода и состава сточных вод. Она рассчитана на очистку сточных вод от 2500 жителей. Установка выполняется из железобетона и состоит из двух резервуаров - приемного и аэротенка. Работа ее автоматизирована и управляется в зависимости от уровня жидкости в аэротенке с помощью выпускного клапана. Сточные воды поступают в приемный резервуар и эрлифтом перекачиваются в аэротенк. В подающий трубопровод подается реагент. Одновременно производятся наполнение аэротенка и очистка сточных вод в нем. Цикл наполнения рассчитан на 21ч. Фирмой рекомендуется поддерживать его от 5 до 2 ч. После наполнения резервуара выключается из работы воздуходувка, в связи с чем прекращаются аэрация и подача сточных вод в аэротенк эрлифтом. В аэротенке сточные воды отстаиваются в течение 1,5 ч (с 2 ч до 3 ч 30 мин). Затем открывается выпускной клапан, очищенные сточные воды вытекают из аэротенка. Конец выпускного трубопровода в аэротенке поддерживается поплавком в верхней части аэротенка. В связи с тем, что трубопровод изменяет свое положение по высоте, он имеет шарнирное соединение.[ ...]

Перспективным направлением в разработке высокоэффективной технологии обработки воды является исследование воздействия электрического поля на биологические объекты, в том числе и на микроорганизмы, осуществляющие процессы биохимической очистки сточных вод в биоокислителях и обезвреживания образующихся осадков в метантенках, перегнивателях и т. п. Известно, что умеренное воздействие электрического поля стимулирует рост и жизнедеятельность бактерий, увеличивая их окислительную способность по отношению к органическим примесям воды. Это направление выдвигает ряд специфических задач в исследовании данного феноменологического фактора, решение которых может оказать значительное влияние на интенсификацию процессов биоокисления органических примесей, содержащихся как в сточных водах, так и в образующихся осадках.[ ...]

В статье Я. А. Карелина, опубликованной в 1959 г. , приведены результаты исследований по биохимической очистке сточных вод электрообессоливающей установки (ЭЛОУ), прошедших нефтеловушку, при разбавлении стока 1: 1. В качестве разбавляющей воды применялась смесь, состоящая из фекальной жидкости и 0,5 объема условно чистой воды. Опыты проводились на полупроизводственной установке.[ ...]

В последнее время за рубежом и у нас в исследовательской практике для оценки хода процесса биохимической очистки сточных вод стали пользоваться окислительно-восстановительным потенциалом, называемым иначе редокс-по-тенциалом фо. Этот показатель более полно характеризует процесс биохимического окисления, чем, например, количество растворенного кислорода. Кроме того, на основании величины фо можно дать более объективную оценку процесса в тех случаях, когда загрязнения содержат токсичные по отношению к микроорганизмам вещества и процесс тормозится, несмотря на наличие достаточного количества кислорода.[ ...]

Последующий процесс регенерации активного ила может происходить или в самом сооружении, производящем биохимическую очистку (аэротенке), или в отдельном сооружении (регенераторе). В первом случае ко времени адсорбции прибавляется время на регенерацию, и сооружение рассчитывается на проток сточных вод по сумме времени; во втором случае сооружение (аэротенк) может быть рассчитано только на проток сточных вод по времени, необходимому для адсорбции, а регенератор рассчитывается на время регенерации только для протока в нем активного ила, расход которого значительно меньше, чем расход сточных вод. Поэтому при определенных условиях второй случай в строительном и эксплуатационном отношении может быть более выгодным, чем первый. Для того чтобы можно было решить эту задачу, проектировщик сооружений биохимической очистки сточных вод должен определять время, необходимое для процесса адсорбции органических веществ активным илом, и время, необходимое для процесса его регенерации.[ ...]

Биологический способ регенерации активного угля в аэробных условиях, как правило, используется в процессе биохимической очистки сточных вод в случае адсорбции биологически разрушаемых органических веществ.[ ...]

Перед поступлением на сооружения биохимической очистки сточные воды последовательно проходят аварийный амбар, песколовки, нефтеловушки, пруды дополнительного отстоя, песчаные фильтры или флотаторы и т. д. Задачей этих сооружений является по возможности более полное удаление загрязнений до предельно допустимых для биохимической очистки концентраций. В случае несовершенной работы указанных сооружений и поступления загрязнений в более высоких концентрациях работа узла биохимической очистки будет нарушена.[ ...]

Это количество бытовых стоков соответствует сбросу города с населением 450-500 тыс. человек. Получить такое количество бытовых вод для очистки сточных вод нефтеперерабатывающего завода нельзя (нереально). Таким образом, произвести полную биохимическую очистку сточных вод завода, перерабатывающего высокосернистую нефть, с применением деэмульгатора НЧК не представляется возможным.[ ...]

Большее распространение получила двухступенчатая схема, в которой биофильтры первой ступени заменены на аэротенки. Такая замена при очистке производственных сточных вод химических предприятий вполне оправдана и целесообразна, поскольку дает возможность направлять на сооружения биохимической очистки сточные воды с более высокими концентрациями органических веществ (табл. У1Н-7).[ ...]

В зависимости от назначения отстойников в технологической схеме очистной станции они подразделяются на первичные и вторичные. Первичными называются отстойники перед сооружениями для биохимической очистки сточных вод; вторичными - отстойники, устраивае мые для осветления сточных вод, прошедших биохимическую очистку.[ ...]

В процессе питания микроорганизмы получают материал для своего строения, вследствие этого происходит прирост массы бактерий активного ила, а в процессе дыхания они используют кислород воздуха. Содержащиеся в сточных водах органические вещества в результате окислительных процессов минерализуются, и конечными продуктами окисления являются диоксид углерода и вода. Некоторые органические соединения окисляются не полностью, образуются промежуточные продукты. В процессе биохимической очистки сточных вод происходит также окисление сероводорода до серы и серной кислоты, а аммиака - до азотистой и азотной кислот (нитрификация).[ ...]

Большинство гетеротрофных организмов получает энергию в результате биологического окисления органических веществ - дыхания. Водород от окисляемого вещества (см. § 24) передается в дыхательную цепь. Если роль конечного акцептора водорода выполняет только кислород, процесс носит название аэробного дыхания, а микроорганизмы являются строгими (облигатными) аэробами, которые обладают полной цепью ферментов переноса (см. рис. 14) и способны жить только при достаточном количестве кислорода. К аэробным микроорганизмам относятся многие виды бактерий, гри-6¿i, водоросли, большинство простейших. Аэробные сап-рофиты играют основную роль в процессах биохимической очистки сточных вод и самоочищении водоема.

Эти методы применяют для очистки хозяйственно-бытовых и промышленных сточных вод от многих растворенных органических и не­которых неорганических (сероводорода, аммиака, сульфидов, нитри­тов и др.) веществ. Процесс очистки основан на способности определенных микроорганизмов использовать указанные вещества для питания: органические вещества для микроорганизмов являются ис­точником углерода. Микроорганизмы частично разрушают их, превращая СО 2 , Н 2 O, нитрат- и сульфат-ионы, а частично используют для образования собственной биомассы. Процесс биохимической очистки посвоей сути - природный, его характер одинаков для процессов, протекающих как в природных водоемах, так и в очистных сооруже­ниях.

Биологическое окисление осуществляется сообществом микроор­ганизмов (биоценозом), включающим множество различных бактерий, простейших и более высокоорганизованных организмов (водорослей, грибов), связанных между собой в единый комплекс сложными вза-имоотношениями. Это сообщество называют активным илом, он со­держит от 106 до 1014 клеток на 1 г сухой биомассы (около 3 г микро­организмов на 1 литр сточной воды).

Известны аэробные и анаэробные методы биохимической очист­ки сточных вод.

Аэробный процесс. Для его осуществления используются группы микроорганизмов, для жизнедеятельности которых необходимы по­стоянный приток кислорода (2 мг0 2 /л), температура 20-30°С, рН сре­ды 6,5-7,5, соотношение биогенных элементов БПК: N: Р не более 100: 5: 1. Ограничением метода является содержание токсичных ве­ществ не выше: тетраэтилсвинца 0,001 мг/л, соединений бериллия, титана, Сг 6+ и оксида углерода 0,01 мг/л, соединений висмута, вана­дия, кадмия и никеля 0,1 мг/л, сульфата меди 0,2 мг/л, цианистого калия 2 мг/л.

Аэробная очистка сточных вод проводится в специальных соору­жениях: биологических прудах, аэротенках, окситенках, биофильтрах.

Биологические пруды предназначены для биологической очистки и для доочистки сточных вод в комплексе с другими очистными со­оружениями. Их выполняют в виде каскада прудов, состоящих из 3-5 ступеней. Процесс очистки сточных вод реализуется по следующей схеме: бактерии используют для окисления загрязнений кислород, выделяемый водорослями в процессе фотосинтеза, а также кислород из воздуха. Водоросли, в свою очередь, потребляют оксид углерода, фосфаты и аммонийный азот, выделяемый при биохимическом раз­ложении органических веществ. Поэтому для нормальной работы пру­дов необходимо соблюдать оптимальные значения рН и температуру сточной воды. Температура должна быть не менее 6 °С, в связи с чем в зимнее время пруды не эксплуатируются.

Различают пруды с естественной и искусственной аэрацией. Глу­бина прудов с естественной поверхностной аэрацией, как правило, не превышает 1 м. При искусственной аэрации прудов с помощью меха­нических аэраторов или продувки воздуха через толщу воды их глуби­на увеличивается до 3 м. Применение искусственной аэрации ускоря­ет процессы очистки воды. Следует указать и недостатки прудов: низ­кую окислительную способность, сезонность работы, потребность в больших территориях.

Сооружения для искусственной биологической очистки по признаку расположения в них активной биомассы можно разделить на две группы:

Активная биомасса находится в обрабатываемой сточной воде во взвешенном состоянии (аэротенки, окситенки);

Активная биомасса закрепляется на неподвижном материале, а сточная вода обтекает его тонким пленочным слоем (био­фильтры).

Аэротенки представляют собой железобетонные резер­вуары, прямоугольные в плане, разделенные перегородками на отдель­ные коридоры.

Для поддержания активного ила во взвешенном состоянии, интен­сивного его перемешивания и насыщения обрабатываемой смеси кис­лородом воздуха в аэротенках устраиваются различные системы аэрации (чаще механическая или пневматическая). Из аэротенков смесь обработанной сточной воды и активного ила поступает во вторичный отстойник, откуда осевший на дно активный ил с помощью специальных устройств (илососов) отводится в резервуар насосной станции, а очищенная сточная вода поступает либо на дальнейшую доочистку, либо дезинфицируется.

Для пневматической аэрации сточных вод вместо воздуха может подаваться чистый кислород. Для такого процесса используются окситенки , несколько отличные по конструкции от аэротенков. Окисли­тельная способность окситенков в 3 раза выше последних.

Биофильтры находят применение при суточных расходах бытовых и производственных сточных вод до 20-30 тыс. м 3 в сутки. Биофильт­ры представляют собой резервуары круглой или прямоугольной фор­мы в плане, которые заполняются загрузочным материалом. По ха­рактеру загрузки биофильтры разделяют на две категории: с объемной и плоскостной загрузкой. Объемный материал, состоящий из гравия, керамзита, шлака с крупностью фракций 15-80 мм, засыпается слоем высотой 2-4 м. Плоскостной материал выполняется в виде жестких (кольцевых, трубчатых элементов из пластмасс, керамики, металла) и мягких (рулонная ткань) блоков, которые монтируются в теле биофиль­тра слоем толщиной 8 м.

Анаэробный процесс. Здесь происходит биологическое окисление орга­нических веществ в отсутствие молекулярного кислорода за счет химичес­ки связанного кислорода в таких соединения, как сульфаты, сульфиты и карбонаты. Про­цесс протекает в две стадии: на первой образуются органические кис­лоты, на второй стадии образовавшиеся кислоты преобразуются в метан и С0 2: органические соединения + 0 2 + кислотообразующие бактерии -> летучие кислоты + СН 4 + С0 2 + Н, + новые клетки + другие продукты -» летучие кислоты + 0 2 + метанобразующие бакте­рии -> СН 4 + С0 2 + новые клетки. Основной процесс проводится в метантенках.. В них перерабатывается активный ил и концентрированные сточные воды (обычно БПК > 5000), содержащие органические вещества, которые разрушаются анаэробными бактериями в ходе метанового брожения. Указанное брожение в естественных условиях протекает на болотах.

Основная цель анаэробной очистки - уменьшение объема актив­ного ила или количества органических веществ в сточной воде, полу­чение метана (до 0,35 м 3 при нормальных условиях на 1 кг ХПК) и хо­рошо фильтрующего и без запаха осадка. Осадки после фильтрации могут быть использованы в качестве удобрения в растениеводстве (если содержание в них тяжёлых металлов ниже ПДК). Получаемый в ме­тантенках газ содержит до 75 % (об.) метана (остальное - С0 2 и воз­дух) и используется в качестве горючего.

Биологическая очистка загрязненных вод может быть осуществлена в естественных условиях, для чего используют специально подготовленные участки земли (поля ороше­ния и фильтрации ). В этих случаях для освобождения сточ­ных вод от загрязняющих примесей используется очищающая способ­ность самой почвы. Фильтруясь сквозь слой почвы, вода оставляет в ней взвешенные, коллоидные и растворенные примеси. Микроорга­низмы почвы окисляют органические загрязняющие вещества, пре­вращая их в простейшие минеральные соединения - диоксид углеро­да, воду, соли. Поля орошения используются одновременно для очистки сточных вод и выращивания зерновых и силосных культур, трав, овощей, а так­же посадки кустарников и деревьев. Поля фильтрации используются только для очистки сточных вод.

Биохимический показатель



Влияние различных факторов на скорость

Биохимического окисления

Скорость окисления зависит от концентрации органических ве­ществ, равномерности поступления сточной воды на очистку и от содержания в ней примесей. При заданной степени очистки основ­ными факторами, влияющими на скорость биохимических реакций, являются концентрация потока, содержание кислорода в сточной воде, температура и рН среды, содержание биогенных элементов, а также тяжелых металлов и минеральных солей.

Турбулизация сточных вод в очистных сооружениях способству­ет повышению скорости очистки. Турбулизация потока достигается интенсивным перемешиванием, при котором активный ил находится во взвешенном состоянии, что обес­печивает равномерное распределение его в сточной воде.

Важнейшим свойством активного ила является его способность к оседанию. Свойство оседания описывается величиной илового индекса, представляющего собой объем в мл, занимаемый 1 г ила в его естественном состоянии после 30 мин отстаивания. Плохая оседаемость ила ведет к повышенному выносу его с очищенной водой и ухудшению качества очистки. Доза активного илазависит от илового индекса.



Для очистки следует применять свежий активный ил, который хорошо оседает и более устойчив к колебаниям температу­ры и рН среды.

Установлено, что с повышением температуры сточной водыско­рость биохимической реакции возрастает. Однако на практике ее поддерживают в пределах 20-30 °С. Превышение указанной температу­ры может привести к гибели микроорганизмов. При более низких температурах снижается скорость очистки, замедляется процесс адап­тации микробов к новым видам загрязнений, ухудшаются процессы нитрификации, флокуляции и осаждения активного ила. Повыше­ние температуры в оптимальных пределах ускоряет процесс разло­жения органических веществ в 2-3 раза. С увеличением температу­ры сточной воды уменьшается растворимость кислорода, поэтому для поддержания необходимой концентрации его в воде требуется производить более интенсивную аэрацию.

Активный ил способен сорбировать соли тяжелых металлов. При этом снижается биохимическая активность ила и происходит вспухание его из-за интенсивного развития нитчатых форм бакте­рий.

Отрицательное влияние на скорость очистки может оказать и по­вышение содержания минеральных веществ, находящихся в сточной воде, выше допустимых концентраций.

Перенос кислорода из газовой фазы к клеткам микроорганизмов происходит в два этапа. На первом этапе происходит перенос кисло­рода из воздушных пузырьков в основную массу жидкости, на вто­ром – перенос абсорбированного кислорода из основной массы жид­кости к клеткам микроорганизмов, главным образом, под действием турбулентных пульсаций.

Количество абсорбируемого кислорода может быть вычислено по уравнению массоотдачи:

где М – количество абсорбированного кислорода, кг/с; β V - объем­ный коэффициент массоотдачи, с -1 ; V – объем сточной воды в со­оружении, м 3 ;

с р, с – равновесная концентрация и концентрация кис­лорода в основной массе жидкости, кг/м 3 .

Исходя из уравнения массоотдачи, количество абсорбируемого кислорода может быть увеличено за счет роста коэффициента массоотдачи или движущей силы. Изменения движущей силы воз­можны в результате увеличения содержания кислорода в воздухе, уменьшения рабочей концентрации или повышения давления про­цесса абсорбции. Однако все эти пути или экономически невыгод­ны, или не приводят к значительному росту интенсивности процесса.

Наиболее надежный способ увеличения подачи кислорода в сточ­ную воду – это повышение объемного коэффициента массоотдачи.

Для успешного протекания реакций биохимического окисления необходимо присутствие в сточных водах соединений биогенных эле­ментов и микроэлементов: N, S, Р, К, Мg, Са, Nа, С1, Fе, Мn, Мо, Ni, Со, Zn, Сu и др. Среди этих элементов основными являются N, Р и К, которые при биохимической очистке должны присутствовать в необходимых количествах. Содержание остальных элементов не нор­мируется, так как их в сточных водах достаточно.

Недостаток азота тормозит окисление органических загрязните­лей и приводит к образованию трудно оседающего ила. Недостаток фосфора приводит к развитию нитчатых бактерий, что является ос­новной причиной вспуханий активного ила, плохого оседания и вы­носа его из очистных сооружений, замедления роста ила и снижения интенсивности окисления. Биогенные элементы лучше всего усваиваются в форме соединений, в которой они находятся в микробных клетках: азот – в форме аммонийной группы NН 4 + , а фосфор – в виде солей фосфорных кислот.

При нехватке азота, фосфора и калия в сточную воду вводят раз­личные азотные, фосфорные и калийные удобрения. Соответствую­щие соединения азота, фосфора и калия содержатся в бытовых сточ­ных водах, поэтому при их совместной очистке с промышленными стоками добавлять биогенные элементы не надо.

Конструкции аэротенков

В аэротенке-отстойнике (рис. 17) зона аэрации отделена от зоны отстаивания. Сточная вода подается в центре, а отводится по лотку 1. В зоне отстаивания образуется слой взвешенного активного ила, через который фильтруется сточная вода. Избыточный активный ил отводится из зоны взвешенного слоя по трубам, а возвратный ил поступает в зону аэрации.

Рис. 17. Аэротенк-отстойник: 1 – лоток; 2 –

Иначе устроен аэротенк-осветлитель (рис. 18). Сточная вода поступает в зону аэрации, где смешивается с активным илом и аэрируется. Затем смесь через окна 1 направляется в зону осветления и зону дегазации. В зоне осветления возникает взвешенный слой активного ила, через который фильтруется иловая смесь. Очищенная вода поступает в лотки и удаляется из аэротенка.

Рис. 18. Аэротенк-осветлитель: 1 –

Для интенсификации процесса биохимической очистки сточные воды перед аэротенком предлагается обрабатывать окислителями (озоном) с целью снижения ХПК. Для этой цели разработан процесс очистки сточных вод в глубоких шахтах. В них устанавливают вертикальные трубы, доходящие почти до дна шахты. Сточная вода подается по трубам одновременно с воздухом. Под действием высокого гидростатического давления кислород воздуха почти полностью растворяется в сточной воде. При этом степень его использования микроорганизмами увеличивается. Иловая смесь по подъемной трубе поднимается вверх, и после дегазации поступает в отстойник. Очистная установка занимает небольшую площадь. При ее работе отсутствует выделение запахов и достигается высокая степень очистки.

Обработка осадков

В процессе биохимической очистки в первичных и вторичных отстойниках образуются большие массы осадков, которые необходимо утилизировать или обрабатывать с целью уменьшения загрязнения биосферы. Осадки сточных вод могут быть в основном минерального состава, в основном органического состава и смешанные. Они характеризуются содержанием сухого вещества, содержанием беззольного вещества, элементным составом, гранулометрическим составом.

Во вторичных отстойниках в осадке находится в основном избыточный активный ил, объем которого в 1,5-2 раза больше, чем объем осадка из первичного отстойника. В осадках содержится свободная и связанная вода, свободная вода (60-65 %) может быть легко удалена из осадка, связанная вода (30-35 %) – коллоидно-связанная и гигроскопическая, удаление которой затруднено.

Для обработки и обезвреживания осадков используются различные технологические процессы, представленные на рис. 20.

Уплотнение активного ила связано с удалением свободной влаги и является необходимой стадией всех технологических схем обработки осадков. При уплотнении удаляется в среднем 60 % влаги и масса осадка сокращается в 2,5 раза. Для уплотнения используют гравитационный, флотационный, центробежный и вибрационный методы.

Процесс стабилизации осадков проводят для разрушения биологически разлагаемой части органического вещества на диоксид углерода, метан и воду. Стабилизацию ведут при полощи микроорганизмов в анаэробных и аэробных условиях.

Рис. 20. Схемы процессов обработки осадка

Кондиционирование осадков проводят для снижения удельного сопротивления и улучшения водоотдачи вследствие изменения форм связи воды. Кондиционирование проводят реагентными и безреагентными способами. При реагентной обработке осадка происходит коагуляция с разрывом сольвентных оболочек и улучшаются водоотдающие свойства.

К безреагентным методам обработки относятся тепловая обработка, замораживание с последующим отстаиванием, жидкофазное окисление, электрокоагуляция и радиационное облучение.

Термическую обработку осадков проводят в случае их подготовки к рекуперации. Сушку осадков проводят в сушилках различной конструкции.

Биохимическая очистка сточных вод

Сточные воды, прошедшие физико-химическую очистку, содержат еще достаточно большое количество растворенных, а в ряде случаев сильно диспергированных органических загрязнений. Поэтому дальнейшую очистку таких вод целесообразно проводить биохимическим методом.

Биохимическая очистка возможна только для производственных сточных вод, загрязненных веществами, которые могут быть окислены микроорганизмами. Используются аэробные и анаэробные методы биохимической очист­ки сточных вод. При аэробной очистке микроорганизмы куль­тивируются в активном иле или биопленке. Анаэробные методы очистки протекают без доступа кислорода; их используют, главным об­разом, для обезвреживания осадков.

Среди бактерий в очистных сооружениях сосуществуют гетеротрофы и автотрофы, причем преимущественное развитие получает та или иная группа в зависимости от условий работы системы.

Эти две группы бактерий различаются по своему отношению к источнику углеродного питания. Гетеротрофы используют в качестве источника углерода готовые органические вещества и перерабатывают их для получения энергии и биосинтеза клетки. Автотрофные организмы потребляют для синтеза клетки неорганический углерод, а энергию получают либо за счет фотосинтеза, используя энергию света, либо за счет хемосинтеза путем окисления некоторых неорганических соединений, например, аммиака, нитритов, солей двухвалентного железа, сероводорода, элементарной серы и др.

Механизм биологического окисления в аэробных условиях гетеротрофными бактериями приводит к наращиванию новой биомассы и выделению CO 2 , N 2 , P:

органические вещества + O 2 + N 2 + P → микроорганизмы + СO 2 + H 2 O + биологически неокисляемые растворенные вещества

микроорганизмы + O 2 → CO 2 + H 2 O + N + P + биологически неразрушаемая часть клеточного вещества.

В очищенном стоке остаются биологически неокисляемые вещества, преимущественно в растворенном состоянии, т.к. коллоидные и нерастворенные вещества удаляются из воды методом сорбции.

Анаэробный процесс метановой ферментации происходит по следующей схеме:

органические вещества + H 2 O → CH 4 + CO 2 + C 5 H 7 NO 2 + NH 4 + + HCO 3 –

Анаэробный процесс денитрификации происходит в две стадии:

органическое вещество + NO 3 – → NO 2 – + CO 2 + H 2 O;

органическое вещество + NO 2 – → N 2 + CO 2 + H 2 O + OH – .

Перечисленные схемы процессов далеко не исчерпывают всех возможностей биоокисления, но именно они наиболее часто встречаются в практике очистки как городских, так и производственных сточных вод.

Скорость и полнота биохимических превращений в процессе очистки сточных вод определяются условиями биохимической очистки, создаваемыми в аэрационных сооружениях – аэротенках. Существенное влияние на эффективность окислительных процессов оказывают следующие факторы: централизация и децентрализация впуска очищаемых сточных вод и возвратного активного ила, тип аэратора, конструктивные особенности вторичных отстойников. Исследование кинетики окисления показало, что начальный этап процесса окисления с момента смешения сточных вод с активным илом в первые 20-40 мин аэрации характеризуется высокой степенью окислительной активности бактерий, которая затем падает по экспоненциальной зависимости.

Основными факторами, влияющими на интенсивность процесса, являются следующие:

· Оптимальный баланс источников углеродного и азотистого питания и обеспечивающий этот баланс технологический режим; наличие биогенных элементов;

· Исключительная приспособляемость микроорганизмов к изменяющимся условиям существования;

· Симбиотический характер существования микробных ассоциаций, что позволяет сформировать активный ил с усиленными физиологическими свойствами.

Для создания специфической микрофлоры необходимо подавать на очистные сооружения концентрированные сточные воды стабильного состава в течение длительного времени. Это способствует индуцированию ферментов, изменяет тип обмена веществ бактериальных клеток и закрепляет приобретенные признаки наследственно. В результате формируется активный ил с повышенными окислительными свойствами, что приводит к росту окислительной мощности сооружений биоочистки. Специфическая микрофлора активного ила способна нивелировать залповые выбросы сточных вод, характеризуемых высокими концентрациями загрязняющий веществ.

Биохимический показатель

Сточные воды, направляемые на биохи­мическую очистку, характеризуются величиной БПК и ХПК.

БПК - это биохимическая потребность в кислороде или количество кисло­рода, использованного при биохимических процессах окисления орга­нических веществ (не включая процессы нитрификации) за опреде­ленный промежуток времени (2, 5, 8, 10, 20 сут), в мг О 2 на 1 мг вещества. Например: БПК 5 - биохимическая потребность в кисло­роде за 5 сут. БПК п - полная биохимическая потребность в кисло­роде до начала процессов нитрификации. ХПК - химическая по­требность в кислороде, т.е. количество кислорода, эквивалентное количеству расходуемого окислителя, необходимого для окисления всех восстановителей, содержащихся в воде. ХПК также выражают в мг О 2 на 1 мг вещества.

Для неорганических веществ, которые практически не поддают­ся окислению, также устанавливают максимальные концентрации. Если такие концентрации превышены, воды нельзя подвергать био­химической очистке.

Биоразлагаемость сточных вод характеризуется через биохимический показатель, под которым понимают соотношение БПК/ХПК.

Биохимический показатель является параметром, необходимым для расчета и эксплуатации промышленных сооружений для очист­ки сточных вод. Его значения колеблются в широких пределах для различных групп сточных вод. Промышленные сточные воды имеют низкий биохимический показатель (не больше 0,3); бытовые сточные воды - свыше 0,5. По биохимическому показателю концентрации загрязнений и токсичности промышленные сточные воды делят на четыре группы.

Первая группа имеет биохимический показатель выше 0,2. К этой группе, например, относятся сточные воды пищевой промышленно­сти (дрожжевых, крахмальных, сахарных, пивоваренных заводов), прямой перегонки нефти, синтетических жирных кислот, белково-витаминных концентратов и др. Органические загрязнения этой груп­пы не токсичны для микробов.

Вторая группа имеет показатель в пределах 0,02-0,10. В эту груп­пу входят сточные воды коксования, азотнотуковых, коксохимичес­ких, газосланцевых, содовых заводов. Эти воды после механической очистки могут быть направлены на биохимическое окисление.

Третья группа имеет показатель 0,001-0,01. К ней относятся, на­пример, сточные воды процессов сульфирования. хлорирования, про­изводства масел и ПАВ, сернокислотных заводов, предприятий чер­ной металлургии, тяжелого машиностроения и др. Эти воды после механической и физико-химической локальной очистки могут быть направлены на биохимическое окисление.

Четвертая группа имеет показатель ниже 0,001. Сточные воды этой группы в основном содержат взвешенные частицы. К этим во­дам относятся стоки угле- и рудообогатительных фабрик и др. Для них используют механические методы очистки.

Сточные воды первой и второй групп относительно постоянны по виду и расходу загрязнений. После очистки они применимы в системах оборотного водоснабжения. Сточные воды третьей группы образуются периодически и отличаются переменной концентрацией загрязнений, устойчивых к биохимическому окислению. Они загряз­нены веществами, которые хорошо растворимы в воде. Эти воды не­пригодны для оборотного водоснабжения.

→ Очистка сточных вод

Биохимические основы методов биологической очистки сточных вод


Биологические методы очистки сточных вод основываются на естественных процессах жизнедеятельности гетеротрофных микроорганизмов. Микроорганизмы, как известно, обладают целым рядом особых свойств, из которых следует выделить три основных, широко используемых для целей очистки:
1. Способность потреблять в качестве источников питания самые разнообразные органические (и некоторые неорганические) соединения для получения энергии и обеспечения своего функционирования.

2. Во-вторых, это свойство быстро размножаться. В среднем число бактериальных клеток удваивается через каждые 30 мин. По утверждению проф. Н.П. Блинова, если бы микроорганизмы могли беспрепятственно размножаться, то при наличии достаточного питания и соответствующих условий за 5 – 7 дней масса только одного вида микроорганизмов заполнила бы бассейны всех морей и океанов. Этого, однако, не происходит как из-за ограниченности источников питания, так и благодаря сложившемуся природному экологическому равновесию.

3. Способность образовывать колонии и скопления, которые сравнительно легко можно отделить от очищенной воды после завершения процессов изъятия содержавшихся в ней загрязнений.

В живой микробиальной клетке непрерывно и одновременно протекают два процесса – распад молекул (катаболизм) и их синтез (анаболизм), составляющие в целом процесс обмена веществ – метаболизм. Иными словами, процессы деструкции потребляемых микроорганизмами органических соединений неразрывно связаны с процессами биосинтеза новых микробиальных клеток, различных промежуточных или конечных продуктов, на проведение которых расходуется энергия, получаемая микробиальной клеткой в результате потребления питательных веществ. Источником питания для гетеротрофных микроорганизмов являются углеводы, жиры, белки, спирты и т.д., которые могут расщепляться ими либо в аэробных, либо в анаэробных условиях. Значительная часть продуктов микробной трансформации может выделяться клеткой в окружающую среду или накапливаться в ней. Некоторые промежуточные продукты служат питательным резервом, который клетка использует после истощения основного питания.

Весь цикл взаимоотношений клетки с окружающей средой в процессе изъятия из нее и трансформации питательных веществ определяется и регулируется соответствующими ферментами. Ферменты локализуются в Цитоплазме и в различных субструктурах, встроенных в мембрану клетки, выделяются на поверхность клетки или в окружающую среду. Общее содержание ферментов в клетке достигает 40-60% от общего содержания в ней белка, а содержание каждого из ферментов может составлять от 0,1 до 5% от содержания белка. При этом в клетках может находиться свыше 1000 видов ферментов, а каждую биохимическую реакцию, осуществляемую клеткой, могут катализировать 50-100 молекул соответствующего фермента. Часть ферментов представляют собой сложные белки (протеиды), содержащие кроме белковой части (апофермента) небелковую часть (кофер-мент). Во многих случаях коферментами являются витамины, иногда -комплексы, содержащие ионы металлов.

Ферменты делятся на шесть классов по характеру реакций, катализирующих: окислительные и восстановительные процессы; перенос различных химических групп от одного субстрата к другому; гидролитическое расщепление химических связей субстратов; отщепление от субстрата химической группы или присоединение таковой; изменение в пределах субстрата; соединение молекул субстрата с использованием высокоэнергетических соединений.

Поскольку микробиальная клетка потребляет только растворенные в воде органические вещества, то проникновение в клетку нерастворимых в воде веществ, таких, например, как крахмал, белки, целлюлоза и др. возможно лишь после их соответствующей подготовки, для чего клетка выпускает в окружающую жидкость необходимые ферменты для гидролитического их расщепления на более простые субъединицы.

Коферменты определяют природу катализируемой реакции и по выполняемым функциям подразделяются на три группы:
1. Переносящие ионы водорода или электроны. Связаны с окислительно-восстановительными ферментами – оксидоредуктазами.
2. Участвующие в переносе групп атомов (АТФ – аденозинтрифос-форная кислота, фосфаты углеводов, СоА – коферменат А и др.)
3. Катализирующие реакции синтеза, распада и изомеризации углеродных связей.

Механизм изъятия из раствора и последующей диссимиляции субстрата носит весьма сложный и многоступенчатый характер взаимосвязанных и последовательных биохимических реакций, определяемых типом питания и дыхания бактерий. Достаточно сказать, что многие аспекты этого механизма не совсем ясны до сих пор, несмотря на его практическое использование, как в области биотехнологии, так и в области биохимической очистки воды от органических примесей в широком спектре схем его технологического оформления.

Наиболее ранняя модель процесса биохимического изъятия и окисления загрязнений основывалась на трех главных положениях: сорбционное изъятие и накопление изымаемого вещества на поверхности клетки; диффузионное перемещение через клеточную оболочку либо самого вещества, либо продуктов его гидролиза, либо гидрофобного комплекса образуемого гидрофильным проникающим веществом и белком-посредником; метаболическая трансформация поступивших внутрь клетки питательных веществ, обеспечивающая диффузионное проникновение вещества в клетку.

В соответствии с этой моделью считалось, что процесс изъятия питательных веществ из воды начинается с их сорбции и накопления на поверхности клетки, для чего требуется постоянное перемешивание биомассы с субстратом, обеспечивающее благоприятные условия для “столкновения”^ клеток с молекулами субстрата.

Механизм переноса вещества от поверхности клетки внутрь нее -эта модель объясняла либо присоединением проникающего вещества к специфическому белку-переносчику, являющемуся компонентом мембраны клетки, который после введения вещества внутрь клетки высвобождается и возвращается на ее поверхность для совершения нового “захвата” вещества и нового цикла переноса, либо непосредственным растворением этого вещества в веществе стенки и цитоплазматической мембраны, благодаря чему оно и диффундирует внутрь клетки. Процесс стабильного потребления вещества начинался лишь после некоторого “периода равновесия” вещества между раствором и клетками, объяснявшегося протеканием гидролиза и диффузионным перемещением вещества через клеточную оболочку до цитоплазматической мембраны, где сосредоточены различные ферменты. С началом метаболических превращений сорбционное равновесие нарушается, и концентрационный градиент обеспечивает непрерывность дальнейшего поступления субстрата в клетку.

На третьем же этапе происходят все метаболические превращения субстрата частично в такие конечные продукты, как диоксид углерода, вода, сульфаты, нитраты (процесс окисления органических веществ), частично в новые микробиальные клетки (процесс синтеза биомассы), если процесс трансформации органических соединений происходит в аэробных условиях. Если же биохимическое окисление протекает в анаэробных условиях, то в его процессе могут образовываться различные промежуточные продукты (возможно целевого назначения), СН4, NH3, H2S и пр. и новые клетки.

Эта модель, однако, не смогла объяснить некоторые кинетические особенности транспортных процессов переноса субстрата и, в частности, накопления субстрата в клетке против концентрационного градиента, являющегося наиболее частым результатом этих процессов и получившего название “активного” транспорта, в отличие от диффузионного переноса. Особенностью активных транспортных процессов является их стереоспе-Цифичность, когда близкие по химической структуре вещества конкурируют за общий переносчик, а не просто диффундируют в клетку под воздействием концентрационного градиента.

В свете современных взглядов модель перемещения субстрата через клеточную мембрану предполагает наличие в ней гидрофильного “канала”, через который внутрь клетки могут проникать гидрофильные субстраты. Однако в отличие от вышеописанной модели здесь осуществляется стереоспецифическое перемещение, достигаемое, вероятно, за счет “эстафетной” передачи молекул субстрата от одной функциональной группы к другой. Субстрат при этом, как ключ, открывает соответствующий для его проникновения канал (модель трансмембранного канала).

Вторая альтернативная модель может рассматриваться как комбинация первых двух с использованием их положительных свойств. В ней предполагается наличие гидрофобного мембранного переносчика, который путем последовательных конформационных изменений, вызываемых субстратом, проводит его с внешней на внутреннюю сторону мембраны (модель конформационной транслокации), где гидрофобный комплекс распадается. В данной интерпретации механизма транспорта субстрата через клеточную мембрану термин “переносчик” по-прежнему употребляется, хотя все чаще заменяется термином “пермеаза”, учитывающим генетическую основу его кодирования как мембранного компонента клетки для целей переноса вещества внутрь клетки.

Установлено, что в состав мембранных транспортных систем часто входит более одного белкового посредника и между ними может существовать разделение функций. “Связующие” белки идентифицируют субстрат в среде, подводят и концентрируют его на внешней поверхности мембраны и передают его “истинному” переносчику, т.е. компоненту, осуществляющему перенос субстрата через мембрану. Так, выделены белки, участвующие в “узнавании”, связывании и транспорте ряда Сахаров, карбоновых кислот, аминокислот и неорганических ионов в клетки бактерий, грибов, животных.

Превращение процесса переноса вещества в клетку в однонаправленный процесс “активного” транспорта, приводящий к повышению содержания питательных веществ в клетке против их концентрационного градиента в среде, требует от клетки определенных энергетических затрат. Поэтому процессы переноса субстрата из окружающей среды внутрь клетки сопряжены с протекающими внутри клетки процессами метаболического высвобождения заключенной в субстрате энергии. Энергия в процессе переноса субстрата расходуется на химическую модификацию либо субстрата, либо самого переносчика с тем, чтобы исключить или затруднить как взаимодействие субстрата с переносчиком, так и возврат субстрата диффузионным путем через мембрану обратно в раствор.

Современные воззрения на процессы биохимического изъятия и окисления органических соединений основываются на двух кардинальных положениях теории ферментативной кинетики. Первое положение постулирует, что фермент и субстрат вступают во взаимодействие друг с другом, образуя фермент-субстратный комплекс, который в результате одной или нескольких трансформаций приводит к появлению продуктов, снижающих барьер активации катализируемой ферментом реакции за счёт её дробления на ряд промежуточных этапов, каждый из которых не встречает энергетических препятствий для своего осуществления. Второе положение констатирует то, что независимо от характера соединений и количества этапов в ходе ферментативной реакции, катализируемой ферментом, в конце процесса фермент выходит в неизменном виде и способен вступать во взаимодействие со следующей молекулой субстрата. Иными словами, уже на этапе изъятия субстрата клетка взаимодействует с субстратом с образованием относительно, непрочного соединения, называемого “фермент-субстратным комплексом”.

Вышеуказанное хорошо иллюстрируется примером извлечения из раствора глюкозы различными микроорганизмами, содержащими фермент глюкозооксидазу в среде с молекулярным кислородом. Глюкозооксидаза образует фермент-субстратный комплекс – глюкоза – кислород – глюкозооксидаза, после распада которого образуются промежуточные продукты -глюконолактон и пероксид водорода, как это схематично показано на рис. 11.1.

Образовавшийся в результате распада указанного комплекса глюконолактон подвергается гидролизу с образованием глюконовой кислоты.

Одним из важнейших свойств ферментов является их способность синтезироваться при наличии и под воздействием определенного вещества. Другим не менее важным свойством является специфичность воздействия фермента как по отношению к катализируемой им реакции, так и по отношению к самому субстрату.

Иногда фермент способен воздействовать на один единственный субстрат (абсолютная специфичность), но значительно чаще фермент воздействует на группу схожих по наличию в них определенных атомных группировок субстратов.

Рис. 11.1. Схема “узнавания” ферментом субстрата, образования фермент-субстратного комплекса и катализ

Многим ферментам присуща стереохимическая специфичность, состоящая в том, что фермент воздействует на группу субстратов (а иногда на один), отличающихся от других особым расположением атомов в пространстве. Роль каждого фермента в процессе биохимического окисления органических веществ строго определенна: он катализирует либо окисление (т.е. присоединение кислорода или отщепление водорода), либо восстановление (т.е. присоединение водорода или отщепление кислорода) вполне определенных химических соединений. При дегидрировании тот или иной фермент может отщеплять лишь определенные атомы водорода, занимающие определенное пространственное положение в молекуле субстрата или промежуточного продукта. Сказанное относится и к ферментам, катализирующим другие метаболические процессы.

Процессы биохимического окисления у гетеротрофных микроорганизмов делят на три группы в зависимости от того, что является конечным акцептором водородных атомов или электронов, отщепляемых от окисляемого субстрата. Если акцептором является кислород, то этот процесс называют клеточным дыханием или просто дыханием; если акцептор водорода -органическое вещество, то процесс окисления называют брожением; наконец, если акцептором водорода является неорганическое вещество типа нитратов, сульфатов и пр., то процесс называют анаэробным дыханием, или просто анаэробным.

Наиболее полным является процесс аэробного окисления, т.к. его продукты – вещества, не способные к дальнейшему разложению в микро-биальной клетке и не содержащие запаса энергии, которая могла бы быть высвобождена обычными химическими реакциями. Главные из этих веществ, как уже отмечалось – диоксид углерода (С02) и вода (Н20). Хотя оба эти вещества содержат кислород, химический путь их образования в клетке может быть различным, поскольку диоксид углерода может получаться в результате биохимических процессов, протекающих в бескислородной среде под воздействием ферментов – декарбоксилаз, отщепляющих С02 от карбоксильной группы (СООН) кислоты. Вода же в результате жизнедеятельности клетки образуется исключительно путем соединения кислорода воздуха с водородом тех органических веществ, от которых он отщепляется в процессе их окисления.

Аэробная диссимиляция субстрата – углеводов, белков, жиров -носит характер многостадийного процесса, включающего первоначальное расщепление сложного углеродсодержащего вещества на более простые субъединицы (к примеру полисахариды – в простые сахара; жиры – в жирные кислоты и глицерол; белки – в аминокислоты), подвергающиеся, в свою очередь, дальнейшей последовательной трансформации. При этом доступность субстрата окислению существенно зависит от строения углеродного скелета молекул (прямой, разветвленный, циклический) и степени окисления углеродных атомов. Наиболее легко доступными считаются сахара, особенно гексозы, за ними следуют многоатомные спирты (глицерин, маннит и др.) и карбоновые кислоты. Общий конечный путь, которым завершается аэробный обмен углеводов, жирных кислот, аминокислот, – цикл трикарбоновых кислот (ЦТК) или цикл Кребса, в который эти вещества вступают на том или ином этапе. Отмечается, что в условиях аэробного метаболизма около 90% потребляемого кислорода используется на дыхательный путь получения энергии клетками микроорганизмов.

Брожение является процессом неполного расщепления органических веществ, преимущественно углеводов в условиях без кислорода, в результате которого образуются различные промежуточные частично окисленные продукты, такие как спирт, глицерин, муравьиная, молочная, про-пионовая кислоты, бутанол, ацетон, метан и др., что широко используется в биотехнологии для получения целевых продуктов. До 97% органического сУбстрата может превращаться в такие побочные продукты и метан.

Ферментативное анаэробное расщепление белков и аминокислот называют гниением.

Из-за малого выхода энергии при бродильном типе метаболизма, осуществляющие его микробиальные клетки должны потреблять большее количество субстрата (при меньшей глубине его расщепления), чем клетки, получающие энергию за счет дыхания, что объясняет более эффективный рост клеток в аэробных условиях по сравнению с анаэробными.

Наибольшее количество энергии для своего функционирования клетка получает в результате окисления кислородом водорода, отщепляемого от окисляемого субстрата под действием ферментов-дегидрогеназ, которые по своему химическому действию делятся на никотинамидные (НАД) и флавиновые (ФАД). Никотинамидные дегидрогеназы первыми реагируют с субстратом, отщепляя от него два атома водорода и присоединяя их к коферменту. В результате этой реакции субстрат окисляется, а НАД восстанавливается до НАД‘Н2. Далее в реакцию вступает ФАД, перенося водород с никотинамидного кофермента на флавиновый, в результате чего НАД‘Н2 снова окисляется до НАД, а флавиновый – восстанавливается до ФАДН2. Далее через чрезвычайно важную группу окислительно-восстановительных ферментов-цитохромов – водород передается молекулярному кислороду, что и завершает процесс окисления с образованием окончательного продукта – воды.

В этой реакции и высвобождается наибольшая часть заключенной в субстрате энергии. Весь процесс аэробного окисления может быть представлен схемой рис. 11.2.

Высвобождающаяся в процессе микробиального окисления вещества энергия аккумулируется клеткой с помощью макроэргических соединений. Универсальным накопителем энергии в живых клетках является аденозинтрифосфорная кислота – АТФ (хотя имеются и другие магроэнерги).

Эта реакция фосфорилирования, как видно из (11.9) нуждается в энергии, источником которой в данном случае является окисление. Поэтому фосфорилирование АДФ тесно сопряжено с окислением, в связи чем этот процесс называют окислительным фосфорилированием. В процессе окислительного фосфорилирования при окислении, например, одной молекулы глюкозы образуется 38 молекул АТФ, тогда как в стадии гликолиза -только 2. При этом следует отметить, что стадия гликолиза протекает совершенно одинаково и в аэробных, и в анаэробных условиях, т.е. до образования пировиноградной кислоты (ПВК), и на его протекание затрачиваются 2 из 4 образующихся молекул АТФ.

Пути дальнейшей трансформации ПВК в аэробных и в анаэробных условиях расходятся.

Аэробная трансформация глюкозы может быть представлена следующей схемой:
1. Гликолиз: СбН12Об + 2ФК-+2ПВК + 2НАДН2 + 4АТФ (11.10)
2. Трансформация пировиноградной кислоты (ПВК): 2ПВК-*2С02 + 2 Ацетил КоА + 2НАДН2
3. Цикл трикарбоновых кислот (цикл Кребса): Ацетил КоА -> 4С02 + 6НАДН2 + 2ФАДН2 + 2АТФ (11.12) ЕСбН12Об -> 6С02 + 10НАДН2 + 2ФАДН2 + 4АТФ (11.13) гДе ФАД – флавопротеид.

Окисление НАДН2 в системе переноса электронов дает ЗАТФ на
1 моль; окисление 2ФАДН2 дает 4АТФ,
тогда: СбН1206 + 602 -> 6С02 + 6Н20 + 38АТФ

В условиях анаэробного превращения углеводов первым этапом является фосфорилирование глюкозы, осуществляемое с помощью АТФ под воздействием фермента гексокиназы, т.е.
Глюкоза + А ТФ -гексокиназа > глюкозо _ б – фосфат + АДФ
После завершения стадии гликолиза и образования ПВК ход дальнейшего превращения ПВК зависит от типа брожения и его возбудителя. Основные типы брожения: спиртовое, молочнокислое, пропионовокислое, маслянокислое, метановое.

Окислительное фосфорилирование может осуществляться и под воздействием фермента, синтезирующего АТФ на уровне субстрата. Однако, такое образование макроэргических связей носит весьма ограниченный характер, и в присутствии кислорода клетки синтезируют большую часть содержащейся в них АТФ через систему переноса электронов.

Аккумуляция высвобождающейся в процессе диссимиляции вещества в аэробных или анаэробных условиях с помощью макроэргических соединений (и прежде всего АТФ) позволяет устранить несоответствие между равномерностью процессов высвобождения химической энергии из субстрата и неравномерностью процессов ее расходования, неизбежной в реальных условиях существования клетки.

Упрощенно весь процесс распада органических веществ в ходе аэробных превращений может быть представлен схемой, приведенной на рис. 11.3. Схема же анаэробных превращений ПВК после стадии гликолиза представлена на рис. 11.4.

Исследованиями установлено, что зачастую тип метаболизма зависит не столько от наличия кислорода в среде, сколько от концентрации субстрата.

Это указывает на то, что в зависимости от конкретных условий функционирования биомассы в среде могут одновременно протекать как аэробные, так и анаэробные процессы трансформации органических соединений, интенсивность которых также будет зависеть от концентрации и субстрата и кислорода.

Здесь следует отметить, что в промышленной биотехнологии для получения различных продуктов микробиального происхождения (кормовых или пекарских дрожжей, различных органических кислот, спиртов, витаминов, лекарственных препаратов) используются чистые культуры, т.е. микроорганизмы одного вида зачастую селекционируемые, со строгим поддержанием видового состава, соответствующих условий питания, температуры, активной реакции среды и пр., исключающих появление и развитие других видов микроорганизмов, что могло бы привести к отклонению качества получаемого продукта от установленных стандартов.

При очистке же сточных вод, содержащих смесь разнообразных по химическому составу загрязнений, которые иногда даже весьма трудно идентифицировать аналитическими методами, биомасса, осуществляющая очистку, также представляет собой смесь, а точнее, сообщество различных видов микроорганизмов и простейших со сложными между ними отношениями. Как видовой, так и количественный состав биомассы очистных сооружений будет зависеть от конкретного метода биологической очистки и условий его реализации.

По расчетам некоторых специалистов, при концентрации растворенных органических загрязнений, оцениваемых показателем БПКП0Лн, до 1000 мг/л наиболее выгодно применение аэробных методов очистки. При концентрациях БПКПОЛн от 1000 до 5000 мг/л экономические показатели аэробных и анаэробных методов будут практически одинаковыми. При концентрациях же свыше 5000 мг/л более целесообразным будет применение анаэробных методов. Однако, при этом следует принимать во внимание не только концентрацию загрязнений, но и расходы сточных вод, а также тот факт, что анаэробные методы приводят к образованию таких конечных продуктов, как метан, аммиак, сероводород и др. и не позволяют получить качество очищенной воды, сопоставимое с качеством очистки аэробными методами. Поэтому при высоких концентрациях загрязнений применяется сочетание анаэробных методов на первой ступени (или первых ступенях) очистки и аэробных методов на последней ступени очистки. Следует подчеркнуть, что бытовые и городские сточные воды, в отличие от производственных, не содержат концентраций загрязнений, оправдывающих применение анаэробных методов, и потому эти методы очистки в данной главе не рассматриваются.

Рис. 11.3. Упрощенная схема трехстадийного распада молекул питательных веществ (Б. Альберте и др. 1986)

Рис. 11.4. Превращение пировиноградной кислоты анаэробными микроорганизмами в различные продукты

Широко применяют для очистки хозяйственно-бытовых и промышленных сточных вод от многих растворённых органических и некоторых неорганических веществ (H2S; сульфидов; NH3; нитритов и др.).

Процесс очистки основан на способности микроорганизмов использовать эти вещества для питания в процессе жизнедеятельности, т.к. органические вещества для них являются источником углерода.

Достоинства: несложное аппаратное оформление, невысокие эксплуатационные затраты.

Недостатки: большие капитальные затраты, необходимость предварительного удаления токсичных веществ, строгое соблюдение технологического режима очистки. Сточные воды характеризуются: БПК – биохимическая потребность в O 2 . мг O 2 / г или мг O 2 / л не включая процессы нитрификации. ХПК – потребность O2 для окисления всех востановителей. ХПК > БПК.

Если в присутствии O 2 – то аэробный процесс (t o =20-40 o С). Если в отсутствии O 2 – то анаэробный (для обезвреживания остатков).

При биохимической очистке вещества, содержащиеся в сточных водах не утилизируют, а перерабатывают в избыточный ил, так же требующий обезвреживания. Активный ил (буровато-жёлтые комочки) представляет собой сложный комплекс микроорганизмов различных классов, простейших микроскопических червей, инфузорий, водорослей, дрожжи и др. Хороший источник C – ненасыщенные органические соединения.

Насыщенные органические соединения труднее усваиваются.

В клетку легко проникают растворённые органические вещества, углеводороды; труднее вещества, молекулы которых содержат полярные группы, этанол > этиленгликоль > глицерин сахара, имеющие несколько оксигрупп. Ещё медленнее диффундируют в клетку. Жирные кислоты > окси-кислоты > аминокислоты. Ионы аммония легко проникают в клетку!

Способность микроорганизмов к адаптации обеспечивают широкое распространение биологической очистки сточных вод.

Чем хуже осушается ил, тем более высокий его иловый индекс. I гр. БПКполн/ХПК =0,2 – группа сточных вод (пищевая промышленность, спск, белково-витаминн…). Органические загрязнения этой группы не токсичны для микробов. II гр. БПКполн/ХПК =0,10-0,02 – Сточные воды коксования, сланцевые, содовые воды. Эти воды после механической очистки могут быть направлены на биохимическое окисление. III гр. БПКполн/ХПК =0,01-0,001 – сточные воды чёрной металлургии, сульфид, хлорид, ПАВ и др. Необходима механическая очистка и физико-химическая очистка. IV гр. БПКполн/ХПК Турбулизация (интенсивное перемешивание, активный ил находится во взвешенном состоянии) сточных вод увеличивает объём поступление питательных веществ и O2 к микроорганизмам, что повышает скорость очистки сточных вод.

Доза активного или зависит от илового индекса.

Чем меньше иловый индекс, тем большую дозу активного или необходимо подавать.

Увеличение t o => увеличивает объём биохимической реакции. t o > 30 o может погубить микроорганизмы. Практически 20-30 o . Ядом для активного ила – соли тяжёлых металлов. Соли этих металлов снижают скорость очистки (Sb, Ag, Cu, Hg, Co, Ni, Pb и т.д).

Для окисления органических вещёств микроорганизмами необходим O 2 ; растворённый в сточных водах, т.е. аэрация – растворение O 2 в H 2 O.

Для успешного протекания реакций биохимического окисления необходимо присутствие в сточных водах соединений биогенных элементов и микроэлементов: (N, P, K).

Недостаток N – тормозит окисление и образование труднооседающего ила.

Недостаток P – приводит к образованию нитчатых бактерий, что является причиной вспухания активного ила.

Биочистка в природных условиях.

Поля орошения – это специальные подготовленные земельные участки; очистка идёт под действием микрофлоры солнца, воздуха и под влиянием живой растительности, растений.

Поля орошения лучше всего устраивать на печаных или суглинистых почвах. Грунтовые воды не выше 1.25 м от поверхности.

В почве полей орошения находятся бактерии, дрожжи, грибы, водоросли и др. Сточные воды содержат бактерии. Если на полях не выращиваются сельскохозяйственные культуры, и они предназначены только для биологической очистки сточных вод, то они называются полями фильтрации.

Поля орошения после биологической очистки сточных вод используется для выращивания зерновых и силосных культур, трав, овощей. Поля орошения имеют следующие преимущества перед аэротенками: 1 – снижается капитальные и эксплуататорские затраты; 2 – вовлекаются в сельскохозяйственный оборот малопродуктивные земли. 3 – обеспечивается получение устойчивых и высоких урожаев.

Механизм:

Сточные воды в процессе биологической очистки проходят через фильтрующий слой почвы, в котором задерживаются взвешенные и коллоидные частицы, образуя плёнку, а проникающие O2 окисляет органические вещества, превращая их в минеральные соединения.

Сточные воды на поля орошения могут поступать через полиэтиленовые или асбоцементные трубчатые увлажнители, т.е. подпочвенное орошение.

Биологические пруды – каскад прудов, состоящий из 3-5 ступеней. С естественной аэрацией (глубина их 0,5-1м). Хорошо прогревается солнцем. С искусственной аэрацией (механическим или пневматическим путём, компрессором) (глубина – 3,5м). Нагрузка по загряз нениям повышается в 3-3,5 раза.

Очистка в искуственных сооружениях.

Аэротенки – железобетонные аэрирующие резервуары. Арированная смесь сточной воды + активный ил.

    Схема установки для биологического очистки.
  1. – первичный отстойник;
  2. – предаэратор (для предварительной аэрации 15-20 мин);
  3. – аэротенк;
  4. – регенератор (25%);
  5. – вторичный отстойник;
Аэрация необходима для насыщения H2O – O2 и поддержания ила во взвешенном состоянии. Переда аэротенком сточная вода должна содержать не > 150 мг/л взвешенных частиц и не > 25 мг/л нефтепродуктов: t°H2O=6-30°С; PH – 6,5-9. глубина аэротенков 2-5 м. Открытый бассейн, оборудованный устройствами для принудительной аэрации. 2-х, 3-х, 4-х коридорные.
    Аэротенки подразделяются:
  1. по гидродинамическому режиму (аэротенки – вытеснители(а); аэротенки – смесители(б); промежуточного типа – с рассредоточенным водородом сточных вод);
  2. по способу регенерации активного или (с отдельной регенерации и без отдельной);
  3. по нагрузке на активный ил (высоконагруженные для неполной очистки и обычные или низконагруженные);
  4. по количеству ступеней (1-х, 2-х, многократные);
  5. по режиму ввода сточных вод (проточные, полупроточные, контактные и др.);
  6. по конструктивным признакам:

При наличии вредных примесей и БПК > 150 мг/л – с регенерацией.

Полезная информация: