Видеть во сне много цветных декоративных иголок. Виды шприцев и игл. Шприцы медицинские: устройство и размеры. Тупая иголка – сонник

Видеть во сне много цветных декоративных иголок. Виды шприцев и игл. Шприцы медицинские: устройство и размеры. Тупая иголка – сонник
Видеть во сне много цветных декоративных иголок. Виды шприцев и игл. Шприцы медицинские: устройство и размеры. Тупая иголка – сонник

Подключение семисегментного индикатора к Arduino – это прекрасный проект начального уровня, позволяющий познакомиться с платой Arduino поближе. Но довольно просто осуществляется. Поэтому мы несколько усложним задачу и подключим четырехразрядный семисегментный индикатор.



В данном случае будем использовать модуль четырехзначного светодиодного индикатора с общим катодом.


Каждый сегмент в модуле индикатора мультиплексирован, то есть он разделяет одну анодную точку соединения с другими сегментами своего разряда. И каждый из четырех разрядов в модуле имеет собственную точку подключения с общим катодом. Это позволяет каждую цифру включать или выключать независимо. Кроме того, такой метод мультиплексирования позволяет микроконтроллеру использовать только одиннадцать или двенадцать выводов вместо тридцати двух.



Светодиодные сегменты индикатора требуют подключения токоограничивающих резисторов при питании от 5 В на логическом выводе. Значение резистора обычно берется между 330 и 470 Ом. Также рекомендуется использование транзисторов для обеспечения дополнительного тока, поскольку каждый вывод микроконтроллера может выдавать максимум 40 мА. Если включить все сегменты разряда (цифра 8), то потребляемый ток превысит этот предел. На рисунке ниже показана схема подключения четырехразрядного семисегментного индикатора с применением транзисторов токоограничивающих резисторов.



Далее приведены схемы подключения индикатора к выводам Arduino. Здесь использованы биполярные npn-транзисторы BC547. Потенциометр 10 КОм, подключенный ко входу платы A0 позволяет изменять отображаемое на индикаторе значение от 0 до 1023.




На плате Arduino цифровые выходы D2-D8 в данном случае предназначены для управления сегментами от «a» до «g», а цифровые выходы D9-D12 используются для управления разрядами от D0 до D3. Следует заметить, что в данном примере точка не используется, но в скетче, приведенном ниже, есть возможность ее задействовать. Вывод D13 платы Arduino зарезервирован для управления сегментом точки.



Ниже представлен код, который позволяет управлять четырехразрядным сегментным индикатором с помощью платы Arduino. В нем в массиве numeral задаются коды чисел от 0 до 9 в двоичной форме. Данный скетч поддерживает как индикаторы с общим катодом (по умолчанию), так и индикаторы с общим анодом (для этого нужно раскомментировать одну строчку в конце скетча).


// биты, представляющие сегменты с A по G (и точки), для чисел 0-9 const int numeral = { //ABCDEFG /dp B11111100, // 0 B01100000, // 1 B11011010, // 2 B11110010, // 3 B01100110, // 4 B10110110, // 5 B00111110, // 6 B11100000, // 7 B11111110, // 8 B11100110, // 9 }; // выводы для точки и каждого сегмента // DP,G,F,E,D,C,B,A const int segmentPins = { 13,8,7,6,5,4,3,2 }; const int nbrDigits= 4; // количество разрядов светодиодного индикатора //разряды 0 1 2 3 const int digitPins = { 9,10,11,12 }; void setup() { for(int i=0; i < 8; i++) { pinMode(segmentPins[i], OUTPUT); // устанавливаем выводы для сегментов и точки на выход } for(int i=0; i < nbrDigits; i++) { pinMode(digitPins[i], OUTPUT); } } void loop() { int value = analogRead(0); showNumber(value); } void showNumber(int number) { if(number == 0) { showDigit(0, nbrDigits-1) ; // отображаем 0 в правом разряде } else { // отображаем значение, соответствующее каждой цифре // крайняя левая цифра 0, правая на единицу меньше, чем число позиций for(int digit = nbrDigits-1; digit >= 0; digit--) { if(number > 0) { showDigit(number % 10, digit) ; number = number / 10; } } } } // Отображаем заданное число на данном разряде 7-сегментного индикатора void showDigit(int number, int digit) { digitalWrite(digitPins, HIGH); for(int segment = 1; segment < 8; segment++) { boolean isBitSet = bitRead(numeral, segment); // isBitSet будет истинным, если данный бит будет 1 // isBitSet = ! isBitSet; // опционально // раскомментируйте опциональную строчку выше для индикатора с общим анодом digitalWrite(segmentPins, isBitSet); } delay(5); digitalWrite(digitPins, LOW); }

В сегодняшней статье поговорим о 7-сегментных индикаторах и о том, как их «подружить» с Ардуино. Есть несколько вариантов. Самый простой, безусловно, это зайти на и купить готовый индикатор с интегрированным шилдом (это платка согласования так называется), но мы не ищем лёгких путей, поэтому пойдем путем чуть более сложным. Новички – не пугайтесь, эта статья, как и предыдущие мои статьи ( и ) именно для вас. Пусть гуру пишут для таких же умудренных опытом гуру, а я новичок – пишу для новичков.

Почему именно 7-сегментный индикатор? Ведь существует столько всяких экранов, с большим количеством символов, строк, разнообразных диагоналей и разрешений, черно-белых и цветных, самые доступные из которых стоят пару долларов… А тут: «старенький», до безобразия простой, но требующий огромного количества пинов 7-сегментный индикатор, но все-таки преимущество есть и у этого «старичка». Дело в том, что пользуясь приведенными здесь скетчами можно оживить не только индикатор с высотой цифр 14 мм, но и более серьезные (правда уже самодельные) проекты, и метровые цифры в данном случае далеко не предел. Жителям столиц это может быть не так интересно, а вот население Новокацапетовки или Нижней Кедровки очень порадуется, если на клубе или сельсовете появятся часы, которые еще могут и дату отображать, и температуру, а о создателе этих часов будут говорить очень долго. Но, подобные часы тема отдельной статьи: будет желание у посетителей – напишу. Всё выше написанное можно считать вступлением. Как и прошлая моя статья эта будет состоять из частей, на этот раз из двух. В первой части мы просто «по управляем» индикатором, а во второй – попробуем приспособить его для чего-то хоть немного полезного. Итак, продолжим:

Часть первая. Экспериментально – познавательная

За основу данного проекта взят нам уже хорошо знакомый по предыдущим статьям ARDUINO UNO. Напомню, что приобрести его легче всего можно здесь: или здесь: , кроме этого понадобится 4-разрядный, 7-сегментный индикатор. У меня, в частности GNQ-5641BG-11. Почему именно этот? Да просто потому, что лет 5 назад купил его по ошибке, идти менять было лень, вот он и валялся все это время, ожидая своего часа. Думаю, что подойдет любой с общим анодом (и с общим катодом можно, но придется данные массива и остальные значения портов инвертировать – т.е. менять на обратные), лишь бы не был слишком мощным, чтобы не сжечь Ардуинку. Кроме этого – 4 токоограничивающих резистора, примерно 100 Ом каждый и кусок шлейфа (мне хватило 10 см) на 12 пин (жил) можно «оторвать» от более широкого, что я и сделал. А можно вообще отдельными проводочками подпаяться, проблем не будет. Еще понадобятся штыри на плату (11 шт.) хотя, если аккуратно можно и без них. Эскиз индикатора можно увидеть на рисунке 1, а его схему на рисунке 2. Также отмечу, что на каждый сегментик этого индикатора лучше подавать не более 2.1В (ограничивается 100-Омными резисторами), и в этом случае он будет потреблять не более 20 мА. В случае, если загорится цифра «8» потребление не превысит 7х20=140 мА, что вполне допустимо для выходов Ардуино. Любознательный читатель задаст вопрос: «Но ведь 4 разряда по 140 мА это уже 4х140=560 мА, а это уже многовато!» Отвечу – останется 140. Каким образом? Читайте дальше! Расположение пинов на индикаторе видно на рисунке 3. А подключение делаем согласно таблице 1.


Рис. 1 - Эскиз индикатора


Рис. 2 - Схема индикатора


Рис. 3 - Расположение пинов

Таблица 1

Пин Ардуино Уно

Пин индикатора

Примечание

Сегмент G

Сегмент F

Сегмент E

Сегмент D

Сегмент C

Сегмент B

Сегмент A

Общий анод сегмента № 1, подключать через резистор 100 Ом.

Общий анод сегмента № 2, подключать через резистор 100 Ом.

Общий анод сегмента № 3, подключать через резистор 100 Ом.

Общий анод сегмента № 6, подключать через резистор 100 Ом.



Заливаем простенький скетч, который представляет собой простенькую «считалочку» от 0 до 9:


А теперь немного пояснений. DDRD это регистр порта D (DDRB – соответственно порта В) за «страшным» словом «регистр» всего лишь «спряталась» функция, которая указывает, будет порт своим пином читать что-то (принимать информацию), либо наоборот туда можно будет что-то писать (отдавать информацию). В данном случае строчка DDRD=B11111111; указывает, что все пины порта D выходные, т.е. информация из них будет выходить. Буквочка «В» обозначает, что в регистр записано двоичное (бинарное) число. Нетерпеливый читатель тут же спросит: «А десятичное можно!?!». Спешу успокоить – можно, но об этом чуть позже. Если бы мы хотели половину порта задействовать на вход, а половину на выход можно было бы указать так: DDRD=B11110000; единицы показывают те пины, которые будут отдавать информацию, а нули – те, которые будут эту самую информацию принимать. Основное удобство регистра заключено еще и в том, что не надо прописывать 8 раз все пины, т.е. мы экономим в программе 7 строк. А теперь разберем следующую строку:

PORTB=B001000; // устанавливаем высокий уровень 11 пина порта В

PORTB это регистр данных порта В, т.е. записав в него какое-либо число мы указываем на каком пине порта будет единица, а на каком – ноль. В добавление к комментарию скажу, если взять Ардуино Уно таким образом, чтобы видеть контроллер и цифровые пины были сверху - будет понятна запись в регистр, т.е. какой «ноль» (или «единица»)отвечает за какой пин, т.е. крайний правый ноль порта В отвечает за 8-й пин, а крайний левый – за 13-й (у которого встроенные светодиод). Для порта D соответственно правый за пин 0, левый за пин 7.
Надеюсь после таких развёрнутых пояснений все понятно, а раз понятно предлагаю вернуться к известной нам и горячо любимой с детства десятичной системе счисления. И еще – скетч в 25 строк вроде и небольшой, но для новичка все-таки несколько громоздок. Будем уменьшать.

Заливаем еще более простой скетч, та же самая «считалочка»:


Видео 1 .
Всего 11 строчек! Вот это по-нашему, «по-новичковски»! Прошу обратить внимание вместо двоичных чисел в регистры записаны десятичные. Естественно, для десятичных чисел никаких букв впереди не нужно. Думаю, не лишним будет свести все числа в таблицы.

Таблица 2. Соответствие отображаемого знака данным порта

Общий анод

Общий катод

Двоичная система

Десятичная система

Двоичная система

Десятичная система

Таблица 3. Соответствие отображаемого разряда данным порта

Общий анод

Общий катод

Двоичная система

Десятичная система

Двоичная система

Десятичная система



Внимание! Данные таблиц 2 и 3 справедливы только при распайке согласно таблице 1.
А теперь зальем скетч со «считалочкой» от 0 до 9999:




Рис. 4 - Считалочка

Работу скетча можно посмотреть на Видео 2 .

В этом скетче комментариев больше, чем самого кода. Вопросов возникнуть не должно…. Кроме одного, что это за «цикл мерцания» такой, что, собственно говоря, там мерцает и для чего? А еще переменная для этого какая-то…
А все дело в том, что одноименные сегменты всех четырех разрядов у нас соединены в одной точке. А1, А2, А3 и А4 имеют общий катод; А1, В1,…..G1 общий анод. Так, что подав одновременно на 4 разрядный индикатор «1234» мы получим «8888» и очень удивимся по этому поводу. Чтобы этого не произошло нужно сначала зажечь «1» в своем разряде, потом отключить её, зажечь «2» в своем и т.д. Если делать это очень быстро, то мерцание цифр сольётся, как кадры на киноплёнке и глаз его практически не будет замечать. А максимальное значение переменной мерцания в данном случае управляет скоростью смены цифр на индикаторе. Кстати, именно благодаря этому «мерцанию» и максимальное потребление тока всего 140 мА, вместо 560. А теперь предлагаю перейти к чему-то более полезному.

Часть вторая. Хоть немного полезная

В этой части мы выведем символы с персонального компьютера на 7-сегментный индикатор при помощи ARDUINO MEGA. Почему вдруг возникла идея «поменять лошадей на переправе»? Причин две: первая – до этого в своих статьях я ни разу не рассматривал ARDUINO MEGA; и вторая – в ARDUINO UNO я так и не разобрался, как мне динамически менять местами СОМ порт и порт D. Но я новичок – мне простительно. Приобрести данный контроллер, естественно можно здесь: . Для реализации задуманного пришлось взять паяльник и перепаять шлейф со стороны Ардуино, а также написать новый скетч. Как перепаян шлейф можно посмотреть на Рисунке 5. Все дело в том, что ARDUINO MEGA и ARDUINO UNO имеют разную распиновку портов, да и в Меге портов гораздо больше. Соответствие использованных пинов видно из Таблицы 4.



Рис. 5 - Новая распайка шлейфа

Таблица 4

Порт Мега


Внимание! Данная таблица справедлива только для данного проекта!

Также следует обратить внимание, что порт С у Ардуино Мега «начинается» с 37 пина и далее по убывающей, а порт А – с 22 пина и далее по возрастающей.



Рис. 6 - Общий вид



Небольшие особенности реализации: выводить будем 4 символа. Символы должны быть цифрами. Если ввели «1234» и увидим «1234», если ввели «123456» все равно увидим «1234», если ввели «йцук», «фыва1234», «отиог485909оапоьм» - не увидим ничего. Если ввели «рр2345мм» увидим « 23» т.е. небольшая, встроенная «защита от дурака».

Собственно скетч:



А как работает данная программа можно посмотреть на Видео 3 .



Обзор подготовил Павел Сергеев

Существуют такие параметры, для которых было бы удобнее выдавать объективную информацию, чем просто индикацию. Например, температура воздуха на улице или время на будильнике. Да, все это можно было бы сделать на светящихся лампочках или светодиодах. Один градус – один горящий светодиод или лампочка и тд. Но считать эти светлячки – ну уж нет! Но, как говорится, самые простые решения – самые надежные. Поэтому, долго не думая, разработчики взяли простые светодиодные полосы и расставили их в нужном порядке.

В начале двадцатого века с появлением электронных ламп появились первые газоразрядные индикаторы

С помощью таких индикаторов можно было вывести цифровую информацию в арабских цифрах. Раньше именно на таких лампах делали различную индикацию для приборов и других электронных устройств. В настоящее время газоразрядные элементы почти уже нигде не применяются. Но ретро – это всегда модно, поэтому, многие радиолюбители собирают для себя и своих близких прекрасные часы на газоразрядных индикаторах .


Минус газоразрядных ламп – кушают много электроэнергии. Про долговечность можно и поспорить. У нас в университете до сих пор в лабораторных кабинетах эксплуатируются частотомеры на газоразрядных индикаторах.

Семисегментные индикаторы

С появлением светодиодов ситуация кардинально изменилась в лучшую сторону. Светодиоды сами по себе потребляют маленький ток. Если расставить их в нужном положении, то можно высвечивать абсолютно любую информацию. Для того, чтобы высветить все арабские цифры, достаточно всего семь светящихся светодиодных полос – сегментов, выставленных определенным образом:

Почти ко всем таким семисегментным индикаторам добавляют также и восьмой сегмент – точку, для того, чтобы можно было показать целое и дробное значение какого-либо параметра

По идее у нас получается восьми сегментный индикатор, но по-старинке его также называют семисегментным.

Что получается в итоге? Каждая полоска на семисегментном индикаторе засвечивается светодиодом или группой светодиодов. В результате, засветив определенные сегменты, мы можем вывести цифру от 0 и до 9, а также буквы и символы.

Виды и обозначение на схеме

Существуют одноразрядные, двухразрядные, трехразрядные и четырехразрядные семисегментные индикаторы. Более четырех разрядов я не встречал.

На схемах семисегментный индикатор выглядит примерно вот так:

В действительности же, помимо основных выводов, каждый семисегментный индикатор также имеет общий вывод с общим анодом (ОА) или общим катодом (ОК)

Внутренняя схема семисегментного индикатора с общим анодом будет выглядеть вот так:


а с общим катодом вот так:


Если семисегментный индикатор у нас с общим анодом (ОА), то в схеме мы должны на этот вывод подавать “плюс” питания, а если с общим катодом (ОК) – то “минус” или землю.

Как проверить семисегментный индикатор

У нас имеются в наличии вот такие индикаторы:


Для того, чтобы проверить современный семисегментный индикатор, нам достаточно мультиметра с функцией прозвонки диодов. Для начала ищем общий вывод – это может быть или ОА или ОК. Здесь только методом тыка. Ну а далее проверяем работоспособность остальных сегментов индикатора по схемам выше.

Как вы видите ниже на фото, у нас загорелся проверяемый сегмент. Таким же образом проверяем и другие сегменты. Если все сегменты горят, то такой индикатор целый и его можно использовать в своих разработках.


Иногда напряжения на мультиметре не хватает для проверки сегмента. Поэтому, берем блок питания , и выставляем на нем 5 Вольт. Чтобы ограничить ток через сегмент, проверяем через резистор на 1-2 Килоома.


Таким же образом проверяем индикатор от китайского приемника


В схемах семисегментные индикаторы соединяются с резисторами на каждом выводе

В нашем современном мире семисегментные индикаторы заменяются жидко-кристаллическими индикаторами, которые могут высвечивать абсолютно любую информацию

но для того, чтобы их использовать, нужны определенные навыки в схемотехнике таких устройств. Поэтому, семисегментные индикаторы до сих пор находят применение, благодаря дешевизне и простоте использования.