Утилизация тепла отходящих дымовых газов. Способ глубокой утилизации тепла дымовых газов. Использование теплоты уходящих газов в промышленных котельных работающих на газу

Утилизация тепла отходящих дымовых газов. Способ глубокой утилизации тепла дымовых газов. Использование теплоты уходящих газов в промышленных котельных работающих на
газу
Утилизация тепла отходящих дымовых газов. Способ глубокой утилизации тепла дымовых газов. Использование теплоты уходящих газов в промышленных котельных работающих на газу

Предлагаю к рассмотрению деятельность по утилизации дымовых газов. Дымовые газы в избытке имеются в любом поселке и городе. Основная часть производителей дыма, это паровые и водогрейные котлы и двигатели внутреннего сгорания. Дымовые газы двигателей рассматривать в этой идее я не буду (хотя они тоже по составу подходят), а вот на дымовых газах котельных остановлюсь подробнее.


Проще всего использовать дым газовых котельных (промышленных или частных домов), это самый чистый вид дымового газа, в котором находится минимальное количество вредных примесей. Можно использовать и дым котельных сжигающих уголь или жидкое топливо, но в этом случае придется выполнять очистку дымовых газов от примесей (это не так сложно, но все-таки дополнительные затраты).


Основные компоненты дымового газа — азот, углекислый газ и водяной пар. Водяной пар никакой ценности не представляет и может быть легко удален из дымового газа соприкосновением газа с прохладной поверхностью. Оставшиеся компоненты цену уже имеют.


Газообразный азот применяется в пожаротушении, для перевозки и хранения легковоспламеняющихся и взрывчатых сред, как защитный газ для предохранения от окисления легкоокисляемых веществ и материалов, для предотвращения коррозии цистерн, продувки трубопроводов и емкостей, для создания инертных сред в силосных зернохранилищах. Азотная защита предотвращает рост бактерий, применяется для очистки сред от насекомых и микробов. В пищевой промышленности к атмосфере азота часто прибегают как к средству повышающему срок хранения скоропортящихся продуктов. Широкое применение находит газообразный азот для получения из него жидкого азота.


Для получения азота достаточно отделить от дымового газа водяной пар и углекислый газ. Что касается следующего компонента дыма — углекислого газа (СО2, углекислота, диоксид углерода) то ассортимент его применения еще больше и цена на него значительно выше.


Предлагаю информацию о нем получить более полную. Обычно углекислый газ хранится в 40-литровых баллонах окрашенных в черный цвет с желтой надписью «углекислота». Более правильное название СО2, «двуокись углерода», но к названию «углекислота» все уже привыкли, оно за СО2 закрепилось и поэтому надпись «углекислота» на баллонах пока сохраняется. Находится углекислота в баллонах в жидком виде. Углекислота не имеет запаха, нетоксична, негорюча и невзрывоопасна. Является веществом, естественным образом, образующимся в организме человека. В выдыхаемом человеком воздухе ее содержится обычно 4,5%. Основное применение углекислота находит при газировании и реализации в розлив напитков, применяется в качестве защитного газа при проведении сварочных работ с использованием сварочных полуавтоматов, используется для повышения урожайности (в 2 раза) с/х культур в теплицах за счет увеличенияконцентрации СО2 в воздухе и увеличения (в 4-6 раз при насыщении углекислотой воды) производства микроводорослей при их искусственном выращивании, для сохранения и улучшения качества кормов и продуктов, для производства сухого льда и использования его в установках криобластинга (очистка поверхностей от загрязнений) и для получения низких температур при хранении и транспортировке пищевых продуктов и т.д.


Углекислота является всюду востребованным товаром и потребность в ней постоянно увеличивается. В домашнем и малом бизнесе получать углекислоту можно извлечением ее из дымового газа на углекислотных установках малой производительности. Лицам имеющим отношение к технике несложно изготовить такую установку самостоятельно. При соблюдении норм технологического процесса, качество получаемой углекислоты соответствует всем требованиям ГОСТ 8050-85.
Углекислоту можно получать как из дымовых газов котельных (или отопительных котлов частных домовладений) так и способом специального сжигания топлива в самой установке.


Теперь экономическая сторона дела. Установка может работать на любом виде топлива. При сжигании топлива (специально для получения углекислоты), выделяется следующее количество СО2:
природный газ (метан) – 1,9 кг СО2 от сжигания 1 куб. м газа;
каменный уголь, разных месторождений – 2,1- 2,7 кг СО2 от сжигания 1 кг топлива;
пропан, бутан, дизтопливо, мазут — 3,0 кг СО2 от сжигания 1 кг топлива.


Полностью всю выделяемую углекислоту извлечь не удастся, а до 90% (можно достичь и 95% извлечения) вполне возможно. Стандартное наполнение 40-литрового баллона 24-25 кг, поэтому можно самостоятельно посчитать удельный расход топлива для получения одного баллона углекислоты.


Он не такой уж большой, например, в случае получения углекислоты от сжигания природного газа достаточно сжигать 15 м3 газа.


По самому высокому тарифу (г.Москва) это 60 руб. на 40-литр. баллон углекислоты. В случае извлечения СО2 из дымовых газов котельных себестоимость получения углекислоты снижается, так как снижаются затраты на топливо и прибыль с установки увеличивается. Установка может работать круглосуточно, в автоматическом режиме с минимальным привлечением человека к процессу получения углекислоты. Производительность установки зависит от количества содержащегося СО2 в дымовом газе, конструкции установки и может достигать 25 баллонов углекислоты в сутки и более.


Цена 1 баллона углекислоты в большинстве регионов России превышает 500 рублей (декабрь 2008 г.) Месячная выручка от реализации углекислоты в этом случае достигает: 500 руб./бал. х 25 бал./сут. х 30 сут. = 375 000 руб. Выделяемое при сжигании тепло можно использовать одновременно для отопления помещений, и нерационального использования топлива в этом случае не будет. При этом следует иметь ввиду, что экологическая обстановка по месту извлечения углекислоты из дымовых газов только улучшается, так как выбросы СО2 в атмосферу снижаются.


Неплохо себя рекомендует и способ извлечения углекислоты из дымовых газов получаемых от сжигания древесных отходов (отходы лесозаготовки и деревопереработки, столярных цехов и проч.). В этом случае та же самая углекислотная установка дополняется древесным газогенератором (заводского или самостоятельного изготовления) для получения древесногенераторного газа. Древесные отходы (чурки, щепа, стружки, опилки и т.п.) 1-2 раза в сутки засыпаются в бункер газогенератора, в остальном работа установки происходит в том же режиме, как и в вышеприведенном.
Выход углекислоты из 1 тонны древесных отходов составляет 66 баллонов. Выручка с одной тонны отходов составляет (при цене баллона углекислоты 500 руб.): 500 руб./бал. х 66 бал. = 33 000 руб.


При средней величине древесных отходов с одного деревоперерабатывающего цеха в 0,5 тонны отходов в сутки, выручка от реализации углекислоты может достигать 500 тыс. руб. в месяц, а в случае привоза отходов и с других деревоперерабатывающих и столярных цехов выручка становится еще больше.


Возможен вариант получения углекислоты и от сжигания автомобильных покрышек, что также только на пользу нашей экологии.


В случае производства углекислоты в количестве большем, чем может ее потребить местный рынок сбыта, произведенную углекислоту можно самостоятельно использовать для других видов деятельности, а также перерабатывать ее в другие химвещества и реактивы (например, по несложной технологии в экологически чистые углеродсодержащие удобрения, разрыхлители теста и проч.) вплоть до получения из углекислоты автомобильного бензина.

Утилизация тепла отходящих дымовых газов

Дымовые газы, покидающие рабочее пространство печей, имеют весьма высокую температуру и поэтому уносят с собой значительное количество тепла. В мартеновских печах, например, из рабочего пространства с дымовыми газами уносится около 80 % всего тепла поданного в рабочее пространство, в нагревательных печах около 60 %. Из рабочего пространства печей дымовые газы уносят с собой тем больше тепла, чем выше их температура и чем ниже коэффициент использования тепла в печи. В связи с этим целесообразно обеспечивать утилизацию тепла отходящих дымовых газов, которая может быть выполнена принципиально двумя методами: с возвратом части тепла, отобранного у дымовых газов, обратно в печь и без возврата этого тепла в печь. Для осуществления первого метода необходимо тепло, отобранное у дыма, передать идущим в печь газу и воздуху (или только воздуху). Для достижения этой цели широко используют теплообменники рекуперативного и регенеративного типов, применение которых позволяет повысить к. п. д. печного агрегата, увеличить температуру горения и сэкономить топливо. При втором методе утилизации, тепло отходящих дымовых газов используется в теплосиловых котельных и турбинных установках, чем достигается существенная экономия топлива.

В отдельных случаях оба описанных метода утилизации тепла отходящих дымовых газов используются одновременно. Это делается тогда, когда температура дымовых газов после теплообменников регенеративного или рекуперативного типа остается достаточно высокой и целесообразна дальнейшая утилизация тепла в теплосиловых установках. Так, например, в мартеновских печах температура дымовых газов после регенераторов составляет 750-800 °С, поэтому их повторно используют в котлах-утилизаторах.

Рассмотрим подробнее вопрос утилизации тепла отходящих дымовых газов с возвратом части их тепла в печь.

Следует, прежде всего, отметить, что единица тепла, отобранная у дыма и вносимая в печь воздухом или газом (единица физического тепла), оказывается значительно ценнее единицы тепла, полученной в печи в результате сгорания топлива (единицы химического тепла), так как тепло подогретого воздуха (газа) не влечет за собой потерь тепла с дымовыми газами. Ценность единицы физического тепла тем больше, чем ниже коэффициент использования топлива и чем выше температура отходящих дымовых газов.

Для нормальной работы печи следует каждый час в рабочее пространство подавать необходимое количество тепла. В это количество тепла входит не только тепло топлива , но и тепло подогретого воздуха или газа , т. е. .

Ясно, что при = const увеличение позволит уменьшить . Иными словами, утилизация тепла отходящих дымовых газов позволяет достичь экономии топлива, которая зависит от степени утилизации тепла дымовых газов


где - соответственно энтальпия подогретого воздуха и отходящих из рабочего пространства дымовых газов, кВт, или кДж/период.

Степень утилизации тепла может быть также названа к.п.д. рекуператора (регенератора), %

Зная величину степени утилизации тепла, можно определить экономию топлива по следующему выражению:

где I"д, Iд - соответственно энтальпия дымовых газов при температуре горения и покидающих печь.

Снижение расхода топлива в результате использования тепла отходящих дымовых газов обычно дает значительный экономический эффект и является одним из путей снижения затрат на нагрев металла в промышленных печах.

Кроме экономии топлива, применение подогрева воздуха (газа) сопровождается увеличением калориметрической температуры горения , что может являться основной целью рекуперации при отоплении печей топливом с низкой теплотой сгорания.

Повышение при приводит к увеличению температуры горения. Если необходимо обеспечить определенную величину , то повышение температуры подогрева воздуха (газа), приводит к уменьшению величины , т. е. к снижению доли в топливной смеси газа с высокой теплотой сгорания.

Поскольку утилизация тепла позволяет значительно экономить топливо целесообразно стремиться к максимально возможной, экономически оправданной степени утилизации. Однако необходимо сразу заметить, что утилизация не может быть полной, т. е. всегда . Это объясняется тем, что увеличение поверхности нагрева рационально только до определенных пределов, после которых оно уже приводит к очень незначительному выигрышу в экономии тепла.

В.С.Галустов, д.т.н., профессор, генеральный директор ГП НПО «Политехника»
Л.А.Розенберг, инженер, директор УП «Юмиран».

Введение.

С дымовыми газами различного происхождения в атмосферу выбрасываются тысячи и тысячи Гкал теплоты, а также тысячи тонн газообразных и твёрдых загрязнителей, водяного пара. В настоящей статье остановимся на проблеме утилизации теплоты (об очистке газовых выбросов поговорим в следующем сообщении). Наиболее глубокое использование теплоты сжигания топлива осуществляется в теплоэнергетических котлах, для чего в большинстве случаев в их хвостовой части предусматриваются экономайзеры. Температура дымовых газов после них порядка 130—190°С, т.е. близка к температуре точки росы паров кислот, которая при наличии в топливе сернистых соединений является нижним пределом. При сжигании природного газа указанное ограничение менее существенно.

Дымовые газы после различного рода печей могут иметь значительно более высокую температуру (до 300-500°С и выше). В этом случае утилизация теплоты (и охлаждение газов) просто обязательна, хоть бы для ограничения теплового загрязнения окружающей среды.

Теплоутилизаторы.

Ещё в первом сообщении мы ограничили круг наших интересов процессами и аппаратами с непосредственным контактом фаз, однако для полноты картины вспомним и оценим также и другие варианты. Все известные теплоутилизаторы можно разделить на контактные, поверхностные, а также устройства с промежуточным теплоносителем. На первых мы подробнее остановимся ниже. Поверхностные теплоутилизаторы — это традиционные калориферы, которые размещаются непосредственно в газоходе после печи (котла) и имеют серьёзные недостатки, ограничивающие их применение. Во-первых, они вносят значительное аэродинамическое сопротивление в газовый тракт и ухудшают работу печей (снижается разряжение) с проектным дымососом, а его замена на более мощный может не компенсировать сопровождающих затрат экономией теплоты. Во-вторых, низкие коэффициенты теплоотдачи от газа к поверхности трубок обусловливают большие значения необходимой поверхности контакта.

Аппараты с промежуточным теплоносителем бывают двух типов: периодического действия с твёрдым теплоносителем и непрерывного — с жидким. Первые представляют собой минимум две колонны, заполненные, например, дроблёным гранитом (насадкой). Дымовые газы проходят через одну из колонн, отдавая теплоту насадке, нагревают её до температуры, несколько ниже температуры газов. Затем дымовые газы переключаются на вторую колонну, а в первую подаётся нагреваемая среда (обычно подаваемый в ту же печь воздух, или воздух системы воздушного отопления) и т.д. Недостатки такой схемы очевидны (большое сопротивление, громоздкость, нестабильность температур и т.п.), а её применение весьма ограничено.

Аппараты с жидким промежуточным теплоносителем (обычно это вода) получили название контактных теплообменников с активной насадкой (КТАН) , а авторы после незначительного усовершенствования назвали их теплообменными аппаратами с насыщенным теплоносителем и конденсацией (ТАНТЕК). В обоих случаях нагреваемая дымовыми газами вода затем отдаёт полученную теплоту через стенку поверхностного встроенного теплообменника чистой воде (например, системы отопления). По сравнению с калориферами сопротивление таких утилизаторов значительно ниже, а в части теплообмена в системе дымовые газы — вода полностью аналогичны интересующим нас прямоточно-распылительным аппаратам. Однако есть и существенные отличия, о которых скажем ниже.

Разработчики аппаратов КТАН и ТАНТЕК не рассматривают в своих публикациях особенности теплопереноса при непосредственном контакте дымовых газов и воды, поэтому остановимся на них несколько подробнее.

Основные процессы в системе дымовые газы — вода.

Результат взаимодействия нагретых дымовых газов (по составу и свойствам это фактически влажный воздух) и воды (в виде капель того или иного размера), которую назовём теплоаккумулирующей средой (она может использоваться в качестве основного или промежуточного теплоносителя), определяется целым комплексом процессов.

Одновременно с нагреванием может происходить конденсация влаги на поверхности капель или испарение. Фактически возможны три варианта взаимного направления потоков теплоты и влаги (теплопередачи и массопередачи), которые зависят от соотношения температур фаз и соотношения парциальных давлений пара в пограничном слое (возле капли) и в ядре газового потока (рис. 1а).

При этом первый (верхний) случай, когда потоки теплоты и влаги направлены от капель к газу, соответствует испарительному охлаждению воды; второй (средний) — нагреванию капель при одновременном испарении влаги с их поверхности; третий (нижний) вариант, по которому теплота и влага направлены от газа к каплям, отражает нагревание воды с конденсацией паров. (Казалось бы, что должен существовать и четвёртый вариант, когда охлаждение капель и нагревание газа сопровождаются конденсацией влаги, однако на практике это не встречается.)

Все описанные процессы наглядно можно представить на диаграмме состояния влажного воздуха Рамзина (Н — х диаграмме, рис. 1б).

Уже из сказанного можно сделать вывод, что наиболее желателен третий вариант, но чтобы понять, как его обеспечить, необходимо дополнительно к изложенному в напомнить:

— количество водяных паров, содержащихся в 1 м3 влажного воздуха, называется абсолютной влажностью воздуха. Водяной пар занимает весь объём смеси, поэтому абсолютная влажность воздуха равна плотности водяного пара (в данных условиях) рп

— при насыщении воздуха паром наступает момент, когда начинается конденсация, т.е. достигается предельно возможное содержание пара в воздухе при данной температуре, что соответствует плотности насыщенного водяного пара рн;

— отношение абсолютной влажности к максимально возможному количеству пара в 1 м3 воздуха при данном давлении и температуре называется относительной влажностью воздуха ф;

— количество водяного пара в кг, приходящегося на 1 кг абсолютно сухого воздуха, называется влагосодержанием воздуха х;

— влажный воздух как теплоноситель характеризуется энтальпией / (теплосодержанием), являющейся функцией температуры и влагосодержания воздуха и равной сумме энтальпий сухого воздуха и водяного пара . В наиболее удобном для применения на практике виде формулу для расчёта энтальпии можно представить

I= (1000 + 1,97 . 103х) t+ 2493 . . 103х Дж/кг сухого воздуха, где 1000 — удельная теплоёмкость сухого воздуха, Дж/кг*град); 1,97*103 — удельная теплоёмкость пара, Дж/(кг*град); 2493*103 — постоянный коэффициент, примерно равный энтальпии пара при 0°С; t— температура воздуха, °С;

I = 0,24t + (595 + 0,47t) Xккал/кг сухого воздуха; где 595 — постоянный коэффициент, примерно равный энтальпии пара при 0°С; 0,24 — удельная теплоёмкость сухого воздуха, ккал/(кгтрад); 0,47 — теплоёмкость пара, ккал/(кгтрад);

— при охлаждении воздуха (в условиях постоянного влагосодержания) относительная влажность будет возрастать до тех пор, пока не достигнет 100%. Соответствующая этому температура называется температурой точки росы. Её значение определяется исключительно влагосодержанием воздуха. На диаграмме Рамзина это точка пересечения вертикальной прямой х = const с линией ф = 1.

Охлаждение воздуха ниже точки росы сопровождается конденсацией влаги, т.е. осушкой воздуха.

Некоторую путаницу вносят издания, приводящие значения точки росы для различных твёрдых и жидких топлив порядка 130-150°С. Надо иметь в виду, что это касается начала конденсации паров серной и сернистой кислот (обозначим eetpK), а не водяного пара (tp), о котором мы говорили выше. Для последнего температура точки росы значительно ниже (40-50°С).

Итак, три величины — расход, температура и влагосодержание (либо температура мокрого термометра) — в полной мере характеризуют дымовые газы как источник вторичных энергоресурсов.

При контакте воды с горячими газами первоначально происходит процесс нагревания жидкости и конденсации паров на поверхности холодных капель (соответствует 3-му варианту на рис. 1а) до тех пор, пока не будет достигнута температура, соответствующая точке росы для газа, т.е. граница перехода ко второму режиму (3-й вариант на рис. 1а). Далее, по мере нагревания воды и роста парциального давления пара у поверхности капель, количество теплоты, передаваемой им за счёт теплоотдачи Q1 будет уменьшаться, а количество теплоты, передаваемой от капель к дымовым газам за счёт испарения Q2, — возрастать. Продолжаться это будет до достижения равновесия (Q1= Q2), когда вся теплота, получаемая водой от дымового газа, будет возвращаться газу в виде теплоты испарения жидкости. После этого дальнейшее нагревание жидкости невозможно, и происходит её испарение при постоянной температуре. Достигаемая при этом температура называется температурой мокрого термометра tM(на практике определяют как температуру, показываемую термометром, шарик которого покрыт влажной тканью, с которой происходит испарение влаги).

Таким образом, если в утилизатор подавать воду с температурой, равной (или большей) tM, то будет наблюдаться адиабатическое (при постоянном теплосодержании) охлаждение газов и никакой теплоутилизации не будет (не считая негативных последствий — потерь воды и увлажнения газов).

Процесс становится более сложным, если учесть, что состав капель полидисперсный (обусловлен механизмами распада жидкостей при распылении). Мелкие капли мгновенно достигают tMи начинают испарятся, изменяя параметры газа в сторону увеличения влагосодержания, средние — могут находиться между tpи tM, а крупные — ниже tp, т.е.

нагреваются и конденсируют влагу. Всё это протекает одновременно при отсутствии чётких границ.

Всесторонне проанализировать результаты непосредственного контакта капель теплоаккумулирующей среды и горячих дымовых газов возможно только на основе математической модели, учитывающей весь комплекс явлений (одновременно протекающие тепло- и массоперенос, изменения параметров сред, аэродинамической обстановки, полидисперсный состав капельного потока и т.д.).

Описание модели и результатов анализа на её основе приведено в монографии , к которой мы и рекомендуем обратиться заинтересованному читателю. Здесь отметим лишь главное.

Для большинства дымовых газов температура мокрого термометра находится в пределах 45-55°С, т.е. вода в зоне непосредственного контакта с дымовыми газами, как отмечалось выше, может быть нагрета только до указанной температуры, хотя и с достаточно глубокой теплоутилизацией. Предварительное же увлажнение газов, как это предусматривается конструкцией ТАНТЕК, не только не приводит к увеличению количества утилизируемой теплоты, а даже к его снижению.

И, наконец, следует учитывать, что при утилизации теплоты даже из газов, не содержащих сернистые соединения, охлаждать их ниже 80°С не следует (затрудняется их эвакуация в окружающую среду через газоход и дымовую трубу).

Поясним сказанное на конкретном примере. Пусть дымовые газы после котла в количестве 5000 кг/ч, имеющие температуру 130°С и влагосодержание 0,05 кг/кг, контактируют с теплоутилизирующей средой (водой, tH= 15°С). Из Н—х диаграммы находим: tM= 49,5°С; tp= 40°С; I = 64 ккал/кг. Расчёты по модели показали, что при охлаждении газов до 80°С полидисперсным потоком капель со средним диаметром 480 мкм, влагосодержание фактически остаётся неизменным (испарение мелких капель компенсируется конденсацией на крупных), tMстановится равной 45°С, а теплосодержание I = 50 ккал/кг. Таким образом, утилизируется 0,07 Гкал/ч теплоты, а теплоаккумулирующая среда в количестве 2,5 м3/ч нагревается с 15 до 45°С.

Если же использовать ТАНТЕК и предварительно провести увлажнение — адиабатическое охлаждение газов до t- 100°С, а далее охлаждать до 80°С при X = const, то конечные параметры газа будут: tM = 48°С; I = 61,5°С. И хотя вода нагреется несколько выше (до 48°С), количество утилизируемой теплоты уменьшается в 4 раза и составит 0,0175 Гкал/ч.

Варианты организации утилизации теплоты.

Решение конкретной задачи утилизации теплоты дымовых газов зависит от ряда факторов, в том числе от наличия загрязняющих веществ (определяется видом сжигаемого топлива и объектом нагревания дымовыми газами), наличием потребителя теплоты или непосредственно горячей воды и т.д.

На первом этапе следует определить количество теплоты, которое в принципе может быть извлечено из имеющихся дымовых газов, и оценить экономическую целесообразность теплоутилизации, так как капитальные затраты на неё не пропорциональны количеству утилизируемой теплоты.

Если ответ на первый вопрос положительный, то следует оценить возможность использования умеренно нагретой воды (например, при сжигании природного газа направить её на подготовку подпиточной воды котлов или теплосети, а при загрязнении пылевыми частицами целевого продукта использовать на приготовление сырьевой массы, например в производстве керамических изделий и т.п.). Если вода слишком загрязнена, можно предусмотреть двухконтурную систему или теплоутилизацию сочетать с очисткой дымовых газов (получить более высокие (выше 45-5СРС) температуры или поверхностную ступень).

Вариантов организации процесса утилизации теплоты много. От выбора оптимального решения зависит экономическая эффективность мероприятия.

Литература:

1. Галустов B.C. Тепломассообменные процессы и аппараты с непосредственным контактом фаз в теплоэнергетике // Энергия и менеджмент.— 2003.— № 4.

2. Галустов B.C. Прямоточные распылительные аппараты в теплоэнергетике.— М.: Энергоатомиздат, 1989.

3. Суханов В.И. и др. Установки утилизации тепла и очистки дымовых газов паровых и водогрейных котлов.— М.: АКВА-ТЕРМ, июль 2001.

4. Плановский А.Н., Рамм В.М., Каган С.З. Процессы и аппараты химической технологии.— М.: Госхимиздат, 1962.—С.736-738.

Использование теплоты уходящих газов в промышленных котельных работающих на газу

Использование теплоты уходящих газов в промышленных котельных работающих на газу

к.т.н Сизов В.П., д.т.н Южаков А.А., к.т.н Капгер И.В.,
ООО "Пермавтоматика",
sizovperm@mail.ru

Аннотация: цена на природный газ во всём мире значительно различается. Это зависит от членства страны в ВТО, экспортирует или импортирует свой газ страна, затраты на добычу газа, состоянием промышленности, политическими решениями и пр. Цена на газ в РФ в связи вступлением нашей страны в ВТО будет только расти и в планах правительства уравнять цены на природный газ как в нутрии страны так и за её пределами. Приблизительно сравним цены на газ в Европе и России.

Россия – 3 руб/м 3 .

Германия - 25 руб/м 3 .

Дания – 42 руб/м 3 .

Украина, Белорусия – 10 руб/м 3 .

Цены достаточно условные. В Европейских странах массово используются котлы конденсационного типа, общая доля их в процессе выработки тепла достигает 90%. В России данные котлы в основном не используются в связи с дороговизной котлов, низкой стоимости газа и высокотемпературными централизованными сетями. А также сохранением системы лимитирования сжигания газа на котельных.

В настоящее время вопрос о более полном использовании энергии теплоносителей становится все более актуален. Выброс тепла в атмосферу не только создает дополнительное давление на окружающую среду, но и увеличивает затраты владельцев котельных. В тоже время современные технологии позволяют более полно использовать теплоту уходящих газов и увеличить КПД котла, рассчитанного по низшей теплоте сгорания, вплоть до значения в 111 %. Потеря теплоты с уходящими газами занимает основное место среди тепловых потерь котла и составляет 5¸12 % вырабатываемой теплоты . Дополнительно к этому может быть использована теплота конденсации водяных паров, которые образуются при сжигании топлива. Количество выделяемой теплоты при конденсации водяных паров зависит от вида топлива и находится в пределах от 3,8% для жидких топлив и до 11,2 % для газообразных (у метана) и определяется как разность между высшей и низшей теплотой сгорания топлива (табл. 1).

Таблица 1 - Величины высшей и низшей теплоты сгорания для различных видов топлива

Тип топлива

PCS (Ккал)

PCI (Ккал)

Разница (%)

Печное топливо

Получается, что в уходящих газах содержится как явная теплота, так и скрытая. Причем последняя может достигать величины, превосходящей в некоторых случаях явную теплоту. Явная теплота - это теплота, при которой изменение количества тепла, подведенного к телу, вызывает изменение его температуры. Скрытая теплота - теплота парообразования (конденсации), которая не изменяет температуру тела, а служит для изменения агрегатного состояния тела. Данное утверждение иллюстрируется графиком (рис. 1, на котором по оси абсцисс отложена энтальпия (количество подведенного тепла), а по оси ординат - температура).

Рис. 1 – Зависимость изменения энтальпии для воды

На участке графика А-В происходит нагрев воды от температуры 0 °С до температуры 100 °С. При этом все тепло, подведенное к воде, используется для повышения ее температуры. Тогда изменение энтальпии определяется по формуле (1)

(1)

где с – теплоемкость воды, m – масса нагреваемой, Dt – перепад температуры.

Участок графика В-С демонстрирует процесс кипения воды. При этом все тепло, подведенное к воде, расходуется на преобразование ее в пар, температура при этом остается постоянной - 100 °С. Участок графика C-D показывает, что вся вода превратилась в пар (выкипела), после этого тепло расходуется на повышение температуры пара. Тогда изменение энтальпии для участка А-С характеризуется формулой (2)

где r = 2500 кДж/кг – скрытая теплота парообразования воды при атмосферном давлении.

Самая большая разница между высшей и низшей теплотой сгорания, как видно из табл. 1, у метана, поэтому природный газ (до 99% метана) дает самую большую рентабельность. Отсюда все дальнейшие выкладки и выводы будут даны для газа на основе метана. Рассмотрим реакцию горения метана (3)

Из уравнения этой реакции следует, что для окисления одной молекулы метана необходимо две молекулы кислорода, т.е. для полного сжигания 1м 3 метана необходимо 2м 3 кислорода. В качестве окислителя при сжигании топлива в котельных агрегатах используется атмосферный воздух, который представляет смесь газов. Для технических расчетов обычно принимают условный состав воздуха из двух компонентов : кислорода (21 об. %) и азота (79 об. %). С учетом такова состава воздуха для проведения реакции горения для полного сжигания газа потребуется воздуха по объему в 100/21=4,76 раза больше, чем кислорода. Таким образом, для сжигания 1м 3 метана потребуется 2×4,76=9,52 воздуха. Как видно из уравнения реакции окисления, в результате получается углекислый газ, водяной пар (дымовые газы) и тепло. Теплота, которая выделяется при сгорании топлива согласно (3), называется низшей теплотой сгорания топлива (PCI).

Если охлаждать водяные пары, то при определенных условиях они начнут конденсироваться (переходить из газообразного состояния в жидкое) и при этом будет выделяться дополнительное количество теплоты (скрытая теплота парообразования/конденсации) рис. 2.

Рис. 2 – Выделение теплоты при конденсации водяного пара

Следует иметь ввиду, что водяные пары в дымовых газах имеют несколько другие свойства, чем чистый водяной пар. Они находятся в смеси c другими газами и их параметры отвечают параметрам смеси. Поэтому температура, при которой начинается конденсация, отличается от 100 °С. Значение этой температуры зависит от состава дымовых газов, что, в свою очередь, является следствием вида и состава топлива, а также коэффициента избытка воздуха.
Температура дымовых газов, при которой начинается конденсация водяных паров в продуктах сгорания топлива, называется точкой росы и имеет вид рис.3.


Рис. 3 – Точка росы для метана

Следовательно, для дымовых газов представляющих собой смесь газов и водяного пара, энтальпия меняется несколько по другому закону (рис. 4).

Рисунок 4 – Выделение теплоты из паровоздушной смеси

Из графика на рис. 4 можно сделать два важных вывода. Первое – температура точки росы равна температуре до которой охладили дымовые газы. Второе – не обязательно проходить, как на рис. 2, всю зону конденсации, что не только практически невозможно но и не нужно. Это, в свою очередь, обеспечивает различные возможности реализации теплового баланса. Другими словами, для охлаждения дымовых газов можно использовать практически любой небольшой объем теплоносителя.

Из вышесказанного можно сделать вывод, что при расчете КПД котла по низшей теплоте сгорания с последующей утилизацией теплоты уходящих газов и водяных паров можно значительно увеличить КПД (более 100%). На первый взгляд это противоречит законам физики, но на самом деле никакого противоречия здесь нет. КПД таких систем нужно рассчитывать по высшей теплоте сгорания, а определение КПД по низшей теплоте сгорания необходимо проводить только в том случае, если необходимо сравнить его КПД с КДП обычного котла. Только в этом контексте имеет смысл КПД > 100%. Считаем, что для таких установок более правильно приводить два КПД. Постановка задачи может быть сформулирована следующим образом. Для более полного использования теплоты сгорания уходящих газов их необходимо охладить до температуры ниже точки росы. При этом водяные пары, образующиеся при сжигании газа, сконденсируются и передадут теплоносителю скрытую теплоту парообразования. При этом охлаждение дымовых газов должно осуществляется в теплообменниках специальной конструкции, зависящей в основном от температуры уходящих газов и температуры охлаждающей воды. Применение воды в качестве промежуточного теплоносителя является наиболее привлекательным, т.к в этом случае возможно использовать воду с максимально низкой температурой. В результате возможно получить температуру воды на выходе из теплообменника, например, 54°С с последующим ее использованием. В случае использования в качестве теплоносителя обратной линии, ее температура должна быть как можно ниже, а это зачастую возможно только при наличии низкотемпературных систем отопления в качестве потребителей.

Дымовые газы котельных агрегатов большой мощности, как правило, отводятся в железобетонную или кирпичную трубу. Если не принять специальных мер по последующему нагреву частично осушенных дымовых газов, то труба превратится в конденсационный теплообменник со всеми вытекающими последствиями . Для решения этого вопроса существуют два пути. Первый путь заключается в применении байпаса, в котором часть газов, например 80%, пропускается через теплообменник, а другая часть, в размере 20%, пропускается по байпасу и затем смешивается с частично осушенными газами. Тем самым, нагревая газы, мы сдвигаем точку росы до необходимой температуры при которой труба гарантированно будет работать в сухом режиме. Второй способ заключается в применении пластинчатого рекуператора . При этом уходящие газы несколько раз проходят рекуператор, тем самым нагревая сами себя.

Рассмотрим пример расчета 150 м типовой трубы (рис. 5-7), имеющей трехслойную конструкцию. Расчеты выполнены в программном пакете Ansys-CFX. Из рисунков видно, что движение газа в трубе имеет ярко выраженный турбулентный характер и как следствие, минимальная температура на футеровке может быть не в районе оголовка, как следует из упрощенной эмпирической методики .

Рис. 7 – температурное поле на поверхности футеровки

Следует отметить, что при установке теплообменника в газовый тракт возрастет его аэродинамическое сопротивление, но снижается объем и температура уходящих газов. Это приводит к уменьшению тока дымососа. Образование конденсата накладывает специальные требования на элементы газового тракта в плане применения корозионно-стойких материалов. Количество конденсата приблизительно равно 1000-600 кг/час на 1 Гкал полезной мощности теплообменника . Значение рН конденсата продуктов сгорания при сжигании природного газа составляет 4.5-4.7, что соответствует кислой среде. В случае небольшого количества конденсата, возможно использовать для нейтрализации конденсата сменные блоки. Однако для крупных котельных необходимо применять технологию дозирования каустической соды . Как показывает практика небольшие объемы конденсата можно использовать в качестве подпитки без всякой нейтрализации.

Следует подчеркнуть, что основной проблемой при проектировании отмеченных выше систем является слишком большая разница энтальпии на единицу объёма веществ, и вытекающая из этого техническая задача - развитие поверхности теплообмена со стороны газа. Промышленность РФ серийно выпускает подобные теплообменники типа КСК, ВНВ и пр. . Рассмотрим на сколько развита поверхность теплообмена со стороны газа на действующей конструкции (рис.8). Обыкновенная трубка, внутри которой протекает вода (жидкость), а с наружи по рёбрам радиатора обтекает воздух (отходящие газы). Рассчитанное соотношение калорифера будет выражаться неким

Рис. 8 – чертёж трубки калорифера.

коэффициентом

K=S нар /S вн, (4),

где S нар – наружная площадь теплообменника мм 2 , а S вн – внутренняя площадь трубки.

При геометрических расчётах конструкции получаем K=15. Это значит что внешняя площадь трубки в 15 раз больше внутренней площади. Это объясняется тем, что энтальпия воздуха на единицу объёма во много раз меньше энтальпии воды, на единицу объёма. Рассчитаем во сколько раз энтальпия литра воздуха меньше энтальпии литра воды. Из

энтальпия воды: Е в = 4,183 КДж/л*К.

энтальпия воздуха: Е воз = 0,7864 Дж/л*К. (при температуре 130 0 С).

Отсюда энтальпия воды в 5319 раз больше, чем энтальпия воздуха, и поэтому K=S нар /S вн . В идеальном случае в таком теплообменнике коэффициент К должен быть 5319, но так как внешняя поверхность по отношению к внутренней развита в 15 раз, то разность в энтальпии по сути между воздухом и водой уменьшается до значения K= (5319/15)= 354. Технически развить соотношение площадей внутренней и внешней поверхности до получения соотношения K=5319 очень трудно или практически невозможно . Для решения этой проблемы попытаемся искусственно увеличить энтальпию воздуха (отходящих газов). Для этого распылим из форсунки в отходящий газ воду (конденсат этого же газа). Распылим его такое количество по отношению к газу, что вся распыленная вода полностью испарится в газе и относительная влажность газа станет 100%. Относительную влажность газа возможно рассчитать основываясь на табл.2.

Таблица 2. Значения абсолютной влажности газа с относительной влажностью по воде 100% при различных температурах и атмосферном давлении.

Т,°С

А,г/м3

Т,°С

А,г/м3

Т,°С

А,г/м3

86,74

Из рис.3 видно, что при очень качественной горелке, возможно добиться температуры точки росы в отходящих газах Т рос = 60 0 С. При этом температура этих газов составляет 130 0 С. Абсолютное содержание влаги в газе (согласно табл. 2) при Т рос = 60 0 С составит 129,70 гр/м 3 . Если в этом газе распылить воду, то температура его резко упадёт, плотность вырастет, а энтальпия резко повысится. Следует отметить, что распылять воду выше относительной влажности 100% не имеет смысла, т.к. при превышении порога относительной влажности свыше 100% распыляемая вода перестанет испаряться в газ. Проведем небольшой расчет требуемого количества распыляемой воды для следующих условий: Т гн – температура газа начальная равная 120 0 С, Т рос - точка росы газа 60 0 С (129,70 гр/м 3), требуется найти: Т гк - конечную температуру газа и М в - массу воды распылённую в газе (кг.)

Решение. Все расчёты проводим относительно 1 м 3 газа. Сложность расчётов определяется тем, что в результате распыления меняется как плотность газа, так и его теплоёмкость, объём и пр. Кроме того считается что испарение происходит в абсолютно сухом газе, а также не учитывается энергия на нагрев воды.

Рассчитаем количество энергии отданное газом воде при испарении воды

где: с –теплоёмкость газа (1 КДж/кг.К), m –масса газа (1 кг/м 3)

Рассчитаем количество энергии отданное водой при испарении в газ

где: r – скрытая энергия парообразования (2500 КДж/кг), m – масса испаряемой воды

В итоге подстановки получаем функцию

(5)

При этом нужно учитывать, что невозможно распылить воды более, чем указано в табл.2, а в газе уже имеется испарённая вода. Путем подбора и расчётов нами было получено значение m = 22 гр, Т гк = 65 0 С. Посчитаем фактическую энтальпию полученного газа, с учётом, что его относительная влажность 100% и при его охлаждении будет выделяться как скрытая, так и явная энергия. Тогда согласно получим сумму двух энтальпий. Энтальпию газа и энтальпию сконденсировавшейся воды.

Е воз =Ег+Евод

Ег находим из справочной литературы 1,1 (КДж/м 3 *К)

Евод рассчитываем относительно табл. 2. У нас газ остывая с 65 0 С до64 0 С выделяет 6,58 гр воды. Энтальпия конденсации составляет Евод=2500 Дж/гр или в нашем случае Евод=16.45 КДж/м 3

Суммируем энтальпию сконденсировавшейся воды и энтальпию газа.

Е воз =17,55 (Дж/л*К)

Как мы видно путём распыления воды, нам удалось увеличить энтальпию газа в 22,3 раза. Если до распыления воды энтальпия газа составляла Е воз = 0,7864 Дж/л*К. (при температуре 130 0 С). То после распыления энтальпия составляет Е воз =17,55 (Дж/л*К). А это означает, что для получения той же тепловой энергии на том же стандартном теплообменнике типа КСК, ВНВ площадь теплообменника возможно снизить в 22,3 раза. Пересчитанный коэффициент К (величина была равна 5319) становится равным 16. А при таком коэффициенте теплообменник приобретает вполне реализуемые размеры.

Еще одним важным вопросом при создании подобных систем является анализ процесса распыления, т.е. какого диаметра необходима капля при испарении воды в газе. Если достаточно мелкая капля (например, 5 мкМ), то срок жизни этой капли в газе до полного испарения достаточно короткий. А если капля имеет размер, например, 600 мкМ, то естественно в газе до полного испарения она находится намного дольше. Решение данной физической задачи достаточно осложнено тем, что процесс испарения происходит с постоянно меняющимися характеристиками: температуры, влажности, диаметра капли и пр. Для указанного процесса решение представлено в , а формула для расчёта времени полного испарения () капли имеет вид

(6)

где: ρ ж - плотность жидкости (1 кг/дм 3), r – энергия парообразования (2500 кДж/кг), λ г - теплопроводность газа (0,026 Дж/м 2 К), d 2 – диаметр капли (м), Δt – средняя разница температуры между газом и водой (К).

Тогда согласно (6) время жизни капли диаметром 100 мкМ. (1*10 -4 м) составляет τ = 2*10 -3 часа или 1,8секунды, а время жизни капли диаметром 50 мкМ. (5*10 -5 м) равно τ = 5*10 -4 часа или 0,072секунды. Соответственно зная время жизни капли, скорость полёта её в пространстве, скорость потока газа и геометрические размеры газохода можно легко рассчитать оросительную систему для газохода.

Ниже рассмотрим реализацию конструкции системы с учетом полученных выше соотношений. Считается что, теплообменник отходящих газов должен работать в зависимости от уличной температуры, в противном случае происходит разрушение домовой трубы при образовании в ней конденсата. Однако возможно изготовить теплообменник работающий в независимости от уличной температуры и имеющий более качественный съём тепла отходящих газов, даже до отрицательных температур, при том что температура отходящих газов будет, например +10 0 С (точка росы этих газов составит 0 0 С). Это обеспечивается за счет того, что при теплообмене на контроллере происходит расчёт точки росы, энергии теплообмена и других параметров. Рассмотрим технологическую схему предложенной системы (рис. 9).



Согласно технологической схеме в теплообменнике установлены: регулируемые шиберы а-б-в-г; теплоутилизаторы д-е-ж; датчики температуры 1-2-3-4-5-6; оОроситель (насос Н, и группа форсунок); контроллер управления.

ОРассмотрим функционирование предложенной системы. Пусть от котла выходят отходящие газы. например, температурой 120 0 С и точкой росы 60 0 С (на схеме обозначено 120/60) Датчик температуры (1) измеряет температуру отходящих газов котла. Точка росы рассчитывается контроллером относительно стехиометрии горения газа. На пути газа появляется шибер (а). Это аварийный шибер. который закрывается в случае ремонта оборудования, неисправности, капремонта, ППР и пр. Таким образом, шибер (а) открыт полностью и напрямую пропускает отходящие газы котла в дымосос. При этой схеме теплоутилизация равно нулю, фактически восстанавливается схема удаления дымовых газов как и было прежде до установки теплоутилизатора. В рабочем сотоянии шибер (а) полностью закрыт и 100% газов попадают в теплоутилизатор.

В теплоутилизаторе газы попадают в рекуператор (д) где происходит их остывание, но в любом случае не ниже точки росы (60 0 С). Например, они остыли до 90 0 С. Влага в них не выделилась. Измерение температуры газа производится датчиком температуры 2. Температуру газов после рекуператора можно регулировать шибером (б). Регулирование это необходимо для повышения КПД теплообменника. Так как при конденсации влаги находящаяся в газах масса ее уменьшается в зависимости от того на сколько были охлаждены газы, то можно изъять из них до 2/11 от общей массы газов в виде воды. Откуда взялась эта цифра. Рассмотрим химическую формулу реакции окисления метана (3).

Для окисления 1м 3 метана необходимо 2м 3 кислорода. Но так как кислорода в воздухе содержится только 20%, то воздуха на окисление 1м 3 метана потребуется 10м 3 . После сжигания этой смеси мы получаем: 1м 3 углекислого газа, 2 м 3 водяных паров и 8м 3 азота и др газов. Мы можем изъять из отходящих газов путём конденсации чуть меньше 2/11 всех отходящих газов в виде воды. Для этого отходящий газ необходимо охладить до температуры улицы. С выделением соответствующей доли воды. В воздухе забираемом с улицы на горение так же содержится незначительная влага.

Выделившаяся вода удаляется в нижней части теплообменника. Соответственно если по пути котёл-рекуператор (д)-теплоутилизатор (е) проходит весь состав газов 11/11 частей, то по другой стороне рекуператора (д) может пройти только 9/11 частей отходящего газа. Остальные - до 2/11 частей газа в виде влаги может выпасть в теплоутилизаторе. А для минимизации аэродинамического сопротивления теплоутилизатора шибер (б) можно немного приоткрыть. При этом произойдёт разделение отходящих газов. Часть пройдёт через рекуператор (д), а часть через шибер (б). При полном открытии шибера (б) газы пройдут не охлаждаясь и показания датчиков температуры 1 и 2 совпадут.

На пути газов установлена оросительная установка с насосом Н и группой форсунок. Газы орошаются водой выделавшийся при конденсации. Форсунки, которые разбрызгивают влагу в газе, резко повышают его точку росы, охлаждают и адиабатически сжимают. В рассматриваемом примере температура газа резко падает до 62/62, и так как распылённая в газе вода полностью испаряется в газе, то точка росы и температура газа совпадает. Достигнув теплообменника (е) скрытая тепловая энергия выделяется на нём. Кроме того, скачком возрастает плотность газового потока и скачком падает его скорость. Все эти изменения значительно изменяют КПД теплообмена в лучшую сторону. Количество разбрызгиваемой воды определяется контроллером и связано с температурой и расходом газа. Температуру газа перед теплообменником контролирует датчик температуры 6.

Далее газы попадают на теплоутилизатор (е). В теплоутилизаторе газы остывают, например, до температуры 35 0 С. Соответственно точка росы для этих газов составит так же 35 0 С. Следующим теплоутилизатором на пути отходящих газов является теплоутилизатор (ж). Он служит для подогрева воздуха на горение. Температура подачи воздуха в такой теплоутилизатор может достигать -35 0 С. Эта температура зависит от минимальной наружной температуры воздуха в данном регионе. Так как часть водяных паров из уходящего газа изъята, то массовый поток отходящих газов почти совпадает по массовому потоку воздуха на горение. пусть в теплоутилизатор, например, залит тосол. Между теплоутилизаторами установлен шибер (в). Данный шибер работает так же в дискретном режиме. При потеплении на улице пропадает смысл отбора тепла в теплоутилизаторе (ж). Он прекращает свою работу и шибер (в) открывается полностью пропуская отходящие газы, минуя тепоутилизатор (ж).

Температура остывших газов определяется датчиком температуры (3). Далее эти газы направляются в рекуператор (д). Пройдя его, они нагреваются до некоторой температуры пропорциональной остыванию газов на другой стороне рекуператора. Шибер (г) нужен для регулирования работы теплообмена в рекуператоре, а степень его открытия зависит уличной температуры (от датчик 5). Соответственно, если очень холодно на улице, то шибер (г) полностью закрыт и газы нагреваются в рекуператоре для избежание точки росы в трубе. Если на улице жара, то шибер (г) открыт, как и шибер (б).

ВЫВОДЫ:

Повышение теплообмена в теплообменнике жидкость/газ происходит за счёт резкого скачка энтальпии газа. Но предложенное распыление воды должно происходить строго дозировано. Кроме того, дозирование воды в отходящие газы происходит с учётом наружной температуры.

Полученная методика расчёта позволяет избежать конденсации влаги в дымовой трубе и значительно повысить КПД котлоагрегата. Подобная методика может быть применена и для газовых турбин и для других конденсаторных устройств.

При предложенном способе не меняется конструкция котла, а только дорабатываются. Стоимость доработки составляет около 10% стоимости котла. Срок окупаемости при нынешних ценах на газ составляет около 4 месяцев.

Данный подход позволяет значительно снизить металоёмкость конструкции и соответственно её стоимость. Кроме того значительно падает аэродинамическое сопротивление теплообменника, уменьшается нагрузка на дымосос.

ЛИТЕРАТУРА:

1.Аронов И.З. Использование тепла уходящих газов газифицированных котельных. – М.: «Энергия», 1967. – 192 с.

2.Тадеуш Хоблер. Теплопередача и теплообменники. – Ленинград.: Государственное научное издание химической литературы, 1961. – 626 с.

Описание:

Брянские тепловые сети совместно с проектным институтом ООО «ВКТИстройдормаш-Проект» разработали, изготовили и внедрили в двух котельных г. Брянска установки утилизации тепла дымовых газов (УУТГ), отходящих от водогрейных котлов

Установка утилизации тепла дымовых газов

Н. Ф. Свиридов , Р. Н. Свиридов , Брянские тепловые сети,

И. Н. Ивуков , Б. Л. Терк , ООО «ВКТИстройдормаш-Проект»

Брянские тепловые сети совместно с проектным институтом ООО «ВКТИстройдормаш-Проект» разработали, изготовили и внедрили в двух котельных г. Брянска установки утилизации тепла дымовых газов (УУТГ), отходящих от водогрейных котлов.

В результате указанного внедрения получено следующее:

Дополнительные капитальные вложения на 1 Гкал/ч получаемого тепла более чем в 2 раза ниже в сравнении, если бы строилась новая котельная, и окупаются приблизительно за 0,6 года;

Ввиду того, что используемое оборудование чрезвычайно простое в обслуживании и используется бесплатный теплоноситель, т. е. дымовой газ (ДГ), ранее выбрасывавшийся в атмосферу, стоимость 1 Гкал тепла оказывается в 8–10 раз ниже стоимости тепла, вырабатываемого котельными;

Коэффициент полезного действия котлов повышен на 10%.

Так, все затраты в ценах марта 2002 года на внедрение первой УУТГ мощностью 1 Гкал тепла в час составили 830 тыс. руб., а ожидаемая экономия в год составит 1,5 млн руб.

Такие высокие технико-экономические показатели объяснимы.

Существует мнение, что коэффициент полезного действия лучших отечественных котлов тепловой мощностью от 0,5 МВт и выше достигает 93%. В действительности он не превышает 83% и вот почему.

Различают низшую и высшую теплоту сгорания топлива. Низшая теплота сгорания меньше высшей на то количество тепла, которое затрачивается на испарение воды, образующейся при сгорании топлива, а также влаги, содержащейся в нем. Пример для наиболее дешевого топлива – природного газа: в ДГ, образуемых при его сжигании, содержатся пары воды, занимающие в их объеме до 19%; высшая теплота его сгорания превышает низшую ориентировочно на 10%.

Для повышения работоспособности дымовых труб, через которые ДГ выбрасываются в атмосферу, необходимо, чтобы пары воды, находящиеся в ДГ, не начали конденсироваться в дымовых трубах при самых низких температурах окружающей среды.

Проектами УУТГ реанимированы и улучшены давно забытые технические решения, направленные на утилизацию тепла ДГ.

УУТГ содержит контактный и пластинчатый теплообменники с двумя самостоятельными контурами оборотной и расходной воды.

Устройство и работа УУТГ ясны из приведенной на рисунке схемы и описания ее позиций.

В контактном теплообменнике в вертикальном противотоке движутся ДГ и распыленная оборотная вода, т. е. ДГ и вода напрямую контактируют друг с другом. Для поддержания равномерного распыления оборотной воды используются форсунки и специальная керамическая насадка.

Нагретая оборотная вода, перекачиваемая в своем водном контуре самостоятельным насосом, отдает тепло, приобретенное в контактном теплообменнике, расходной воде в пластинчатом теплообменнике.

Для требуемого охлаждения оборотной воды должна быть использована только холодная водопроводная вода, которая после нагрева в УУТГ доводится до кондиционной температуры в бойлерах существующих котельных и используется далее для горячего водоснабжения жилья.

В контактном теплообменнике охлажденные ДГ дополнительно проходят каплеуловитель и, потеряв в итоге более 70% влаги в виде конденсата паров воды, соединяются с частью горячих ДГ (10–20% от объема ДГ, отходящих от котла), направленных сразу от котла в дымовую трубу, образуя при этом смесь ДГ с низким влагосодержанием и с температурой, достаточной для прохождения дымовой трубы без конденсации остатка паров воды.

Объем оборотной воды непрерывно увеличивается за счет конденсата паров воды, находившихся в ДГ. Образуемый излишек автоматически сливается через вентиль с электромеханическим приводом и может с подготовкой использоваться в качестве дополнительной воды в отопительной системе котельной. Удельный расход сливаемой воды на 1 Гкал утилизированного тепла составляет около 1,2 т. Слив конденсата контролируется уровнемерами В и Н.

Описанный способ и оборудование утилизации тепла ДГ способны работать с чистыми от пыли продуктами сжигания топлива, имеющими не ограниченную по максимуму температуру. При этом чем выше будет температура дымового газа, тем до более высокой температуры будет нагреваться расходная вода. Более того, в этом случае есть возможность оборотную воду частично использовать на нагрев отопительной воды. Учитывая то, что контактный теплообменник одновременно работает как мокрый уловитель пыли, можно практически утилизировать тепло запыленных ДГ, очищая оборотную воду известными способами от пыли перед подачей ее в пластинчатый теплообменник. Есть возможность нейтрализовать оборотную воду, загрязненную химическими соединениями. Поэтому описанную УУТГ можно использовать для работы с ДГ, участвовавшими в технологических процессах при плавке (например, мартеновские, стекловаренные печи), при прокалке (например, кирпича, керамики), при нагреве (слитков перед прокаткой) и т. д.

К сожалению, в России отсутствуют стимулы, побуждающие заниматься энергосбережением.

Рисунок

Схема установки утилизации тепла дымовых газов (УУТГ)

1 - контактный теплообменник;

2 - вентиль с электромеханическим приводом для автоматического слива излишка оборотной воды, образуемого при конденсации паров воды ДГ;

3 - бак накопительный для оборотной воды, нагретой утилизированным теплом ДГ;

4 - ДГ, отходящие от котла;

5 - часть ДГ, направляемая на утилизацию их тепла;

6 - труба дымовая;

7 - часть ДГ, продолжающая движение по существующему борову в дымовую трубу (6);

8 - задвижка, регулирующая расход части ДГ (5);

9 - задвижка, регулирующая расход части ДГ (7);

10 - охлажденная и осушенная часть ДГ, вышедшего из контактного теплообменника (1);

11 - смесь ДГ (7 и 10), имеющая перепад температур ДГ и его точки росы, равный 15–20°С;

12 - распылитель оборотной воды;

13 - насадка специальная с развитой поверхностью;

14 - декарбонизатор, в котором за счет продувки воздуха через оборотную воду из нее удаляется ранее растворенная двуокись углерода;

15 - продувочный воздух;

16 - каплеуловитель;

17 - система подачи холодной воды;

18 - оборотная вода, нагретая утилизированным теплом;

19 - насос для перекачки оборотной воды;

20 - пластинчатый теплообменник для передачи утилизированного тепла от оборотной воды расходной воде;

21 - охлажденная оборотная вода, направляемая в распылитель (12) и на слив ее излишка через вентиль с электромеханическим приводом (2);

22 - расходная вода, нагретая утилизированным теплом ДГ.

В и Н – датчики верхнего и нижнего уровней оборотной воды в баке накопительном (3);

Таблица 1
Расчетные показатели одной из внедренных УУТГ
Наименование показателя Величина
показателя
Исходные данные
Теплопроизводительность котлоагрегата, Гкал/ч 10,2
75,0
Часовой расход природного газа
при максимальной мощности котла, нм 3 /ч

1 370
Температура ДГ на, °С:
- входе в контактный теплообменник
- выходе из контактного теплообменника

140
30
Коэффициент избытка воздуха 1,25
КПД существующего котлоагрегата по низшей теплотворной способности газа при максимальной тепловой нагрузке, %
92,0
Температура расходной воды, °С:
- на входе в теплообменник:
зимой
летом
- на выходе из теплообменника

+5
+10
+40
Расчетные данные
При горении 1 м 3 природного газа
действительный расход сухого воздуха, нм 3
11,90
Объем ДГ, образуемого при
сжигании 1 м 3 природного газа, нм 3 /Ч

12,96
Объем сухого ДГ, образуемого при сжигании 1 нм 3 природного газа, нм 3 10,90
Объемная доля водяного пара в ДГ, отходящем от котла, % 15,88
Часовой массовый расход, кг/ч:
- ДГ после котла 22000
- сухого ДГ, отходящего от котла 19800
- части сухого ДГ, тепло которой утилизируется 15800
- отходящей от котла части сухого ДГ, используемой для подогрева охлажденной при утилизации тепла другой части сухого ДГ (принято)
4000
Часовой объемный расход, нм 3 /ч:
- ДГ после котла
- сухого ДГ, отходящего от котла
- части сухого ДГ, тепло которой утилизируется

17800
14900
14200
Температура точки росы, °С:
- ДГ, отходящего от котла
- ДГ в контактном теплообменнике после увлажнения оборотной водой
- смеси подсушенного ДГ, прошедшего контактный теплообменник,
и ДГ, напрямую выбрасываемого в трубу

54,2
59,4
Температура смеси подсушенного ДГ, прошедшего контактный теплообменник, и ДГ, напрямую выбрасываемого в трубу, °С 55,1
КПД утилизатора тепла ДГ, % 93
Количество полезно утилизируемого тепла ДГ
при максимальной нагрузке котла, ккал/ч

1 209 800
Количество полезно утилизируемого высшего тепла ДГ, ккал/ч 756 200
Доля высшего тепла в полезно утилизированном тепле, % 61,5
Масса воды, нагреваемой утилизатором тепла
при максимальной нагрузке котла, т/ч:
- оборотной в интервале температур 20-50°С
- расходной в интервале температур 10-40°С

41480
40610

КПД котлоагрегата по высшей теплотворной способности
природного газа и при максимальной тепловой нагрузке, %:
- существующего
- с утилизатором тепла ДГ

82,1
91,8

Теплопроизводительность котлоагрегата
с утилизатором тепла ДГ, Гкал/ч

11,45
Количество полезно утилизированного тепла ДГ
в год при средней годовой нагрузке котла, Гкал

6830