Влияние различных факторов на пластичность металлов и сопротивление пластическому деформированию. Влияние различных факторов на пластичность и сопротивление деформированию

Влияние различных факторов на пластичность металлов и сопротивление пластическому деформированию. Влияние различных факторов на пластичность и сопротивление деформированию

Влияние температуры на пластичность металла.

Т ермической обработкой называют процессы, связанные с нагревом и охлаждением, вызывающие изменения внутреннего строения сплава, и в связи с этим изменения физических, механических и других свойств.

Термической обработке подвергают полуфабрикаты (заготовки, поковки, штамповки и т. п.) для улучшения структуры, снижения твердости, Улучшения обрабатываемости, и окончательно изготовленные детали и инструмент для придания им требуемых свойств.

В результате термической обработки свойства сплавов могут меняться в очень широких пределах. Например, можно получить любую твердость стали от 150 до 250 НВ (исходное состояние) до 600-650 НВ (после закалки). Возможность значительного повышения механических свойств с помощью термической обработки по сравнению с исходным состоянием позволяет увеличить допускаемые напряжения, а также уменьшить размеры и вес детали.

Основоположником теории термической обработки является выдающийся русский ученый Д.К. Чернов, который в середине Х I Х в., наблюдая изменение цвета каления стали при ее нагреве и охлаждении и регистрируя температуру «на глаз», обнаружил критические точки (точки Чернова).

Советские ученые достигли больших успехов в усовершенствовании уже известных и в разработке новых технологических процессов термической обработки стали.

В развитии учения о термической обработке, в создании прогрессивных методов технологии термической обработки советская наука и практика занимают ведущее место.

Основными видами термической обработки стали являются отжиг, нормализация, закалка и отпуск.

Отжиг стали.

Назначение отжига - снижение твердости, измельчение зерна (перекристаллизация), улучшение обрабатываемости, повышение пластичности и вязкости, снятие внутренних напряжений, устранение или уменьшение структурной неоднородности, подготовка к последующей термической обработке.

На результат отжига влияют следующие факторы:

1) скорость нагрева;

2) температура нагрева (отжига);

3) продолжительность выдержки при температуре нагрева (отжига);

4) скорость охлаждения.

Скорость нагрева . Допустимая скорость нагрева зависит от химического состава стали. Чем больше в стали углерода и специальных примесей, тем менее она теплопроводна и, следовательно, тем медленнее следует ее нагревать.

Температура нагрева . Температуру нагрева устанавливают в зависимости от содержания углерода и специальных элементов.


Полный отжиг

Полный отжиг характеризуется нагревом на 20-30 град выше температуры интервала превращений и медленным охлаждением до температуры ниже интервала превращений (обычно до 400 - 500 0 С). Полному отжигу подвергают доэвтектоидные и эвтектоидную стали. Для заэвтектоидных сталей целесообразным и практически применимым является неполный отжиг. Полный отжиг применяют для перекристаллизации структуры в горячодеформированных сталях и фасонном литье.

Отжиг горячедеформированной стали снижает прочность и повышает пластичность.

Если исходная структура трудно поддается исправлению и полный отжиг не в состоянии улучшить структуру стали, то применяют двойной отжиг. Первый высокий отжиг проводят при повышенной температуре 950-1000° С.

Неполный отжиг применяют преимущественно для заэвтектоидиой стали. Неполный отжиг доэвтектоидных сталей применяют для поковок, горячая обработка давлением которых проведена правильно с получением удовлетворительной микроструктуры. В этом случае назначением неполного отжига является перекристаллизация перлита и снятие внутренних напряжений перед механической обработкой. Температура нагрева при неполном отжиге доэвтектоидных сталей 770 - 800 о С.

Изотермический отжиг

При изотермическом отжиге аустенит превращается в феррито-цементитную смесь не при охлаждении в определенном интервале температур, как это происходит при обычном полном отжиге, а вовремя выдержки при постоянной температуре. Для изотермического отжига сталь нагревают до оптимальной температуры и после выдержки быстро охлаждают до температуры немного ниже критической точки (650-700 0 С). При этой температуре сталь выдерживают до полного распада аустенита, а затем охлаждают на воздухе. Преимуществом изотермического отжига по сравнению с обычным является значительное сокращение времени отжига и получение более однородной структуры.

Температура изотермической выдержки значительно влияет на получающуюся структуру и свойства. С понижением температуры, т.е. с увеличением степени переохлаждения аустенита, зерна цементита измельчаются, и получается более дисперсный перлит.

Практически изотермический отжиг проводят в двух печах: в одной печи детали нагревают, затем их переносят в другую печь, имеющую температуру немного ниже.

Низкотемпературный отжиг.

Низкотемпературный отжиг (высокий отпуск) применяют главным образом для легированных сталей (хромистых, хромоникелевых и др.) для снятия внутренних напряжений и для снижения твердости. Фазовая перекристаллизация при этом виде отжига отсутствует. Полного снятия внутренних напряжений достигают при нагреве до 600 0 С, поэтому низкотемпературный отжиг можно проводить в температурном интервале от 600 0 С. Выдержка для снятия внутренних напряжений тем меньше, чем выше температура нагрева. Охлаждение после нагрева должно быть достаточно медленным, чтобы вновь не возникли внутренние напряжения.

Диффузионный отжиг (гомогенизация)

Этот отжиг характеризуется нагревом до температуры значительно выше температур интервала превращений (на 180 - 300° С) с последующим медленным охлаждением.

Такой отжиг применяют для выравнивания химической неоднородности зерен твердого раствора путем диффузии, т.е. уменьшения микроликвации в крупных фасонных стальных отливках и слитках, главным образом легированной стали.

Диффузионный отжиг в связи с назначением его сделать сталь однородной (гомогенной) иначе называется гомогенизацией.

Так как скорость диффузии увеличивается с повышением температуры, а количество продиффундированного вещества становится тем больше, чем длительнее выдержка, то для энергичного протекания диффузии необходимы высокая температура и продолжительная выдержка.

Практически слитки нагревают до 1100 - 1150° С, выдерживают при этой температуре 12-15 ч, а затем медленно охлаждают до 250-200° С. Процесс диффузионного отжига продолжается около 80-100 ч.

В результате высокотемпературного длительного отжига происходит рост зерна. Этот недостаток микроструктуры устраняют тем, что слитки подвергают горячей механической обработке, в результате которой полностью уничтожается крупнозернистая структура литой стали; поэтому после гомогенизации слитки не подвергают отжигу для улучшения структуры.

Только в тех случаях, когда после гомогенизации слитки получаются с повышенной твердостью (например, слитки высоколегированных сталей), проводят дополнительный низко температурный отжиг при 650-680° С.

НОРМАЛИЗАЦИЯ СТАЛИ

Нормализацией называют нагрев стали до температуры на 30-50 град выше верхних критических точек, выдержку при этой температуре и охлаждение на спокойном воздухе. При нагреве низкоуглеродистых сталей до температур нормализации происходят те же процессы, что и при отжиге, т.е. измельчение зерен. Кроме того, вследствие охлаждения более быстрого, чем при отжиге, и получающегося в результате этого переохлаждения, строение перлита более тонкое (дисперсное), и количество эвтектоида (вернее, квазиэвтектоида) больше, чем при медленном охлаждении (при отжиге).

По сравнению со структурой отжига структура нормализации более мелкая, а механические свойства более высокие (повышенная прочность и твердость); это обеспечивается ускоренным охлаждением (на воздухе) по сравнению с медленным охлаждением (вместе с печью) при отжиге.

Если при охлаждении на воздухе образуется (в некоторых высоколегированных сталях) не перлит, а мартенсит - структура, характерная для закаленной стали, то такую термическую обработку называют не нормализацией, а воздушной закалкой.

ЗАКАЛКА СТАЛИ

Закалкой называют нагрев стали выше критической точки с последующим быстрым охлаждением. Обычно нагрев проводят на 30-50 град выше линии GSK на диаграмме железо - цементит.

Назначение закалки - получение высокой твердости или повышенной прочности. На результат закалки, как и отжига, влияют четыре основных фактора – скорость нагрева, температура нагрева, продолжительность выдержки и скорость охлаждения.

Основным и решающим фактором является скорость охлаждения - твердость и физико-механические свойства стали связаны со скоростью охлаждения.

ОТПУСК ЗАКАЛЕННОЙ СТАЛИ

Отпуском называют нагрев закаленной стали до температуры ниже критической точки (727 0 С) с последующим охлаждением. Целью отпуска является частичное или полное устранение внутренних напряжений, снижение твердости и повышение вязкости. Отпуску подвергают закаленную сталь со структурой тетрагонального мартенсита и остаточного аустенита.

Это процесс получения заготовок или деталей к силовым воздействиям инструмента на исходную заготовку из исходного материала в основе всех процессов обработки давлением лежит способность металлов и их сплавов под действием внешних сил пластически деформироваться не разрушаясь. Пластическое формирование относится к малоотходной технологии, высокая производительность низкая себестоимость, высокое качество продукции привели к широкому применению этих процессов. Пластическая деформация - это изменение формы и размеров тела под действием напряжений. Металлы являются поликристаллами. Форма изменения металла при пластической деформации происходит в результате пластической деформации каждого зерна. До деформации форма зерен была округлая. В процессе деформации зерна вытягиваются в направлении действующих сил образуя волокнистую, слоистую структуру, такая ориентация зерен называется текстурой деформации. Чем большая степень деформации, тем больше степень текстуры характер структуры зависит от природы материала и вода деформации. Образование текстуры способствует появлению неоднородности металлических и физических свойств. С увеличением степени деформации прочностные характеристики: твердость, прочность повышается, а пластичные свойства ухудшаются, явление упрочнения деформированного вещества получило название - наклеп. Состояние наклепанного металла не устойчиво, поэтому при нагреве такого металла в нем протекают процессы рекристаллизации обуславливающие возвращением всех свойств к свойствам металла до деформирования. Рекристаллизация - это образование новые зерен. При этом твердость возрастает и плотность снижается. Если нагревать металл, то будет происходить восстановление металла в обратное состояние. Температура, при которой начинается процесс рекристализации называется температурным порогом рекристаллизации. Бывают горячая и холодная деформация. Холодная деформация при температуре ниже температуры рекристаллизации сопровождается наклепом. При неполной холодной деформации рекристаллизация не проходит. Увеличивается пластичность по сравнению с холодной деформацией. Используется при холодном деформировании с высокими скоростями. Неполная горячая деформация рекристаллизация происходит неполностью. Получается неоднородность структуры, что может привести к разрушению. Такая деформация наиболее вероятна при температуре не значительно превышающей температуру начала рекристаллизации. Такую температуру следует избегать при обработке давлением. Горячая деформация называют, если ее проводят при температуре выше температуры рекристаллизации для получения полностью рекристализованной структуры горячая пластическая деформация улучшает свойства металла, повышается плотность металла завариваются усадочные и газовые раковины.


30) Обработка металлов давлением, классификация видов. Основные способы обработки давлением: 1) Прокатка - обжатие металла вращающимися валками. Изготавливают: листы, рельсы, трубы 2) волочение - протягивание заготовки через отверстие инструмента изготавливают проволоку прутки 3) прессование - выдавливание металла из полости инструмента 4) ковка - последовательная деформация металла под ударами молота. Получают: валы, шестерни с большим диаметром 5) штамповка - процесс деформирования металла в полости штампа. Нагрев металла перед обработкой давлением. Основным назначением нагрева является повышение пластичности обрабатываемого металла, и снижение его сопротивления деформированию от нагрева зависит качество изделий, производительность оборудования и себестоимость продукции. Основные требования к нагреву равномерное прогревание заготовки за минимальное время при наименьшей потере металла на угар. И экономии расхода топлива, несоответствие установленного режима нагрева может привести к дефектам (трещины, перегрев, пережог, окисление, обезуглероживание). Выбор режима нагрева. Температура нагрева скорость нагрева и время нагрева). Зависит от свойств стали формы и размеров заготовки, и направления передачи тепла. Область температур нагрева, в которой рекомендуется производить горячую обработку давлением называют температурным интервалом ковки. Когда пластичность металла наибольшая, он определяется разностью между начальной температуры ковки (ниже температуры плавления) и конечной температуры (выше температуры рекристаллизации). Этот интервал зависит от химического состава и исходного металла. Для повышения пластических свойств металла выгодно нагревать как можно выше. Заканчивать ковку следует при наиболее низкой температуре, при которой деформация еще является горячей и не появляется наклеп. Скорость нагрева металла зависит от теплопроводности формы и размера заготовки температуры печи расположения заготовки в печи. Время нагрева заготовки зависит от температуры в печи химического состава сечения заготовок и их расположения в печи. Печи (мазутные газовые, плавильные) и электрические (контактный и индукционный. При нагреве применяют способы безокислительного нагрева: 1) нагрев в ваннах с расплавленной смесью солей применяется в ограниченные пределах для нагрева мелких заготовок до температуры не выше 1050 градусов 2) нагрев в расплавленной стекломассе до 1300 градусов 3) нагрев в печах заполненные защитным газом.

Схема напряженного состояния. Напряженное состояние характеризуется схемой главных напряжений в малом объеме, выделенном в деформируемом теле. При всем многообразии условий обработки давлением в различных участках деформируемого тела могут возникнуть следующие схемы главных напряжений (нормально направленных напряжений, действующих во взаимно перпендикулярных плоскостях, на которых касательные напряжения равны нулю) (рис. 17.2): четыре объемных (а), три плоских (6) и два линейных (в). При каждом виде обработки давлением одна из представленных схем является преобладающей.

Прессование, прокатка, горячая объемная штамповка, ковка характеризуются всесторонним неравномерным сжатием. Эта схема нагружения наиболее благоприятна с точки зрения достижения максимальной степени пластической деформации.

При листовой штамповке и волочении реализуется схема двустороннего сжатия с растяжением.

В зависимости от действующих сил и соотношения их величин тело испытывает деформацию. Совокупность деформаций, возникающих по различным направлениям в пространстве, обычно называют деформированным состоянием.

Схема главных деформаций может дать представление о характере изменения структуры исходного материала, направлении вытянутости межзеренных границ и зерен. Структура приобретает строчечный характер. Границы зерен, содержащиеся в них загрязнения и неметаллические включения вытягиваются, образуя волокна (см. рис. 17.1). Эти изменения в деформированном металле могут быть обнаружены визуально после травления, так как имеют макроскопические размеры.

Металл после обработки давлением приобретает выраженную анизотропию свойств. При этом прочностные характеристики -

Рис. 17.2.

а - объемное; б - плоское; в - линейное временное сопротивление, предел текучести в различных направлениях - изменяются меньше, чем пластические - относительное удлинение, ударная вязкость и даже износостойкость.

Все перечисленные характеристики имеют большую величину в направлении волокон, чем поперек их. Полученную анизотропию свойств целесообразно учитывать, проектируя нагруженные детали, получаемые пластическим деформированием. В отдельных случаях учет этих особенностей позволяет существенно увеличить долговечность работы деталей, а также снизить их массу.

Влияние химического и фазового составов. Различные металлы и их сплавы имеют различные показатели пластичности и неодинаково сопротивляются пластическому деформированию. Однако всегда чистые металлы имеют большую пластичность, чем их твердые растворы, а однофазные структуры более пластичны, чем двухфазные, особенно если эти фазы отличаются по своим механическим характеристикам. Это же относится и к наличию в металлах труднорастворимых химических соединений.

Любые химические неоднородности, ликвации, растворенные газы существенно снижают способность металла к пластическому деформированию, особенно в области высоких температур.

Применительно к железоуглеродистым сплавам следует особенно выделить вредное влияние даже небольших количеств серы и фосфора.

Влияние температуры. При низких температурах пластичность металла уменьшается вследствие уменьшения тепловой подвижности атомов. С повышением температуры пластичность возрастает, а сопротивление деформированию уменьшается (рис. 17.3). Кривые изменения пластичности и прочности не всегда имеют монотонный характер; как правило, в интервале температур фазовых превращений могут происходить некоторое повышение прочностных и снижение пластических свойств металлов. Практически все металлы и сплавы в области температур, близких к температуре со-

Рис. 173. Влияние температуры нагрева стали на ее пластические свойства (е) и сопротивление пластическому деформированию (а в) лидуса, обнаруживают резкое падение пластических свойств - гак называемый температурный интервал хрупкости (ТИХ). В этом интервале пластические свойства близки к нулевым значениям. Объясняется это тем, что при этих температурах границы зерен и расположенные там межкристаллические прослойки, включающие легкоплавкие примеси, размягчаются или расплавляются и даже небольшая деформация приводит к их разрушению. Чем чище металл, тем меньше протяженность температурного интервала хрупкого состояния и тем ближе он к температуре равновесного солидуса.

Влияние скорости деформирования. Скорость деформирования материала при обработке давлением в значительной степени определяется скоростью перемещения деформирующего инструмента, хотя и не идентична ей. Правильнее было бы под скоростью деформации принимать величину относительного изменения размеров тела в единицу времени в направлении действующей силы, т.е.

где а ср - средняя скорость инструмента во время деформирования; h c р - средняя величина деформации.

Обычно средняя скорость деформации для различных процессов обработки давлением (табл. 17.1) изменяется в пределах КГ 12 - 10-V 1 .

Влияние скорости деформации на пластичность металла неоднозначно. При обработке давлением в горячем состоянии увеличение скорости деформирования понижает пластичность металла. Особенно это сказывается при обработке магниевых и медных сплавов, высоколегированных сталей. Менее заметно отрицательное влияние увеличения скорости деформации при обработке алюминиевых сплавов, низколегированных и углеродистых сталей.

При обработке давлением в холодном состоянии увеличение скорости деформации выше некоторых значений приводит к повы-

Таблица 17.1

Средние скорости деформации для различных видов оборудования обработки давлением

шению температуры обрабатываемого металла вследствие выделения значительной теплоты трения на плоскостях скольжения, которая не успевает распространиться в пространство. Повышение температуры приводит к разупрочнению и повышению пластических свойств. Этот эффект может быть очень значительным. Например, при обработке давлением с применением взрывных устройств удается получить в холодном металле весьма значительные пластические деформации.

Контрольные вопросы и задания

  • 1. Каков механизм пластического деформирования?
  • 2. Как влияет наличие дислокаций на сопротивление пластическому деформированию?
  • 3. Сравните свойства литого металла и металла, подвергнутого пластическому деформированию.
  • 4. При какой схеме нагружения можно получить максимальную величину пластической деформации?
  • 5. В какой области температур находится температурный интервал хрупкости, и чем объясняется снижение пластических свойств металла в этом интервале?
  • 1. Исходные материалы для металлургии: руда, флюсы, огнеупоры, топливо; пути повышения температуры горения металлургического топлива. Дайте определения и примеры химических формул.
  • 2. Сущность процессов шлакования; роль шлаков и флюсов в металлургии (на примере доменной плавки).
  • 3. Окислительно-восстановительные реакции в металлургии (на примере производства чугуна и стали).
  • 4. Сущность доменного процесса; исходные материалы для получения чугуна, продукты доменной плавки, оценка эффективности работы доменной печи. Схема и принцип работы доменной печи.
  • 5. Сталь. Сущность процесса получения стали методом прямого восстановления железа из руды. Приведите примеры восстановительных химических реакций при прямом восстановлении железа из руды.
  • 6.Сущность процесса передела чугуна на сталь. Сравнительная характеристика основных способов производства стали: в конвертерах, в мартенах, электропечах.
  • 7.Кислородно-конверторный способ получения стали: исходные материалы, технология, технико-экономические показатели. Схема кислородного конвертера.
  • 8. Мартеновский способ получения стали: исходные материалы, технология, технико-экономические показатели. Схема мартеновской печи.
  • 9. Плавка стали в электропечах: сущность процесса, исходные материалы, преимущества, область использования. Схема электропечи для выплавки стали.
  • 11. Разливка стали, разливка в изложницы, непрерывная разливка, строение стального слитка. Схемы разливки в изложницу, схема непрерывной разливки стали, схемы слитков спокойной и кипящей стали.
  • 12. Классификация отливок и способов литья по масштабу производства и технологическому признаку (примеры литья в разовые и постоянные формы).
  • 13. Литейные свойства сплавов: жидкотекучесть, усадка, смачиваемость, газопоглощение, химическая активность, ликвация. Сравнение литейных свойств стали и чугуна.
  • 14. Основные литейные сплавы: чугуны, силумины, бронзы, стали; связь их литейных свойств с технологией изготовления и качество литейной продукции.
  • 15. Литье в песчаные формы: конструкция формы, литейная оснастка, формовочные материалы, область применения. Преимущества и недостатки литья в песчаные формы.
  • 16. Литьё в оболочковые формы: исходные материалы, технология изготовления оболочки, область применения способа. Схема получения отливки. Преимущества и недостатки литья в оболочковые формы.
  • 18.Литьё в кокиль: требования к кокилю и отливкам, облицованные кокили; область использования процесса. Принципиальная схема кокиля. Преимущества и недостатки пресса.
  • 19. Литьё под давлением: сущность процесса, область использования. Принципиальная схема формы для литья под давлением. Преимущества и недостатки процесса.
  • 20. Центробежное литьё: сущность процесса, область использования, преимущества и недостатки. Принципиальная схема центробежного литья.
  • 21. Характеристика основных способов получения машиностроительных профилей; их сравнительная характеристика (прокатка, прессование, волочение). Принципиальные схемы указанных процессов.
  • 22. Понятие о горячей и холодной обработке металлов давлением. Наклеп и рекристаллизация. Изменение механических свойств при наклепе и при последующем нагреве.
  • 23.Пластичность металлов, влияние на пластичность химического состава, температуры нагрева, схемы напряженного состояния, скорость деформации.
  • 24.Основные законы обработки давлением: постоянства объема наименьшего сопротивления, подобия; использование их в практике.
  • 26.Прокатка металла
  • 27. Ковка. Обл использования.
  • Вопрос 29.
  • Вопрос 30.
  • 33. Аргонодуговая сварка: принципиальные схемы и разновидности, область использования.
  • 34 . Автоматическая и механизированная сварка под флюсом: Принципиальные схемы, сварочные материалы, преимущества процесса и область применения.
  • 36. Металлургические процессы при сварке: диссоциация веществ, насыщение металла o, n, h, процессы раскисления, шлакования, рафинирования металла сварного шва.
  • 37 . Сварочные материалы.
  • 38. Тепловые процессы
  • 39 . Контактная сварка
  • 40. Сущность процесса и материалы для пайки
  • 45. Силы резания
  • 49)Основные конструктивные части металлорежущих инструментов. Основные поверхности и кромки токарного резца.
  • 50. Определение углов токарного резца в статической системе координат, их назначение и влияние на процесс резания.
  • 51. Инструментальные материалы: инструментальные стали, твердые сплавы, режущая керамика, сверхтвердые инструментальные материалы. Их назначение и обозначение.
  • Инструментальные стали
  • Металлокерамические твердые сплавы
  • Твердые сплавы с покрытием
  • Стойкость металлорежущих инструментов
  • Допустимая скорость резания металлов
  • 55. Общее устройство основных составных частей универсальных металлорежущих станков: несущих систем, приводов движений, рабочих органов и вспомогательных систем. Основные составные части
  • Несущие системы мс
  • Приводы главного движения (пгд)
  • Исполнительные механизмы
  • Вспомогательные системы
  • 57. Кинемат характ приводов станка
  • 61. Параметры режима резания на токарных станках и последовательность определения их рационального сочетания.
  • 65. Сверление. Основные типы сверлильных станков и их назначение. Параметры режима резания при сверлении (V, s, t, to) и последовательность их рационального сочетания.
  • Пластичность - способность металла принимать под действием нагрузки новую форму не разрушаясь.

    Пластичность металлов определяется также при испытании на растяжение. Это свойство обнаруживается в том, что под действием нагрузки образцы разных металлов в различной степени удлиняются, а их поперечное сечение уменьшается. Чем больше способен образец удлиняться, а его пеперечное сечение сужаться, тем пластичнее металл образца.

    В условиях обработки металлов давлением на пластичность влияют многие факторы: состав и структура деформируемого металла, характер напряженного состояния при деформации, неравномерность деформации, скорость деформации, температура деформации и др. Изменяя те или иные факторы, можно изменять пластичность.

    1.Состав и структура металла . Пластичность находится в прямой зависимости от химического состава материала. С повышением содержания углерода в стали пластичность падает. Большое влияние оказывают элементы, входящие в состав сплава как примеси. Олово, сурьма, свинец, сера не растворяются в металле и, располагаясь по границам зерен, ослабляют связи между ними. Температура плавления этих элементов низкая, при нагреве под горячую деформацию они плавятся, что приводит к потере пластичности.

    2.Влияние температуры неоднозначно. Малоуглеродистые и среднеуглеродистые стали, с повышением температуры, становятся более пластичными (1). Высоколегированные стали имеют большую пластичность в холодном состоянии (2). Для шарикоподшипниковых сталей пластичность почти не зависит от температуры (3) . Отдельные сплавы могут иметь интервал повышенной пластичности (4). Техническое железо в интервале 800…1000 0 С характеризуется понижением пластических свойств (5). При температурах, близких к температуре плавления пластичность резко снижается из-за возможного перегрева и пережога.

    3.Характер напряженного состояния . Один и тот же материал проявляет различную пластичность при изменении схемы напряженного состояния. Схема всестороннего сжатия является наиболее благоприятной для проявления пластических свойств, так как при этом затрудняется межзеренная деформация и вся деформация протекает за счет внутризеренной. Появление в схеме растягивающих напряжений снижает пластичность. Самая низкая пластичность наблюдается при схеме всестороннего растяжения.

    4.Скорость деформации . С повышением скорости деформации в условиях горячей деформации пластичность снижается. Имеющаяся неравномерность деформации вызывает дополнительные напряжения, которые снимаются только в том случае, если скорость разупрочняющих процессов не меньше скорости деформации.

    Пластичность зависит от структурного состояния металла , особенно при горячей деформации. Неоднородность микроструктуры снижает пластичность. Однофазные сплавы, при прочих равных условиях, всегда пластичнее, чем двухфазные. Фазы имеют неодинаковые механические свойства, и деформация получается неравномерной. Мелкозернистые металлы пластичнее крупнозернистых. Металл слитков менее пластичен, чем металл прокатанной или кованой заготовки, так как литая структура имеет резкую неоднородность зерен, включения и другие дефекты.

Сверхпластичность не является свойством каких-то особых сплавов и при соответствующей подготовке структуры и в определенных условиях деформации проявляется у большого числа сплавов, обрабатываемых давлением.

Известно много сплавов на основе магния, алюминия, меди, титана и железа, деформирование которых возможно в режимах сверхпластичности.

Сверхпластичность может иметь место лишь при условии, когда в процессе деформации (растяжения образца) не образуется локальной деформации.

При локализации деформации в образце возникает местное утонение шейки и он сравнительно быстро разрушается.

Для идеально вязких (ньютоновских) твердых тел т = 1 и удлинение не должно сопровождаться образованием шейки. В случае обычной пластической деформации т < 0,2, а в условиях сверхпластической деформации т >0,3 (обычно 0,4-0,7).

Когда при сверхпластической деформации начинается образование шейки, в этом участке образца возрастает е и из-за высокого значения т увеличивается сопротивление течению а, благодаря чему образование шейки прекращается. Этот процесс непрерывно повторяется, приводя к образованию так называемой бегущей шейки (размытых шеек), когда она перемещается по длине образца, не давая локализованного сжатия. При такой квазиравномерной деформации достигаются очень большие удлинения при растяжении образца.

Процесс сверхпластической деформации

Структурная сверхпластическая деформация протекает главным образом благодаря зернограничному скольжению, хотя в определенной степени существует и внутризеренное дислокационное скольжение.

Проблема создания промышленного структурного сверхпластичного материала - это прежде всего получение ультрамелкого равноосного зерна и сохранение его при сверхпластической деформации.

Стабилизация размеров зерна достигается: 1) применением двухфазных сплавов с объемным соотношением фаз 1: 1; в этом случае имеет место максимальное развитие межфазовой поверхности, что обеспечивает взаимное торможение роста зерен фаз; 2) использованием дисперсных выделений, являющихся барьером для перемещения границ зерен. В настоящее время для обработки в состоянии сверхпластичности чаще используют цинкоалюминие
вый сплав ЦА22 (22 % А1), титановые сплавы, двухфазные сплавы меди и цинка (латунь), алюминиевый сплав , состоящий из а-раствора и дисперсных частиц Al 3 Zr, и некоторые другие.

Явление сверхпластичности в промышленности используют при объемной изотермической штамповке и при пневмоформовке. Сверхпластичность позволяет в процессе штамповки за одну операцию получить детали сложной формы, повысить коэффициент использования металла, уменьшить трудоемкость и стоимость изготовления изделий. Недостатком является необходимость нагрева штампов до температуры обработки и малая скорость деформаций.