Тепловой баланс и кпд котлоагрегата. определение расхода топлива. Как рассчитать КПД котла – обзор факторов теплопотерь Что такое кпд котельной установки

Тепловой баланс и кпд котлоагрегата. определение расхода топлива. Как рассчитать КПД котла – обзор факторов теплопотерь Что такое кпд котельной установки

Существует 2 метода определения КПД:

По прямому балансу;

По обратному балансу.

Определение КПД котла как отношение полезно затраченной теплоты к располагаемой теплоте топлива – это определение его по прямому балансу:

КПД котла можно определить и по обратному балансу – через тепловые потери. Для установившегося теплового состояния получаем

. (4.2)

КПД котла, определяемый по формулам (1) или (2), не учитывает электрической энергии и теплоты на собственные нужды. Такой КПД котла называют КПД брутто и обозначают или .

Если потребление энергии в единицу времени на указанное вспомогательное оборудование составляет , МДж, а удельные затраты топлива на выработку электроэнергии в, кг/МДж, то КПД котельной установки с учетом потребления энергии вспомогательным оборудованием (КПД нетто), %,

. (4.3)

Иногда называют энергетическим КПД котельной установки.

Для котельных установок промышленных предприятий затраты энергии на собственные нужды составляют около 4% вырабатываемой энергии.

Расход топлива определяется:

Определение расхода топлива связано с большой погрешностью, поэтому КПД по прямому балансу характеризуется низкой точностью. Данный метод используется для испытаний существующего котла.

Метод по обратному балансу характеризуется большей точностью, используется при эксплуатации и проектировании котла. При этом Q 3 и Q 4 определяется по рекомендации и из справочников. Q 5 определяется по графику. Q 6 – рассчитывается (редко учитывается), и по существу определение по обратному балансу сводится к определению Q 2 , которое зависит от температуры уходящих газов.

КПД брутто зависит от типа и мощности котла, т.е. производительности, вида сжигаемого топлива, конструкции топки. На КПД влияет также режим работы котла и чистота поверхностей нагрева.

При наличии механического недожога часть топлива не сгорает (q 4), а значит не расходует воздуха, не образует продуктов сгорания и не выделяет теплоты, поэтому при расчете котла пользуются расчетным расходом топлива

. (4.5)

КПД брутто учитывает только тепловые потери.


Рисунок 4.1 - Изменение КПД котла с изменением нагрузки

5 ОПРЕДЕЛЕНИЕ ПОТЕРЬ ТЕПЛОТЫ В КОТЕЛЬНОМ АГРЕГАТЕ.

СПОСОБЫ СНИЖЕНИЯ ПОТЕРЬ ТЕПЛОТЫ

5.1 Потеря теплоты с уходящими газами

Потеря теплоты с уходящими газами Q у.г возникает из-за того, что физическая теплота (энтальпия) газов, покидающих котел, превышает физическую теплоту поступающих в котел воздуха и топлива.

Если пренебречь малым значением энтальпии топлива, а также теплотой золы, содержащейся в уходящих газах, потеря теплоты с уходящими газами, МДж/кг, подсчитывается по формуле:

Q 2 = J ч.г - J в; (5.8)

где – энтальпия холодного воздуха при a=1;

100-q 4 – доля сгоревшего топлива;

a у.г – коэффициент избытка воздуха в уходящих газах.

Если температура окружающей среды равна нулю (t х.в =0), то потеря теплоты с уходящими газами равна энтальпии уходящих газов Q у.г =J у.г.

Потеря теплоты с уходящими газами занимает обычно основное место среди тепловых потерь котла, составляя 5-12 % располагаемой теплоты топлива, и определяется объемом и составом продуктов сгорания, существенно зависящих от балластных составляющих топлива и от температуры уходящих газов:

Отношение , характеризующее качество топлива, показывает относительный выход газообразных продуктов сгорания (при a=1) на единицу теплоты сгорания топлива и зависит от содержания в нем балластных составляющих:

– для твердого и жидкого топлива: влаги W Р и золы А Р;

– для газообразного топлива: N 2 , CO 2 , O 2 .

C увеличением содержания в топливе балластных составляющих и, следовательно, , потеря теплоты с уходящими газами соответственно возрастает.

Одним из возможных направлений снижения потери теплоты с уходящими газами является уменьшение коэффициента избытка воздуха в уходящих газах a у.г, который зависит от коэффициента расхода воздуха в топке a Т и балластного воздуха, присосанного в газоходы котла, находящиеся обычно под разрежением

a у.г = a Т + Da . (5.10)

В котлах, работающих под давлением, присосы воздуха отсутствуют.

С уменьшением a Т потеря теплоты Q у.г снижается, однако при этом в связи с уменьшением количества воздуха, подаваемого в топочную камеру, возможно появление другой потери – от химической неполноты сгорания Q 3 .

Оптимальное значение a Т выбирается с учетом достижения минимального значения q у.г + q 3 .

Уменьшение a Т зависит от рода сжигаемого топлива и типа топочного устройства. При более благоприятных условиях контактирования топлива и воздуха избыток воздуха a Т, необходимый для достижения наиболее полного горения, может быть уменьшен.

Балластный воздух в продуктах сгорания помимо увеличения потери теплоты Q у.г приводит также к дополнительным затратам электроэнергии на дымосос.

Важнейшим фактором, влияющим на Q у.г, является температура уходящих газов t у.г. Её снижение достигается установкой в хвостовой части котла теплоиспользующих элементов (экономайзера, воздухоподогревателя). Чем ниже температура уходящих газов и соответственно меньше температурный напор Dt между газами и нагреваемым рабочим телом, тем большая площадь поверхности Н требуется для такого же охлаждения газа. Повышение t у.г приводит к увеличению потери с Q у.г и к дополнительным затратам топлива DB. В связи с этим оптимальная t у.г определяется на основе технико-экономических расчетов при сопоставлении годовых затрат для теплоиспользующих элементов и топлива для различных значений t х.г.

На рис.4 можно выделить область температур (от до ), в которой расчетные затраты отличаются незначительно. Это дает основание для выбора в качестве наиболее целесообразной температуры , при которой начальные капитальные затраты будут меньше.

Существуют ограничительные факторы при выборе оптимальной :

а) низкотемпературная коррозия хвостовых поверхностей;

б) при 0 C возможна конденсации водяных паров и соединение их с окислами серы;

в) выбор зависит от температуры питательной воды, температуры воздуха на входе в воздушный подогреватель и других факторов;

г) загрязнение поверхности нагрева. Это приводит к снижению коэффициента теплопередачи и к повышению .

При определении потери теплоты с уходящими газами учитывают уменьшение объема газов

. (5.11)

5.2 Потеря теплоты от химической неполноты сгорания

Потеря теплоты от химической неполноты сгорания Q 3 возникает при неполном сгорании топлива в пределах топочной камеры котла и появления в продуктах сгорания горючих газообразных составляющих CO, H 2 , CH 4 , C m H n … Догорание же этих горючих газов за пределами топки практически невозможно из-за относительно низкой их температуры.

Химическая неполнота сгорания топлива может явиться следствием:

– общего недостатка воздуха;

– плохого смесеобразования;

– малых размеров топочной камеры;

– низкой температуры в топочной камере;

– высокой температуры.

При достаточном для полного сгорания топлива качестве воздуха и хорошем смесеобразовании q 3 зависит от объемной плотности тепловыделения в топке

Оптимальное отношение , при котором потеря q 3 имеет минимальное значение, зависит от вида топлива, способа его сжигания и конструкции топки. Для современных топочных устройств потеря теплоты от q 3 составляет 0÷2 % при q v =0,1÷0,3 МВт/м 3 .

Для снижения потери теплоты от q 3 в топочной камере стремятся повысить температурный уровень, применяя, в частности, подогрев воздуха, а также всемерно улучшая перемешивание компонентов горения.

Отопительная техника, работающая на твердом топливе, представлена сегодня целой группой аппаратов. Каждый твердотопливный котел, выпускаемый сегодня отечественными и зарубежными компаниями-производителями – это совершенно новые, высокотехнологичные нагревательные приборы. Благодаря внедрению в конструкцию отопительных приборов технических новшеств и оснащения устройствами автоматического контроля, удалось значительно повысить КПД, оптимизировать работу твердотопливных котлов.

В нагревательных приборах этого вида используется традиционный принцип действия, аналогичный хорошо знакомому для нас варианту печного отопления. Основное действие обусловлено процессом генерации тепловой энергии выделяемой при сгорании в топке котла угля, кокса, дров и других топливных ресурсов с последующей передачей тепла теплоносителю.

Как и другие устройства, обеспечивающие выработку, передачу энергии, котельное оборудование имеет свой коэффициент полезного действия. Рассмотрим более детально, что собой представляет КПД агрегатов, работающих на твердом топливе. Постараемся найти ответы на вопросы, связанные с этими параметрами.

Что такое КПД отопительных приборов

Для любого нагревательного агрегата, в задачу которого входит обогрев внутреннего пространства жилых зданий и сооружений различного назначения, важным компонентом была, есть и остается эффективность работы. Параметром, определяющим эффективность твердотопливных котлов, является коэффициент полезного действия. КПД показывает отношение затраченной тепловой энергии, выдаваемой котлом в процессе горения твердого топлива к полезному теплу, которым снабжается вся система отопления.

Выражается это соотношение в процентах. Чем лучше работает котел, тем выше проценты. Среди современных твердотопливных котлов есть модели с высоким КПД, высокотехнологичные, эффективные и экономичные агрегаты.

Для справки: в качестве грубого примера, следует оценить тепловой эффект, получаемый при сидении возле костра. Выделяемая при горении дров тепловая энергия способна обогреть ограниченное вокруг костра пространство и предметы. Большая часть тепла от горящего костра (до 50-60%) уходит в атмосферу, ни давая никакой пользы, кроме эстетического содержания, в то время как соседние предметы и воздух получают ограниченное количество килокалорий. Коэффициент полезного действия у костра минимальный.

Коэффициент полезного действия отопительной техники сильно зависит от того, какой вид топлива используется и каковы конструктивные особенности устройства.

К примеру: при горении угля, дров или пеллет выделяется разного количество тепловой энергии. Во многом КПД зависит от технологии сжигания топлива в камере сгорания и типа системы отопления. Другими словами, каждый вид нагревательных приборов (традиционные котлы на твердом топливе, агрегаты длительного горения, пеллетные котлы и аппараты, работающие за счет пиролиза), обладает своими технологическими особенностями конструкции, влияющие на параметры КПД.

Отражаются на эффективности котлов так же условия эксплуатации и качество вентиляции. Слабая вентиляция становится причиной нехватки воздуха, необходимого для высокой интенсивности процесса сжигания топливной массы. От состояния дымохода зависит не только уровень комфорта во внутренних помещениях, но и КПД обогревательной техники, работоспособность всей системы отопления.

Сопроводительная документация на отопительный котел должна иметь заявленный производителем КПД оборудования. Соответствие реальных показателей заявленной информации достигается за счет правильного монтажа аппарата, обвязкой и последующей эксплуатацией.

Правила эксплуатации котельных устройств, соблюдение которых оказывает влияние на величину КПД

Любой вид отопительного агрегата имеет свои параметры оптимальной нагрузки, которая должна быть максимально полезной, с технологической и экономической точки зрения. Процесс эксплуатации твердотопливных котлов построен таким образом, что большую часть времени техника работает в оптимальном режиме. Обеспечить такую работу позволяет соблюдение правил эксплуатации отопительного оборудования, работающего на твердом топливе. В данном случае необходимо придерживаться и следовать следующим пунктам:

  • необходимо соблюдать приемлемые режимы дутья и работы вытяжки;
  • постоянный контроль над интенсивностью горения и полноты сгорания топлива;
  • контролировать величину уноса и провала;
  • оценка состояния нагреваемых в процессе горения топлива поверхностей;
  • регулярная чистка котла.

Перечисленные пункты являются тем необходимым минимумом, которого нужно придерживаться во время эксплуатации котельного оборудования в отопительный сезон. Соблюдение простых и понятных правил позволит получить заявленный в характеристиках КПД автономного котла, .

Можно сказать о том, что каждая мелочь, каждый элемент конструкции нагревательного прибора сказывается на величине коэффициента полезного действия. Правильно сконструированный дымоход, система вентиляции обеспечивают оптимальный приток воздуха в топочную камеру, что существенно отражается на качестве горения топливного продукта. Работа вентиляции оценивается величиной коэффициента избытка воздуха. Чрезмерное увеличение объема поступающего воздуха приводит к перерасходу топлива. Тепло интенсивнее уходит через трубу вместе с продуктами горения. При уменьшении коэффициента работа котлов существенно ухудшается, высока вероятность возникновения в топке зон, ограниченных кислородом. При такой ситуации в топке начинает образовываться и скапливаться в больших количествах сажа.

Интенсивность и качество горения в твердотопливных котлах требуют постоянного контроля. Загрузка топочной камеры должна выполняться равномерно, не допуская очаговых возгораний.

На заметку: уголь или дрова равномерно распределяются по колосникам или по решетке. Горение должно проходить по всей поверхности слоя. Равномерно распределенное топливо быстро подсыхает и горит по всей поверхности, гарантируя полное выгорание твердых компонентов топливной массы до летучих продуктов горения. Если вы правильно заложили топливо в топку, пламя пи работе котлов будет ярко желтого, соломенного цвета.

Во время горения важно не допускать провалов топливного ресурса, иначе придется столкнуться с существенным механическими потерями (недожог) топлива. Если не контролировать положения топлива в топке, упавшие в зольный ящик крупные фрагменты угля или дров могут привести к несанкционированному возгоранию остатков продуктов топливной массы.

Сажа и смола, скопившаяся на поверхности теплообменника, уменьшают степень нагрева теплообменника. В результате всех перечисленных нарушений условий эксплуатации уменьшается полезный объем тепловой энергии, необходимой для нормальной работы системы отопления. Как следствие, можно говорить о резком снижении КПД отопительных котлов.

Факторы, от которых зависит КПД котлов

Котлы с высоким значением КПД на сегодняшний день представлены следующей отопительной техникой:

  • агрегаты, работающие на угле и на другом твердом ископаемом топливе;
  • пеллетные котлы;
  • аппараты пиролизного типа.

КПД нагревательных приборов, в топку которых идет антрацит, каменный уголь и торфяные брикеты, составляет в среднем 70-80%. Значительно больший коэффициент полезного действия у пеллетных устройств – до 85%. Загружаемые гранулами, нагревательные котлы этого типа отличаются высокой эффективностью, выдаваемые во время горения топлива огромное количество тепловой энергии.

На заметку: одной загрузки вполне достаточно для работы аппарата на оптимальных режимах до 12-14 часов.

Абсолютный лидер среди твердотопливного отопительного оборудования – пиролизный котел. В этих приборах используется дрова или отходы древесины. КПД такой техники сегодня составляет 85% и более. Агрегаты так же относятся к высокоэффективным устройствам длительного горения, но при соблюдении необходимого условия — влажность топлива не должна превышать 20%.

Немаловажным для значения коэффициента полезного действия является тип материала, из которого изготовлен отопительный прибор. Сегодня на рынке представлены модели твердотопливных котлов, выполненных из стали и из чугуна.

Для справки: К первым относятся стальные изделия. Для снижения рыночной стоимости агрегата, компании – производители используют основные элементы конструкции, выполненные из стали. Например, теплообменник изготавливается из высокопрочной жароустойчивой черной стали толщиной 2-5 мм. Таким же образом изготавливаются нагревательные трубчатые элементы, используемые для нагрева основного контура.

Чем толще сталь, используемая в конструкции, тем выше теплообменные характеристики оборудования. Соответственно растет коэффициент полезного действия.

В аппаратах из стали увеличение КПД достигается за счет установки специальных внутренних перегородок в виде труб – ступеней основного потока и рассекателей дыма. Меры вынужденные и частичные, позволяющие незначительно повысить эффективность основного устройства. Среди моделей стальных твердотопливных котлов редко можно встретить приборы, имеющие КПД выше 75%. Сроки эксплуатации таких изделий составляют 10-15 лет.

Зарубежные компании с целью повышения КПД стальных отопительных котлов используют в своих моделях процесс нижнего сжигания, с 2-мя или с 3-мя тяговыми потоками. В конструкции изделий предусмотрена установка трубчатых нагревательных элементов для улучшения теплообмена. Подобная техника имеет КПД в пределах 75-80%, и прослужить может дольше, в 1,5 раза.

В отличие от стальных агрегатов, большей эффективностью обладают чугунные твердотопливные аппараты.


В конструкции чугунных агрегатов используются теплообменники, изготовленные из чугунного сплава особой марки, обладающего высокой теплоотдачей. Такие котлы чаще всего используются для открытых отопительных систем отопления. Изделия дополнительно оснащаются колосниками, благодаря которым осуществляется интенсивный отбор тепловой энергии непосредственно от горящего топлива, размещенного на колосниках.

КПД у таких нагревательных приборов составляет 80%. Следует учитывать огромные по времени сроки эксплуатации чугунных котлов. Срок работоспособности у подобной техники составляет 30-40 лет.

Как повысит эффективность отопительной техники, работающей на твердом топливе

Сегодня многие потребители, имея в своем распоряжении твердотопливный котел, стараются найти наиболее удобный и практичный способ как повысить КПД отопительного оборудования. Технологичные параметры нагревательных приборов, заложенные производителем, со временем теряют свои номинальные значения, поэтому для повышения эффективности котельного техники изыскиваются различные способы и средства.

Рассмотрим один из наиболее эффектных вариантов, установка дополнительного теплообменника. В задачу новой оснастки входит снятие тепловой энергии с летучих продуктов горения.

На видео можно увидеть, как сделать самостоятельно экономайзер (теплообменник)

Для этого нам предварительно необходимо узнать какова температура дыма на выходе. Изменить ее можно при помощи мультиметра, который помещается непосредственно в середину дымохода. Данные о том, сколько можно получить дополнительного тепла от улетучивающихся продуктов горения необходимы для расчета площади дополнительного теплообменника. Делаем следующие действия:

  • отправляем в топку дрова определенного количества;
  • засекаем за сколько времени прогорит определенное количество дров.

К примеру: дрова, в количестве 14.2 кг. горят 3,5 часа. Температура дыма на выходе из котла составляет 460 0 С.

За 1 час у нас сгорело: 14,2/3,5 = 4,05 кг. дров.

Для расчета количества дыма используем общепринятое значение — 1 кг. дров = 5,7 кг. дымовых газов. Далее умножаем количество сгоревших за один час дров на количество дыма, получаемое при сгорании 1 кг. дров. В итоге: 4,05 х 5,7 = 23,08 кг. летучих продуктов горения. Эта цифра и станет отправной точкой для последующих расчетов количества тепловой энергии, которую можно использовать дополнительно для нагрева второго теплообменника.

Зная значение теплоемкости летучих горячих газов, как 1,1 кДж/кг., делаем дальнейший расчет мощности теплового потока, если мы хотим снизить температуру дыма с 460 0 С до 160 градусов.

Q = 23,08 х 1,1 (460-160) = 8124 кДж тепловой энергии.

В итоге получаем точное значение дополнительной мощности, которую обеспечивают летучие продукты горения: q = 8124/3600 = 2,25 кВт, цифра большая, которая может оказать существенное влияние на повышение эффективности отопительного оборудования. Зная о том, сколько энергии уходит впустую, желание оснастить котел дополнительным теплообменником вполне оправдано. За счет притока дополнительной тепловой энергии для работы по нагреву теплоносителя, повышается не только эффективность всей системы отопления, но и сам КПД отопительного агрегата растет.

Выводы

Несмотря на обилие моделей современной отопительной техники, твердотопливные котлы продолжают оставаться одним из эффективных и доступных видом нагревательного оборудования. В сравнении с электрическими котлами, которые имеют КПД до 90%, агрегаты на твердом топливе обладают высоким экономическим эффектом. Увеличение коэффициента полезного действия на новых моделях, позволило этому виду котельного оборудования вплотную приблизиться к электрическим и газовым котлам.

Современные аппараты на твердом топливе способны не только работать длительное время, используя доступное по цене природные топливные ресурсы, но и обладают высокими эксплуатационными характеристиками.

Теплота, выделяющаяся при сгорании топлива, не может быть полностью использована для производства пара или горячей воды, часть теплоты неизбежно теряется, рассеиваясь в окружающей среде. Тепловой баланс котлоагрегата представляет собой специфическую формулировку закона сохранения энергии, утверждающего равенство количества теплоты, вносимой в котельный агрегат, и теплоты, затраченной на производство пара или горячей воды с учетом потерь. В соответствии с «Нормативным методом» все величины, входящие в тепловой баланс, рассчитываются на 1 кг сгоревшего топлива. Приходная часть теплового баланса называется располагаемой теплотой :

где Q- - низшая теплота сгорания топлива, кДж/кг; c T t T - физическая теплота топлива (с т - теплоемкость топлива, / т - температура топлива), кДж/кг; Q B - теплота воздуха, поступающего в топку при подогреве его вне агрегата, кДж/кг; Q n - теплота, вносимая в котельный агрегат с паром, используемым для распыливания мазута, наружной обдувки поверхностей нагрева или подачи под решетку при слоевом сжигании, кДж/кг.

При использовании газообразного топлива расчет выполняется относительно 1 м 3 сухого газа при нормальных условиях.

Физическая теплота топлива играет существенную роль только при предварительном подогреве топлива вне котлоагрегата. Например, мазут перед подачей к горелкам подогревают, поскольку он имеет большую вязкость при низкой температуре.

Теплота воздуха, кДж/ (кг топл.):

где а т - коэффициент избытка воздуха в топке; V 0 H - теоретически необходимое количество воздуха, н.м 3 /кг; с в - изобарная теплоемкость воздуха, кДж/(н.м 3 К); / х в - температура холодного воздуха, °С; t B - температура воздуха на входе в топку, °С.

Теплота, вносимая с паром, кДжДкгтопл.):

где G n - удельный расход дутьевого пара (на распыливание мазута расходуется примерно 0,3 кг пара на 1 кг мазута); / п = 2750 кДж/кг - примерная величина энтальпии водяного пара при температуре уходящих из котлоагрегата продуктов сгорания (около 130 °С).

В приближенных расчетах принимают 0 р ~ Q? ввиду малости других составляющих уравнения (22.2).

Расходная часть теплового баланса состоит из полезно использованной теплоты (получение пара или горячей воды) суммы потерь, кДжДкгтопл.):

где 0 2 - потери теплоты с уходящими из котельного агрегата газами;

  • 03 - потери теплоты от химической неполноты сгорания топлива;
  • 0 4 - потери теплоты от механической неполноты сгорания топлива;
  • 0 5 - потери теплоты через обмуровку в окружающую среду; 0 6 - потери с физической теплотой шлака, удаляемого из котельного агрегата.

Уравнение теплового баланса записывается в виде

В процентах от располагаемой теплоты уравнение (22.6) можно записать:

Полезно использованная теплота в паровом котле с непрерывной продувкой верхнего барабана определяется по уравнению, кДжДкгтопл.):

где D - паропроизводительность котла, кг/с; D np - расход продувочной воды кг/с; В - расход топлива, кг/с; / п, / п в, / к в - энтальпия пара, питательной и котловой воды при давлении в котле соответственно, кДж/кг.

Потери теплоты с уходящими газами, кДж/(кг топл.):

где с г и с в - изобарная теплоемкость продуктов сгорания и воздуха, кДж/(н.м 3 К); г - температура уходящих газов, °С; а ух - коэффициент избытка воздуха на выходе газов из котлоагрегата; К 0 Г и V 0 - теоретический объем продуктов сгорания и теоретически необходимое количество воздуха, н.м 3 /(кгтопл.).

В газоходах котлоагрегата поддерживается разрежение, объемы газов при их движении по газовому тракту котла возрастают из-за присосов воздуха через неплотности в обмуровке котла. Поэтому действительный коэффициент избытка воздуха на выходе из котлоагрегата а ух больше коэффициента избытка воздуха в топке а. Он определяется суммированием коэффициента избытка воздуха в топке и присосов воздуха во всех газоходах. В практике эксплуатации котельных установок необходимо стремиться к уменьшению присосов воздуха в газоходах как к одному из наиболее эффективных средств борьбы с потерями теплоты.

Таким образом, величина потери Q 2 определяется температурой уходящих газов и величиной коэффициента избытка воздуха а ух. В современных котлах температура газов за котлом не опускается ниже 110 °С. Дальнейшее уменьшение температуры приводит к конн денсации содержащихся в газах паров воды и образованию при сжигании серосодержащего топлива серной кислоты, что ускоряет коррозию металлических поверхностей газового тракта. Минимальные потери с уходящими газами составляют q 2 ~ 6-7%.

Потери от химической и механической неполноты сгорания являются характеристиками топочных устройств (см. п. 21.1). Их величина зависит от вида топлива и способа сжигания, а также от совершенства организации процесса горения. Потери от химической неполноты сгорания в современных топках составляют q 3 = 0,5-5%, от механической - q 4 = 0-13,5%.

Потери теплоты в окружающую среду q 5 зависят от мощности котла. Чем выше мощность, тем меньше относительная величина потери q 5 . Так, при паропроизводительности котлоагрегата D= 1 кг/с потерь составляют 2,8%, при D= 10 кг/с q 5 ~ 1%.

Потери теплоты с физической теплотой шлака q b невелики и обычно учитываются при составлении точного теплового баланса, %:

где а шл = 1 - а ун; а ун - доля золы в дымовых газах; с шл и? шл - теплоемкость и температура шлака; А г - зольность рабочего состояния топлива.

Коэффициентом полезного действия (КПД) котлоагрегата называют отношение полезно использованной теплоты сгорания 1 кг топлива на получение пара в паровых котлах или горячей воды в водогрейных к располагаемой теплоте.

КПД котлоагрегата, %:

КПД котлоагрегатов существенно зависит от вида топлива, способа сжигания, температуры уходящих газов и мощности. Паровые котлы, работающие на жидком или газообразном топливе, имеют КПД 90-92%. При слоевом сжигании твердого топлива КПД равняется 70-85%. Необходимо отметить, что КПД котлоагрегатов существенно зависит от качества эксплуатации, особенно от организации топочного процесса. Работа котлоагрегата с давлением пара и производительностью меньше номинальных снижает КПД. В процессе эксплуатации котлов периодически должны проводиться теплотехнические испытания с целью определения потерь и действительного КПД котла, что позволяет внести необходимые коррективы в режим его работы.

Расход топлива для парового котла (кг/с - для твердого и жидкого топлива; н.м 3 /с - газообразного)

где D - паропроизводительность котлоагрегата, кг/с; / п, / п в, / к в - энтальпия пара, питательной и котловой воды соответственно, кДж/кг; Q p - располагаемая теплота, кДж/(кг топл.) - для твердого и жидкого топлива, кДж/(н.м 3) - для газообразного топлива (часто в расчетах принимают Q p ~ Q- ввиду их незначительного различия); П - величина непрерывной продувки, % от паропроизводитель- ности; г| ка - КПД колоагрегата, доли.

Расход топлива для водогрейного котла (кг/с; н.м 3 /с):

где С в - расход воды, кг/с; /, / 2 - начальная и конечная энтальпии воды в котле, кДж/кг.



Теплоэффективность котельного оборудования, указывается в коэффициенте полезного действия. КПД газового котла, обязательно прописывается в технической документации. Согласно заверениям производителей, у некоторых моделей котлов, коэффициент достигает 108-109%, другие работают на уровне 92-98%.

Как рассчитать КПД котла отопления на газе

Методика расчета эффективности, происходит посредством сравнения затраченной тепловой энергии для нагрева теплоносителя и фактического количества всей теплоты, выделенной во время сжигания топлива. В заводских условиях, вычисления выполняют по формуле:

η = (Q1/ Qri) 100%

В формуле расчетов КПД водогрейного котла на газе, указанные значения означают:

  • Qri – общее количество тепловой энергии, выделяемое при сжигании топлива.
  • Q1 – тепло, которое удалось аккумулировать и использовать для нагрева помещения.
Данная формула не учитывает много факторов: возможные теплопотери, отклонения в рабочих параметрах системы и т.п. Расчеты позволяют получить исключительно средний коэффициент полезного действия газового котла. Большинство производителей указывают именно данное значение.

На месте проводится оценка погрешности определения теплоэффективности. Для вычислений применяют еще одну формулу:

η=100 - (q2 + q3 + q4 + q5 + q6)

Расчеты помогают провести анализ, согласно особенностям конкретной системы отопления. Сокращения в формуле обозначают:

  • q2 – теплопотери в отходящих газах и продуктах сгорания.
  • q3 – потери, связанные с неправильными пропорциями газовоздушной смеси, по причине которых возникает недожог газа.
  • q4 – тепловые потери, связанные с появлением на горелках и теплообменнике сажи, а также, механический недожог.
  • q5 – теплопотери, в зависимости от наружной температуры.
  • q6 – потери тепла при охлаждении топки во время очистки ее от шлаков. Последний коэффициент, относится исключительно к твердотопливным агрегатам и не учитывается при расчетах КПД оборудования, работающего на природном газе.
Реальный КПД газового отопительного котла, рассчитывается исключительно на месте и зависит от грамотно сделанной системы дымоудаления, отсутствия нарушений при установке и т.п.

Сильнее всего оказывает влияние на теплоэффективность, температура уходящих газов, отмеченная в формуле маркером q2. При уменьшении интенсивности нагрева отходящих градусов на 10-15°С, повышается КПД на 1-2%. В связи с этим, самый высокий КПД в конденсационных котлах, относящихся к классу низкотемпературного отопительного оборудования.

У какого газового котла самый высокий КПД

Статистика и техническая документация, ясно указывают, что котлы импортного производства имеют наибольший КПД. Европейские производители, делают особый акцент на применении энергосберегающих технологий. Иностранный газовый котел, имеет высокий КПД, так как в его устройстве сделаны некоторые модификации:
  • Используется модуляционная горелка – современные котлы ведущих производителей, оснащены плавнодвухступенчатыми или полностью модулируемыми горелочными устройствами. Преимущество горелок – автоматическая приспособляемость к фактическим рабочим параметрам системы отопления. Процент недожига снижается к минимуму.
  • Нагрев теплоносителя – оптимальный котел, это агрегат, разогревающий теплоноситель до температуры не более 70°С, при этом, отходящие газы нагреваются не более 110°С, что и обеспечивает максимальную теплоотдачу. Но, при низкотемпературном нагреве теплоносителя, наблюдается несколько минусов: недостаточная сила тяги, усиленное конденсатообразование.
    Теплообменники в газовых котлах с самым высоким коэффициентом полезного действия, изготавливаются из нержавеющей стали и снабжаются специальным блоком-конденсатором, предназначенным для отбора тепла, находящегося в конденсате.
  • Температура подводящего газа и воздуха, поступающего на горелку. Котлы закрытого типа, подключаются . Воздух поступает в камеру сгорания через наружную полость двуполостной трубы, предварительно подогреваясь, что снижает необходимые теплозатраты на несколько процентов.
    Горелки с предварительным приготовлением газовоздушной смеси, также подогревают газ перед подачей его на горелку.
  • Еще один популярный вариант модификации – установка системы рециркуляции отходящих газов, когда дым не сразу поступает в камеру сгорания, а проходит через ломанный дымоходный канал и поступает после подмешивания свежего воздуха, обратно на горелочное устройство.

Максимальное КПД достигается при температуре конденсатообразования или «точки росы». Котлы, работающие в условиях низкотемпературного нагрева, называются конденсационными. Их отличает, малое потребление газа и высокая теплоэффективность, что особенно заметно при подключении к и .

Конденсационные котлы, предлагают несколько европейских производителей, среди которых:

  • Viessmann.
  • Buderus.
  • Vaillant.
  • Baxi.
  • De Dietrich.

В технической документации к конденсационным котлам, указано, что КПД устройств при подключении к низкотемпературным системам обогрева, составляет 108-109%.

Как увеличить КПД отопительного котла на газе

Существуют всевозможные хитрости повышения КПД. Эффективность способов, зависит от первоначальной конструкции котла. Для начала, используют модификации, не требующие изменений в работе котла:
  • Изменение принципа циркуляции теплоносителя – здание прогревается быстрее и равномернее, при подключении циркуляционного насоса.
  • Установка комнатных терморегуляторов – модернизация котлов для повышения КПД с помощью датчиков, контролирующих не нагрев теплоносителя, а температуру в помещении, эффективный метод увеличения теплоэффективности.
  • Повышение коэффициента использования газа в бытовом котле, приблизительно на 5 -7%, происходит при замене горелочного устройства. Установка модуляционной горелки, способствует улучшению пропорций газовоздушной смеси и соответственно, уменьшает процент недогара. Тип установленного горелочного устройства, находится в прямой зависимости, относительно уменьшения потерь тепла.
  • Вместо полной модификации котла, может потребоваться частичное преобразование конструкции и регулировка расхода топлива. Если изменить положение горелок и установить их ближе к водяному контуру, удастся увеличить КПД еще на 1-2%. Тепловой баланс котельного агрегата, увеличится в большую сторону.
Определенное увеличение КПД, наблюдается при регулярном обслуживании оборудования. После очистки котла, находящегося в эксплуатации и удаления накипи с теплообменника, его эффективность увеличивается, как минимум на 3-5%.

КПД уменьшается при загрязнении теплообменника, по причине того, что накипь, состоящая из солевых отложений металлов, имеет плохую теплопроводность. По этой причине, наблюдается постоянное увеличение расхода газа и впоследствии, котел полностью выходит из строя.

Наблюдается небольшое увеличение КПД при сгорании сжиженного газа, достигаемое за счет снижения скорости поступления топлива на горелку, что приводит к уменьшению недогара. Но, теплоэффективность увеличивается незначительно. Поэтому, природный газ продолжает оставаться самым экономичным из всех используемых традиционных типов топлива.

Для современной котельной на жидком топливе КПД будет часто достигать 80% при том условии, что котельная чистая, без сажи. Однако, реальный КПД в среднем (у тех котельных, которые измерялись) примерно 65%. Чаще всего котельная не настолько чистая, чтобы она могла принять тепло от пламени и передать максимальное количество тепла воде.

Намного сложнее складывается ситуация, когда производители котельных начинают говоить о КПД, достигающем 95%. Непонятно, какие условия были при определении КПД, и какой КПД имеется в виду.

В технической/экономической области используется не менее 6 определений для КПД котельной. Поскольку многим людям неизвестны условия определения КПД котельной, поставщики, не боясь быть обвиненными во лжи, дают высокий КПД. Однако, эти высокие цифры не имеют ничего общего с действительностью плательщика за тепло.

1. КПД ГОРЕНИЯ

КПД горения - количество энергии топлива, которое ОСВОБОЖДАЕТСЯ при сжигании.

Освобождение энергии топлива и ее переход в тепло в очаге (печке) котельной не говорит о высоком КПД котельной. КПД горения предоставляется некоторыми производителями котельных как КПД котельной, поскольку 1) цифра высокая (примерно 93-95%) 2) легко измерить КПД горения - нужно установить инструмент в дымовые трубы.

Освобождение тепла из топлива происходит в большинстве котельных с высоким КПД горения.

Следовательно: Освобождение энергии топлива плюс ее переход в тепло в очаге (печке) это не то тепло, которое принимается котлом!! Мы же заинтересованы в том тепле, которое принимается котлом!!

2. КПД КОТЕЛЬНОЙ

КПД котельной - количество энергии топлива, которое полезно используется, т.е. преобразовывается в другую энергонесущую среду.

Под другой энергнесущей средой подразумевается, например, теплая воды, которая обогревает дом.

КПД котельной - это наиболее используемое определение КПД во всех типах установок по сжиганию.

КПД котельной измерить сложнее, чем КПД горения, поэтому многие довольствуются только измерением КПД горения. На самом деле, КПД котельной на 10-15% ниже, чем КПД горения.

3. КПД ТОПОЧНОЙ ТЕХНИКИ

КПД ТОПОЧНОЙ ТЕХНИКИ ПОКАЗЫВАЕТ, КАК ЭФФЕКТИВНО происходит ГОРЕНИЕ И ПРИЕМ ТЕПЛА В КОТЕЛНЬОЙ. Даже эти расчеты часто представляются в результате анализа дымогарных газов.

Часто КПД топочной техники используется в качестве примерного аналога КПД котельной, так как техника измерения в данном случае легче. С помощью этой техники можно получить примерную цифру для КПД котельной: необходимо постоянно проводить анализ состава кислорода или СО2 в дымогарных газах. Отнимаются потери, так как, например, в золе/шлаках присутствует часть тепла (особенно это касается шлакообразующих видов топлива). Что касается жидкого топлива, то КПД топочной техники и КПД котельной примерно одинаков, так как жидкое топливо не содержит золы/шлаков. Но если использовать это понятие для угля или биотопливо, то погрешности (ошибки) значительно выше.

4. КПД УСТАНОВКИ

При вычислении КПД установки определяется отношение между общим объемом полезной энергии и общим количеством энергии. В общее количество энергии входит также "вспомогательная энергия", например, электрическая энергия необходимая для работы насосов котельной, вентиляции, дымоходов и т.д. Для установки на жидком топливе "вспомогательная энергия" соответствует примерно 1% от общей энергии топлива, для установок на твердом топливе "вспомогательная энергия" равняется 5% от энергии топлива.
КПД установки, таким образом, будет ниже, чем КПД котельной.

5. КПД СИСТЕМЫ

Определение КПД системы расширяет границы системы до:

Производства тепла с потерями
- распределения тепла с потерями в теплотрассах и т.д.
- использования тепла

Согласно UNICHAL (Международный союз поставщиков тепла) следующие типичные потери в трубах при распространении горячей воды в квартиры имеют место:

Швеция - 8% потерь в трубах, т.е. тепло отдается земле и окружению труб ЦТ
Дания - 20%
Финляндия - 9%
Бельгия - 13%
Швейцария - 13%
Западная Германия - 11%

6. КПД годовой

КПД в год в принципе соответствует КПД котельной, но тогда рассчитывается среднее КПД котельной в течение всего года. В КПД в год входят также периоды с плохим уровнем горением, например, при запуске котельной и т.д.

КПД в год зависит от размера установки, срока эксплуатации и т.д.

Изложенное выше, показывает, что используются различные определения для КПД, поэтому существуют большая вероятность того, что будет дана ошибочная цифра, если понятие и определение КПД не уточнено. Таким образом, не стоит бояться быть нетактичным, поскольку на самом деле, многие производители, обладая или не обладая знаниями, предоставляют ошибочные цифры.

Важны те цифры, которые отражают реальную экономическую сторону того топлива, которое потребитель покупает. Если потерять доверие потребителя из-за предоставления слишком высокого КПД, то появление больших проблем на рынке неизбежно.

Как сказано, "все поставщики" (по крайней мере много) дают КПД горения, когда они предлагают информацию о КПД котельной.

Нельзя использовать КПД горения при расчете экономики установки!!!

Потребитель ПОКУПАЕТ НЕ ТОПЛИВО, А СРЕДСТВО ДЛЯ ПОЛУЧЕНИЯ ТЕПЛА. Не топливо должно быть дешевым, а тепло, которые потребители получают во время зимних вьюг.