Kahulugan ng logarithm base fraction. Kahulugan ng logarithm, pangunahing logarithmic na pagkakakilanlan

Kahulugan ng logarithm base fraction.  Kahulugan ng logarithm, pangunahing logarithmic na pagkakakilanlan
Kahulugan ng logarithm base fraction. Kahulugan ng logarithm, pangunahing logarithmic na pagkakakilanlan

Ang logarithm ng isang positibong numero b sa base a (a>0, a ay hindi katumbas ng 1) ay isang numero c na ang a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)        

Tandaan na ang logarithm ng isang hindi positibong numero ay hindi natukoy. Bilang karagdagan, ang base ng logarithm ay dapat na positibong numero na hindi katumbas ng 1. Halimbawa, kung parisukat natin -2, makukuha natin ang numero 4, ngunit hindi ito nangangahulugan na ang logarithm sa base -2 ng 4 ay katumbas ng 2.

Pangunahing logarithmic na pagkakakilanlan

isang log a b = b (a > 0, a ≠ 1) (2)

Mahalagang magkaiba ang saklaw ng kahulugan ng kanan at kaliwang bahagi ng formula na ito. Kaliwang bahagi ay tinukoy lamang para sa b>0, a>0 at a ≠ 1. Ang kanang bahagi ay tinukoy para sa anumang b, at hindi nakadepende sa a. Kaya, ang paggamit ng pangunahing logarithmic na "pagkakakilanlan" kapag nilulutas ang mga equation at hindi pagkakapantay-pantay ay maaaring humantong sa isang pagbabago sa OD.

Dalawang halatang kahihinatnan ng kahulugan ng logarithm

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Sa katunayan, kapag itinaas ang numero a sa unang kapangyarihan, nakukuha natin ang parehong numero, at kapag itinaas ito sa zero na kapangyarihan, makakakuha tayo ng isa.

Logarithm ng produkto at logarithm ng quotient

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Gusto kong bigyan ng babala ang mga mag-aaral laban sa walang pag-iisip na paglalapat ng mga formula na ito sa paglutas logarithmic equation at hindi pagkakapantay-pantay. Kapag ginagamit ang mga ito "mula kaliwa pakanan," ang ODZ ay lumiliit, at kapag lumilipat mula sa kabuuan o pagkakaiba ng logarithms patungo sa logarithm ng produkto o quotient, lumalawak ang ODZ.

Sa katunayan, ang expression na log a (f (x) g (x)) ay tinukoy sa dalawang kaso: kapag ang parehong mga function ay mahigpit na positibo o kapag ang f (x) at g (x) ay parehong mas mababa sa zero.

Ang pagbabago sa expression na ito sa sum log a f (x) + log a g (x), napipilitan tayong limitahan ang ating sarili lamang sa kaso kapag f(x)>0 at g(x)>0. May pagpapaliit sa lugar mga katanggap-tanggap na halaga, at ito ay tiyak na hindi katanggap-tanggap, dahil maaari itong humantong sa pagkawala ng mga solusyon. Ang isang katulad na problema ay umiiral para sa formula (6).

Ang antas ay maaaring alisin sa tanda ng logarithm

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

At muli gusto kong tumawag para sa katumpakan. Isaalang-alang ang sumusunod na halimbawa:

Log a (f (x) 2 = 2 log a f (x)

Ang kaliwang bahagi ng pagkakapantay-pantay ay malinaw na tinukoy para sa lahat ng mga halaga ng f(x) maliban sa zero. Ang kanang bahagi ay para lamang sa f(x)>0! Sa pamamagitan ng pagkuha ng degree sa logarithm, muli nating pinaliit ang ODZ. Ang baligtad na pamamaraan ay humahantong sa pagpapalawak ng hanay ng mga katanggap-tanggap na halaga. Ang lahat ng mga pangungusap na ito ay nalalapat hindi lamang sa kapangyarihan 2, kundi pati na rin sa anumang kahit na kapangyarihan.

Formula para sa paglipat sa isang bagong pundasyon

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Ang bihirang kaso na iyon kapag ang ODZ ay hindi nagbabago sa panahon ng pagbabago. Kung pinili mo ang base c nang matalino (positibo at hindi katumbas ng 1), ang formula para sa paglipat sa isang bagong base ay ganap na ligtas.

Kung pipiliin natin ang numero b bilang bagong base c, makakakuha tayo ng isang mahalagang espesyal na kaso mga formula (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Ilang simpleng halimbawa na may logarithms

Halimbawa 1. Kalkulahin: log2 + log50.
Solusyon. log2 + log50 = log100 = 2. Ginamit namin ang sum ng logarithms formula (5) at ang kahulugan ng decimal logarithm.


Halimbawa 2. Kalkulahin: lg125/lg5.
Solusyon. log125/log5 = log 5 125 = 3. Ginamit namin ang formula para sa paglipat sa isang bagong base (8).

Talaan ng mga formula na nauugnay sa logarithms

isang log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

    Magsimula tayo sa katangian ng logarithm ng isa. Ang pagbabalangkas nito ay ang mga sumusunod: ang logarithm ng pagkakaisa ay katumbas ng zero, iyon ay, log a 1=0 para sa alinmang a>0, a≠1. Ang patunay ay hindi mahirap: dahil ang isang 0 =1 para sa anumang a na nagbibigay-kasiyahan sa mga kondisyon sa itaas a>0 at a≠1, kung gayon ang equality log a 1=0 na patunayan ay sumusunod kaagad mula sa kahulugan ng logarithm.

    Magbigay tayo ng mga halimbawa ng aplikasyon ng itinuturing na ari-arian: log 3 1=0, log1=0 at .

    Lumipat tayo sa sa sumusunod na ari-arian: ang logarithm ng isang numero na katumbas ng base ay katumbas ng isa, ibig sabihin, log a a=1 para sa a>0, a≠1. Sa katunayan, dahil ang isang 1 =a para sa anumang a, pagkatapos ay sa pamamagitan ng kahulugan ng logarithm log a a=1.

    Ang mga halimbawa ng paggamit ng property na ito ng logarithms ay ang equalities log 5 5=1, log 5.6 5.6 at lne=1.

    Halimbawa, log 2 2 7 =7, log10 -4 =-4 at .

    Logarithm ng produkto ng dalawang positibong numero Ang x at y ay katumbas ng produkto ng logarithms ng mga numerong ito: log a (x y)=log a x+log a y, a>0 , a≠1 . Patunayan natin ang pag-aari ng logarithm ng isang produkto. Dahil sa mga katangian ng degree isang log a x+log a y =a log a x ·a log a y, at dahil sa pamamagitan ng pangunahing logarithmic identity isang log a x =x at isang log a y =y, pagkatapos ay isang log a x ·a log a y =x·y. Kaya, ang isang log a x+log a y =x·y, kung saan, sa pamamagitan ng kahulugan ng isang logarithm, ang pagkakapantay-pantay na pinatutunayan ay sumusunod.

    Magpakita tayo ng mga halimbawa ng paggamit ng property ng logarithm ng isang produkto: log 5 (2 3)=log 5 2+log 5 3 at .

    Ang pag-aari ng logarithm ng isang produkto ay maaaring gawing pangkalahatan sa produkto ng isang may hangganan na bilang n ng mga positibong numero x 1 , x 2 , …, x n bilang log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n . Ang pagkakapantay-pantay na ito ay mapapatunayan nang walang mga problema.

    Halimbawa, ang natural na logarithm ng produkto ay maaaring mapalitan ng kabuuan ng tatlong natural na logarithm ng mga numero 4, e, at.

    Logarithm ng quotient ng dalawang positibong numero Ang x at y ay katumbas ng pagkakaiba sa pagitan ng logarithms ng mga numerong ito. Ang property ng logarithm ng isang quotient ay tumutugma sa isang formula ng form , kung saan ang a>0, a≠1, x at y ay ilang positibong numero. Ang bisa ng formula na ito ay napatunayan pati na rin ang formula para sa logarithm ng isang produkto: since , pagkatapos ay sa pamamagitan ng kahulugan ng isang logarithm.

    Narito ang isang halimbawa ng paggamit ng property na ito ng logarithm: .

    Lumipat tayo sa ari-arian ng logarithm ng kapangyarihan. Ang logarithm ng isang degree ay katumbas ng produkto ng exponent at ang logarithm ng modulus ng base ng degree na ito. Isulat natin ang katangiang ito ng logarithm ng isang kapangyarihan bilang isang pormula: log a b p =p·log a |b|, kung saan ang a>0, a≠1, b at p ay mga numero na ang antas b p ay may katuturan at b p >0.

    Una naming patunayan ang katangiang ito para sa positibo b. Mga pangunahing kaalaman pagkakakilanlan ng logarithmic nagbibigay-daan sa amin na katawanin ang bilang b bilang isang log a b , pagkatapos ay b p =(a log a b) p , at ang resultang expression, dahil sa pag-aari ng kapangyarihan, ay katumbas ng isang p·log a b . Kaya't dumating tayo sa pagkakapantay-pantay b p =a p·log a b, kung saan, sa pamamagitan ng kahulugan ng logarithm, napagpasyahan natin na ang log a b p =p·log a b.

    Ito ay nananatiling upang patunayan ang ari-arian na ito para sa negatibo b. Dito napapansin natin na ang expression na log a b p para sa negatibong b ay may katuturan lamang para sa kahit na mga exponents p (dahil ang halaga ng degree b p ay dapat na mas malaki kaysa sa zero, kung hindi, ang logarithm ay hindi magkakaroon ng kahulugan), at sa kasong ito b p =|b| p. Pagkatapos b p ==b| p =(isang log a |b|) p =a p·log a |b|, mula sa kung saan log a b p =p·log a |b| .

    Halimbawa, at ln(-3) 4 =4·ln|-3|=4·ln3 .

    Ito ay sumusunod mula sa nakaraang pag-aari ari-arian ng logarithm mula sa ugat: ang logarithm ng nth root ay katumbas ng produkto ng fraction 1/n ng logarithm ng radical expression, iyon ay, , kung saan a>0, a≠1, n – natural na numero, mas malaki sa isa, b>0.

    Ang patunay ay batay sa pagkakapantay-pantay (tingnan), na wasto para sa anumang positibong b, at ang pag-aari ng logarithm ng kapangyarihan: .

    Narito ang isang halimbawa ng paggamit ng property na ito: .

    Ngayon patunayan natin formula para sa paglipat sa isang bagong logarithm base uri . Upang gawin ito, sapat na upang patunayan ang bisa ng equality log c b=log a b·log c a. Ang pangunahing logarithmic na pagkakakilanlan ay nagbibigay-daan sa amin na katawanin ang numero b bilang isang log a b , pagkatapos ay log c b=log c a log a b . Ito ay nananatiling gamitin ang pag-aari ng logarithm ng degree: log c a log a b =log a b log c a. Pinatutunayan nito ang equality log c b=log a b·log c a, na nangangahulugan na ang formula para sa paglipat sa isang bagong base ng logarithm ay napatunayan na rin.

    Magpakita tayo ng ilang halimbawa ng paggamit ng property na ito ng logarithms: at .

    Ang pormula para sa paglipat sa isang bagong base ay nagbibigay-daan sa iyo na magpatuloy sa pagtatrabaho sa mga logarithms na may "maginhawa" na base. Halimbawa, maaari itong magamit upang pumunta sa natural o decimal logarithms upang makalkula mo ang halaga ng isang logarithm mula sa isang talahanayan ng logarithms. Ang formula para sa paglipat sa isang bagong logarithm base ay nagbibigay-daan din, sa ilang mga kaso, upang mahanap ang halaga ng isang naibigay na logarithm kapag ang mga halaga ng ilang logarithm sa iba pang mga base ay kilala.

    Ang isang espesyal na kaso ng formula para sa paglipat sa isang bagong logarithm base para sa c=b ng form ay madalas na ginagamit . Ipinapakita nito na ang log a b at log b a – . Halimbawa, .

    Madalas ding ginagamit ang formula , na maginhawa para sa paghahanap ng mga halaga ng logarithm. Upang kumpirmahin ang aming mga salita, ipapakita namin kung paano ito magagamit upang kalkulahin ang halaga ng isang logarithm ng form . meron tayo . Upang patunayan ang formula ito ay sapat na upang gamitin ang formula para sa paglipat sa isang bagong base ng logarithm a: .

    Ito ay nananatiling patunayan ang mga katangian ng paghahambing ng logarithms.

    Patunayan natin na para sa anumang positibong numero b 1 at b 2, b 1 log a b 2 , at para sa a>1 – ang inequality log a b 1

    Sa wakas, nananatili itong patunayan ang huli sa mga nakalistang katangian ng logarithms. Limitahan natin ang ating sarili sa patunay ng unang bahagi nito, ibig sabihin, patunayan natin na kung ang isang 1 >1, isang 2 >1 at isang 1 1 ay totoo log a 1 b>log a 2 b . Ang natitirang mga pahayag ng pag-aari na ito ng logarithms ay pinatunayan ayon sa isang katulad na prinsipyo.

    Gamitin natin ang kabaligtaran na pamamaraan. Ipagpalagay na para sa isang 1>1, isang 2>1 at isang 1 1 ay totoo log a 1 b≤log a 2 b . Batay sa mga katangian ng logarithms, ang mga hindi pagkakapantay-pantay na ito ay maaaring muling isulat bilang At ayon sa pagkakabanggit, at mula sa kanila ay sumusunod na log b a 1 ≤log b a 2 at log b a 1 ≥log b a 2, ayon sa pagkakabanggit. Pagkatapos, ayon sa mga katangian ng mga kapangyarihan na may parehong mga base, ang mga pagkakapantay-pantay b log b a 1 ≥b log b a 2 at b log b a 1 ≥b log b a 2 ay dapat hawakan, iyon ay, a 1 ≥a 2 . Kaya't dumating kami sa isang pagkakasalungatan sa kundisyon a 1

Mga sanggunian.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. at iba pa Algebra at ang simula ng pagsusuri: Textbook para sa mga baitang 10 - 11 ng mga pangkalahatang institusyong pang-edukasyon.
  • Gusev V.A., Mordkovich A.G. Mathematics (isang manwal para sa mga pumapasok sa mga teknikal na paaralan).

(mula sa Greek λόγος - “salita”, “relasyon” at ἀριθμός - “numero”) mga numero b batay sa a(log α b) ay tinatawag na ganoong numero c, At b= isang c, ibig sabihin, records log α b=c At b=ac ay katumbas. Makatuwiran ang logarithm kung a > 0, a ≠ 1, b > 0.

Sa madaling salita logarithm mga numero b batay sa A binabalangkas bilang isang exponent kung saan dapat itaas ang isang numero a para makuha ang numero b(umiiral lamang ang logarithm para sa mga positibong numero).

Mula sa pagbabalangkas na ito ay sumusunod na ang pagkalkula x= log α b, ay katumbas ng paglutas ng equation a x =b.

Halimbawa:

log 2 8 = 3 dahil 8 = 2 3 .

Bigyang-diin natin na ang ipinahiwatig na pagbabalangkas ng logarithm ay ginagawang posible upang agad na matukoy halaga ng logarithm, kapag ang numero sa ilalim ng logarithm sign ay kumikilos bilang isang tiyak na kapangyarihan ng base. Sa katunayan, ang pagbabalangkas ng logarithm ay ginagawang posible upang bigyang-katwiran na kung b=a c, pagkatapos ay ang logarithm ng numero b batay sa a katumbas Sa. Malinaw din na ang paksa ng logarithms ay malapit na nauugnay sa paksa kapangyarihan ng isang numero.

Ang pagkalkula ng logarithm ay tinatawag logarithm. Ang Logarithm ay ang matematikal na operasyon ng pagkuha ng logarithm. Kapag kumukuha ng logarithms, ang mga produkto ng mga salik ay binago sa kabuuan ng mga termino.

Potentiation ay ang inverse mathematical operation ng logarithm. Sa panahon ng potentiation, ang isang naibigay na base ay itataas sa antas ng pagpapahayag kung saan ginaganap ang potentiation. Sa kasong ito, ang mga kabuuan ng mga termino ay binago sa isang produkto ng mga kadahilanan.

Kadalasan, ang mga tunay na logarithm ay ginagamit sa mga base 2 (binary), Euler's number e ≈ 2.718 (natural logarithm) at 10 (decimal).

Sa yugtong ito ay ipinapayong isaalang-alang mga sample ng logarithm log 7 2 , ln 5, lg0.0001.

At ang mga entry na lg(-3), log -3 3.2, log -1 -4.3 ay hindi makatwiran, dahil sa una sa kanila isang negatibong numero ang inilalagay sa ilalim ng tanda ng logarithm, sa pangalawa mayroong negatibong numero. sa base, at sa pangatlo ay may negatibong numero sa ilalim ng logarithm sign at unit sa base.

Mga kondisyon para sa pagtukoy ng logarithm.

Ito ay nagkakahalaga na isaalang-alang nang hiwalay ang mga kundisyon a > 0, a ≠ 1, b > 0. sa ilalim kung saan nakukuha natin kahulugan ng logarithm. Isaalang-alang natin kung bakit kinuha ang mga paghihigpit na ito. Ang pagkakapantay-pantay ng form na x = log α ay makakatulong sa atin dito b, na tinatawag na pangunahing logarithmic identity, na direktang sumusunod sa kahulugan ng logarithm na ibinigay sa itaas.

Kunin natin ang kondisyon a≠1. Dahil ang isa sa anumang kapangyarihan ay katumbas ng isa, kung gayon ang pagkakapantay-pantay x=log α b maaari lamang umiral kapag b=1, ngunit ang log 1 1 ay magiging anumang tunay na numero. Upang maalis ang kalabuan na ito, kukunin namin a≠1.

Patunayan natin ang pangangailangan ng kondisyon a>0. Sa a=0 ayon sa pagbabalangkas ng logarithm ay maaari lamang umiral kapag b=0. At ayon noon log 0 0 ay maaaring maging anumang di-zero na tunay na numero, dahil ang zero sa anumang di-zero na kapangyarihan ay zero. Ang kalabuan na ito ay maaaring maalis ng kondisyon a≠0. At kailan a<0 kailangan nating tanggihan ang pagsusuri ng mga makatwiran at hindi makatwiran na mga halaga ng logarithm, dahil ang isang antas na may makatwiran at hindi makatwiran na exponent ay tinukoy lamang para sa mga di-negatibong base. Ito ay para sa kadahilanang ito na ang kondisyon ay itinakda a>0.

At ang huling kondisyon b>0 sumusunod mula sa hindi pagkakapantay-pantay a>0, dahil x=log α b, at ang halaga ng degree na may positibong base a laging positibo.

Mga tampok ng logarithms.

Logarithms nailalarawan sa pamamagitan ng katangi-tangi mga tampok, na humantong sa kanilang malawakang paggamit upang makabuluhang mapadali ang maingat na pagkalkula. Kapag lumipat "sa mundo ng logarithms," ang multiplikasyon ay nababago sa isang mas madaling karagdagan, ang paghahati ay binago sa pagbabawas, at ang exponentiation at root extraction ay binago, ayon sa pagkakabanggit, sa multiplikasyon at paghahati ng exponent.

Ang pagbabalangkas ng mga logarithms at isang talahanayan ng kanilang mga halaga (para sa mga function ng trigonometric) ay unang nai-publish noong 1614 ng Scottish mathematician na si John Napier. Ang mga logarithmic table, na pinalaki at idinetalye ng ibang mga siyentipiko, ay malawakang ginagamit sa mga kalkulasyon ng siyentipiko at inhinyero, at nanatiling may kaugnayan hanggang sa paggamit ng mga electronic calculator at computer.

Sa ratio

ang gawain ng paghahanap ng alinman sa tatlong mga numero mula sa iba pang dalawang ibinigay na mga ay maaaring itakda. Kung ang a at pagkatapos ay ang N ay ibinigay, sila ay matatagpuan sa pamamagitan ng exponentiation. Kung ang N at pagkatapos ay a ay ibinigay sa pamamagitan ng pagkuha ng ugat ng digri x (o pagtataas nito sa kapangyarihan). Ngayon isaalang-alang ang kaso kung kailan, ibinigay ang a at N, kailangan nating hanapin ang x.

Hayaang maging positibo ang bilang N: ang bilang a ay positibo at hindi katumbas ng isa: .

Kahulugan. Ang logarithm ng numero N sa base a ay ang exponent kung saan dapat itaas ang a upang makuha ang numerong N; ang logarithm ay tinutukoy ng

Kaya, sa pagkakapantay-pantay (26.1) ang exponent ay matatagpuan bilang logarithm ng N sa base a. Mga post

may parehong kahulugan. Ang pagkakapantay-pantay (26.1) ay kung minsan ay tinatawag na pangunahing pagkakakilanlan ng teorya ng logarithms; sa katotohanan ito ay nagpapahayag ng kahulugan ng konsepto ng logarithm. Sa pamamagitan ng kahulugang ito, ang base ng logarithm a ay palaging positibo at naiiba sa pagkakaisa; ang logarithmic number N ay positibo. Ang mga negatibong numero at zero ay walang logarithms. Mapapatunayan na ang anumang numero na may ibinigay na base ay may mahusay na tinukoy na logarithm. Samakatuwid ang pagkakapantay-pantay ay kasama. Tandaan na ang kondisyon ay mahalaga dito; kung hindi, ang konklusyon ay hindi makatwiran, dahil ang pagkakapantay-pantay ay totoo para sa anumang mga halaga ng x at y.

Halimbawa 1. Hanapin

Solusyon. Upang makakuha ng isang numero, dapat mong itaas ang base 2 sa kapangyarihan Samakatuwid.

Maaari kang gumawa ng mga tala kapag nilulutas ang mga naturang halimbawa sa sumusunod na anyo:

Halimbawa 2. Hanapin .

Solusyon. meron tayo

Sa mga halimbawa 1 at 2, madali naming natagpuan ang nais na logarithm sa pamamagitan ng pagre-represent sa numero ng logarithm bilang kapangyarihan ng base na may rational exponent. Sa pangkalahatang kaso, halimbawa, para sa atbp., hindi ito magagawa, dahil ang logarithm ay may hindi makatwirang halaga. Bigyang-pansin natin ang isang isyu na may kaugnayan sa pahayag na ito. Sa talata 12, ibinigay namin ang konsepto ng posibilidad ng pagtukoy ng anumang tunay na kapangyarihan ng isang naibigay na positibong numero. Ito ay kinakailangan para sa pagpapakilala ng mga logarithms, na, sa pangkalahatan, ay maaaring hindi makatwiran na mga numero.

Tingnan natin ang ilang mga katangian ng logarithms.

Property 1. Kung ang numero at base ay pantay, kung gayon ang logarithm ay katumbas ng isa, at, sa kabaligtaran, kung ang logarithm ay katumbas ng isa, kung gayon ang numero at base ay pantay.

Patunay. Hayaan Sa pamamagitan ng kahulugan ng isang logarithm mayroon tayo at kung saan

Sa kabaligtaran, hayaan ang Pagkatapos sa pamamagitan ng kahulugan

Property 2. Ang logarithm ng isa sa anumang base ay katumbas ng zero.

Patunay. Sa pamamagitan ng kahulugan ng isang logarithm (ang zero na kapangyarihan ng anumang positibong base ay katumbas ng isa, tingnan ang (10.1)). Mula dito

Q.E.D.

Ang kabaligtaran na pahayag ay totoo rin: kung , kung gayon N = 1. Sa katunayan, mayroon tayong .

Bago bumalangkas ng susunod na katangian ng logarithms, sumang-ayon tayo na sabihin na ang dalawang numero a at b ay nasa magkabilang panig ng ikatlong numero c kung pareho silang mas malaki sa c o mas mababa sa c. Kung ang isa sa mga numerong ito ay mas malaki kaysa sa c, at ang isa ay mas mababa sa c, pagkatapos ay sasabihin namin na sila ay nakahiga sa magkabilang panig ng c.

Property 3. Kung ang numero at base ay nasa magkabilang panig ng isa, ang logarithm ay positibo; Kung ang numero at base ay nasa magkabilang panig ng isa, ang logarithm ay negatibo.

Ang patunay ng property 3 ay batay sa katotohanan na ang kapangyarihan ng a ay mas malaki kaysa sa isa kung ang base ay mas malaki kaysa sa isa at ang exponent ay positibo o ang base ay mas mababa sa isa at ang exponent ay negatibo. Ang kapangyarihan ay mas mababa sa isa kung ang base ay mas malaki sa isa at ang exponent ay negatibo o ang base ay mas mababa sa isa at ang exponent ay positibo.

Mayroong apat na kaso na dapat isaalang-alang:

Limitahan natin ang ating sarili sa pag-aaral ng una sa kanila; isasaalang-alang ng mambabasa ang natitira sa kanyang sarili.

Hayaan pagkatapos sa pagkakapantay-pantay ang exponent ay maaaring hindi negatibo o katumbas ng zero, samakatuwid, ito ay positibo, ibig sabihin, kung kinakailangan upang mapatunayan.

Halimbawa 3. Alamin kung alin sa mga logarithm sa ibaba ang positibo at alin ang negatibo:

Solusyon, a) dahil ang numero 15 at ang base 12 ay matatagpuan sa parehong bahagi ng isa;

b) dahil ang 1000 at 2 ay matatagpuan sa isang bahagi ng yunit; sa kasong ito, hindi mahalaga na ang base ay mas malaki kaysa sa logarithmic number;

c) dahil ang 3.1 at 0.8 ay nasa magkabilang panig ng pagkakaisa;

G); bakit naman

d); bakit naman

Ang mga sumusunod na katangian 4-6 ay madalas na tinatawag na mga panuntunan ng logarithmation: pinapayagan nila, alam ang logarithms ng ilang mga numero, upang mahanap ang logarithms ng kanilang produkto, quotient, degree ng bawat isa sa kanila.

Property 4 (product logarithm rule). Ang logarithm ng produkto ng ilang positibong numero sa isang ibinigay na base ay katumbas ng kabuuan ng logarithms ng mga numerong ito sa parehong base.

Patunay. Hayaang maging positibo ang ibinigay na mga numero.

Para sa logarithm ng kanilang produkto, isinusulat namin ang pagkakapantay-pantay (26.1) na tumutukoy sa logarithm:

Mula dito makikita natin

Ang paghahambing ng mga exponents ng una at huling mga expression, makuha namin ang kinakailangang pagkakapantay-pantay:

Tandaan na ang kondisyon ay mahalaga; ang logarithm ng produkto ng dalawang negatibong numero ay may katuturan, ngunit sa kasong ito nakukuha natin

Sa pangkalahatan, kung ang produkto ng ilang mga kadahilanan ay positibo, kung gayon ang logarithm nito ay katumbas ng kabuuan ng mga logarithms ng mga ganap na halaga ng mga salik na ito.

Property 5 (panuntunan para sa pagkuha ng logarithms ng mga quotient). Ang logarithm ng isang quotient ng mga positibong numero ay katumbas ng pagkakaiba sa pagitan ng logarithms ng dividend at ng divisor, na dinala sa parehong base. Patunay. Palagi kaming nakakahanap

Q.E.D.

Property 6 (power logarithm rule). Ang logarithm ng kapangyarihan ng anumang positibong numero ay katumbas ng logarithm ng numerong iyon na pinarami ng exponent.

Patunay. Isulat nating muli ang pangunahing pagkakakilanlan (26.1) para sa numero:

Q.E.D.

Bunga. Ang logarithm ng isang ugat ng isang positibong numero ay katumbas ng logarithm ng radical na hinati sa exponent ng ugat:

Ang bisa ng corollary na ito ay mapapatunayan sa pamamagitan ng pag-iisip kung paano at paggamit ng ari-arian 6.

Halimbawa 4. Kunin ang logarithm sa base a:

a) (pinapalagay na ang lahat ng mga halaga b, c, d, e ay positibo);

b) (pinapalagay na ).

Solusyon, a) Maginhawang pumunta sa fractional powers sa expression na ito:

Batay sa mga pagkakapantay-pantay (26.5)-(26.7) maaari na nating isulat ang:

Napansin namin na ang mga mas simpleng operasyon ay ginagawa sa mga logarithms ng mga numero kaysa sa mga numero mismo: kapag nagpaparami ng mga numero, ang kanilang mga logarithm ay idinagdag, kapag naghahati, sila ay ibawas, atbp.

Iyon ang dahilan kung bakit ginagamit ang mga logarithm sa pagsasanay sa pag-compute (tingnan ang talata 29).

Ang kabaligtaran na aksyon ng logarithm ay tinatawag na potentiation, ibig sabihin: ang potentiation ay ang aksyon kung saan ang numero mismo ay matatagpuan mula sa isang ibinigay na logarithm ng isang numero. Sa esensya, ang potentiation ay hindi anumang espesyal na aksyon: ito ay bumababa sa pagtaas ng base sa isang kapangyarihan (katumbas ng logarithm ng isang numero). Ang terminong "potentiation" ay maaaring ituring na kasingkahulugan ng terminong "exponentiation".

Kapag potentiating, dapat gamitin ng isang tao ang mga patakaran na kabaligtaran sa mga panuntunan ng logarithmation: palitan ang kabuuan ng logarithm ng logarithm ng produkto, ang pagkakaiba ng logarithm sa logarithm ng quotient, atbp. Sa partikular, kung mayroong isang kadahilanan sa harap ng sign ng logarithm, pagkatapos ay sa panahon ng potentiation dapat itong ilipat sa exponent degrees sa ilalim ng sign ng logarithm.

Halimbawa 5. Hanapin ang N kung alam na

Solusyon. Kaugnay ng nakasaad na tuntunin ng potentiation, ililipat namin ang mga salik na 2/3 at 1/3 na nakatayo sa harap ng mga palatandaan ng logarithms sa kanang bahagi ng pagkakapantay-pantay na ito sa mga exponent sa ilalim ng mga palatandaan ng logarithms na ito; nakukuha namin

Ngayon ay pinapalitan namin ang pagkakaiba ng logarithms sa logarithm ng quotient:

para makuha ang huling fraction sa chain of equalities na ito, pinalaya namin ang nakaraang fraction mula sa irrationality sa denominator (seksyon 25).

Ari-arian 7. Kung ang base ay mas malaki kaysa sa isa, kung gayon ang mas malaking bilang ay may mas malaking logarithm (at ang mas maliit ay may mas maliit), kung ang base ay mas mababa sa isa, kung gayon ang mas malaking bilang ay may mas maliit na logarithm (at ang mas maliit ang isa ay may mas malaki).

Ang ari-arian na ito ay binabalangkas din bilang isang panuntunan para sa pagkuha ng mga logarithms ng mga hindi pagkakapantay-pantay, ang magkabilang panig nito ay positibo:

Kapag dinadala ang logarithms ng hindi pagkakapantay-pantay sa isang base na mas malaki kaysa sa isa, ang tanda ng hindi pagkakapantay-pantay ay pinapanatili, at kapag ang logarithming sa isang base na mas mababa sa isa, ang tanda ng hindi pagkakapantay-pantay ay nagbabago sa kabaligtaran (tingnan din ang talata 80).

Ang patunay ay batay sa mga katangian 5 at 3. Isaalang-alang ang kaso kapag Kung , pagkatapos at, pagkuha ng logarithms, nakuha namin

(a at N/M ay nasa magkabilang panig ng pagkakaisa). Mula dito

Kaso a sumusunod, ang mambabasa ang mag-isa niyang unawain.

Ngayon ay pag-uusapan natin mga logarithmic formula at magbigay ng pahiwatig mga halimbawa ng solusyon.

Sila mismo ay nagpapahiwatig ng mga pattern ng solusyon ayon sa mga pangunahing katangian ng logarithms. Bago ilapat ang mga formula ng logarithm upang malutas, ipaalala namin sa iyo ang lahat ng mga katangian:

Ngayon, batay sa mga formula na ito (properties), ipapakita namin mga halimbawa ng paglutas ng logarithms.

Mga halimbawa ng paglutas ng logarithms batay sa mga formula.

Logarithm ang isang positibong numero b sa base a (na tinutukoy ng log a b) ay isang exponent kung saan dapat itaas ang a upang makakuha ng b, na may b > 0, a > 0, at 1.

Ayon sa kahulugan, mag-log a b = x, na katumbas ng isang x = b, samakatuwid mag-log a a x = x.

Logarithms, mga halimbawa:

log 2 8 = 3, dahil 2 3 = 8

log 7 49 = 2, dahil 7 2 = 49

log 5 1/5 = -1, dahil 5 -1 = 1/5

Decimal logarithm- ito ay isang ordinaryong logarithm, ang base nito ay 10. Ito ay tinutukoy bilang lg.

log 10 100 = 2, dahil 10 2 = 100

Likas na logarithm- din ng isang ordinaryong logarithm, isang logarithm, ngunit may base e (e = 2.71828... - isang hindi makatwiran na numero). Tinutukoy bilang ln.

Maipapayo na kabisaduhin ang mga formula o katangian ng logarithms, dahil kakailanganin natin ang mga ito sa paglutas ng mga logarithms, logarithmic equation at inequalities. Gawin nating muli ang bawat formula na may mga halimbawa.

  • Pangunahing logarithmic na pagkakakilanlan
    isang log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Ang logarithm ng produkto ay katumbas ng kabuuan ng mga logarithm
    log a (bc) = log a b + log a c

    log 3 8.1 + log 3 10 = log 3 (8.1*10) = log 3 81 = 4

  • Ang logarithm ng quotient ay katumbas ng pagkakaiba ng logarithms
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Mga katangian ng kapangyarihan ng isang logarithmic number at ang base ng logarithm

    Exponent ng logarithmic number log a b m = mlog a b

    Exponent ng base ng logarithm log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    kung m = n, makakakuha tayo ng log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Paglipat sa isang bagong pundasyon
    log a b = log c b/log c a,

    kung c = b, makakakuha tayo ng log b b = 1

    pagkatapos ay mag-log a b = 1/log b a

    log 0.8 3*log 3 1.25 = log 0.8 3*log 0.8 1.25/log 0.8 3 = log 0.8 1.25 = log 4/5 5/4 = -1

Tulad ng makikita mo, ang mga formula para sa logarithms ay hindi kasing kumplikado ng tila. Ngayon, sa pagtingin sa mga halimbawa ng paglutas ng mga logarithms, maaari tayong magpatuloy sa mga logarithmic equation. Titingnan natin ang mga halimbawa ng paglutas ng mga logarithmic equation nang mas detalyado sa artikulo: "". Huwag palampasin ito!

Kung mayroon ka pa ring mga katanungan tungkol sa solusyon, isulat ang mga ito sa mga komento sa artikulo.

Tandaan: nagpasya kaming kumuha ng ibang klase ng edukasyon at mag-aral sa ibang bansa bilang opsyon.