Схемы питания осветительных электроустановок производственных и жилых зданий. Электроснабжение осветительных установок Электроснабжение осветительных установок

Схемы питания осветительных электроустановок производственных и жилых зданий. Электроснабжение осветительных установок Электроснабжение осветительных установок
Схемы питания осветительных электроустановок производственных и жилых зданий. Электроснабжение осветительных установок Электроснабжение осветительных установок

Осветительные сети промышленных предприятий подразделяются на две группы: питающие и групповые. Питающие сети прокладываются от щита низкого напряжения трансформаторной подстанции до групповых щитков, а групповые сети - от групповых щитков до светильников и штепсельных розеток. Питание осветительных установок происходит от общих трансформаторов. Согласно ПУЭ светильники аварийного освещения присоединяют к независимым источникам питания, таким как секции сборных шин подстанции, питающиеся от разных трансформаторов, аккумуляторные батареи и дизель-генераторы. Иногда предусматривается использование сетей рабочего освещения для питания светильников аварийного освещения.

В этом случае при отключении рабочего освещения обеспечивают автоматическое переключение аварийного освещения на независимый источник электроснабжения.

Конфигурация схем питания зависит от требований к осветительным установкам, уровня надежности общей схемы электроснабжения предприятия, количества групповых щитков освещения, протяженности сетей освещения и т. д.

В трехфазной системе переменного тока применяют несколько схем групповой сети: двухпроводная однофазная, двухпроводная двухфазная, трехпроводная двухфазная с нулевым проводом, трехпроводная трехфазная, четырехпроводная трехфазная с нулевым проводом. В сетях с изолированной нейтралью применяют двухпроводные однофазные, трехпроводные трехфазные и двухпроводные двухфазные схемы.

Питание силовых и осветительных нагрузок на предприятии от шин низкого напряжения подстанций с одним или двумя трансформаторами обычно выполняют раздельными линиями.

Наименее надежной является схема освещения при питании от подстанции с одним трансформатором, так как при отключении его полностью прекращается подача напряжения в сеть освещения. Более надежной схема электроснабжения осветительных установок будет в том случае, когда рабочее и аварийное освещение получают питание от разных трансформаторов подстанции с двумя трансформаторами. При выходе из строя одного из трансформаторов в производственных помещениях остаются в работе светильники, подключенные на электроснабжение от другого трансформатора.

Рис. 52. Схема осветительной сети при системе блока трансформатор - магистраль:
1 - магистраль; 2 - разъединитель; 3 - силовая нагрузка; 4 - рабочее освещение; 5 - аварийное освещение; 6 - вторичные магистрали.

На крупных предприятиях применяется питание сетей освещения по схеме блока трансформатор - магистраль (рис. 52). При аварийном отключении одного из трансформаторов его нагрузки переключают на трансформатор, оставшийся в работе. Аварийное освещение подключается к соседней ТП.

Наивысшую надежность электроснабжения осветительных электроустановок получают при питании трансформаторов обеих ТП от разных генераторов электростанций или от разных питающих подстанций энергосистемы.

В двухпроводных сетях освещения взрывоопасных помещений аппараты управления и защиты устанавливаются в фазном и нулевом проводах, при этом для заземления прокладывается дополнительный провод (в двухпроводной цепи, где нулевой провод используется для заземления, а также в трех- и четырехпроводных линиях запрещается устанавливать предохранители в нулевых проводах).

Аппараты управления освещением в небольших помещениях размещают в самом помещении близко от входа, со стороны дверной ручки, а в сырых, пожаро- и взрывоопасных помещениях и вне помещений.

Для включения освещения производственных корпусов и наружного освещения применяются автоматы, магнитные пускатели и контакторы общего назначения. Включение и выключение может быть ручным или автоматическим. При автоматическом включении сетей освещения используют фотореле, которые подают сигнал к включению в зависимости от снижения уровня освещенности естественного освещения и сигнал к отключению при нарастании освещенности до определенного уровня (рис. 53).


Рис. 53. Схема фотореле типа ФР-1

Фоторезистор R типа ФСК-1Г устанавливается вне помещений. Последовательно в цепь фоторезистора включена обмотка поляризованного реле РП. Днем сопротивление фоторезистора мало, поэтому по обмотке поляризованного реле РП, включенного последовательно с ним, протекает большой ток, и контакты его разомкнуты (тем самым магнитный пускатель управления освещением отключен). При уменьшении внешней освещенности ниже установленного уровня (5 лк) увеличивается сопротивление фоторезистора, ток через обмотку реле РП снижается и оно отключается, размыкая контакты. Это вызывает включение магнитного пускателя через дополнительное реле РПНВ. При увеличении освещенности до 10 лк реле РП повторно срабатывает, и освещение отключается.

К питающим линиям в осветительных сетях относят сети от источника питания (трансформаторная подстанция или ввод в здание) до групповых электрощитов. Линии, идущие от групповых электрощитов к светильникам, называют групповыми.

Линии питания осветительных установок также как и силовых могут выполнятся по , смешанным схемам.

Радиальную схему применяют крайне редко. Виной тому ее высокая стоимость и большой расход цветных металлов. Основанием для выбора схемы питания осветительных электроустановок служат требования по , удобство и простота в управлении и эксплуатации, а также экономичность.

Схемы освещения производственных зданий

Самым важным из выше перечисленных требования является надежность электроснабжения. Ведь внезапно погасший свет может привести не только к остановке производственных процессов, но и к несчастным случаям с людьми. Именно поэтому для многих гражданских и промышленных зданий ПУЭ требует создание аварийного освещения, которое останется включенным после погасания основного. Необходимо чтобы светильники аварийного освещения подключались к независимому источнику питания.

Выполнения данных требований достигается путем применения соответствующих построений схем осветительной сети. Наиболее распространенные схемы указаны:

На рисунке а) приведена магистральная схема питания групповых щитков. Щиток аварийного освещения подключен к отдельной магистрали, которая идет непосредственно от распределительного щита цеховой трансформаторной подстанции. При наличии двух трансформаторной подстанции источники освещения будут получать питание от двух разных трансформаторов (рисунок б)).

С применением схемы « » сеть рабочего освещения будет подключатся непосредственно к токопроводу. В случае значительного тока нагрузки под токопроводом устанавливают магистральный щиток, от которого будет происходить распределение к групповым щиткам. Щитки аварийного освещения подключают ко вторичной шинной магистрали:

Для ответственных объектов при наличии двух и более подстанций применяют систему перекрестного аварийного освещения:

Схемы освещения гражданских зданий и жилых домов

В гражданских и промышленных зданиях принципы построения сетей освещения немного разнятся. В гражданских зданиях питающие линии заводят в центр жилого здания в подвал или лестничную клетку первого этажа, где устанавливается вводное распределительное устройство. От вводного распределительного устройства в обе стороны будут расходится горизонтальные питающие линии, которые прокладываются либо по полу первого этажа, либо по подвалу. К горизонтальным питающим линиям подключены вертикально расположенные по этажам линии (стояки). К стоякам подключаются , от которых питаются квартиры. К каждой питающей линии в зависимости нагрузки, количества групповых щитков и объема здания могут присоединятся несколько стояков.

В жилых домах выше пяти этажей, при питании от одной линии нескольких стояков, на каждом ответвлении к стояку должен устанавливаться защитный аппарат. Учет потребляемой электроэнергии может вестись как в самих квартирах, так и в специальных шкафах на лестничных клетках. При установке аппаратов защиты и электросчетчиков групповых сетей в общих шкафах на лестничных клетках, встраиваемых в электропанели, и при расстоянии от лестничных стояков до этих шкафов не превышающем 3 метра этажные щитки не устанавливаются. Лестничное освещение получает питание от вводного распределительного пункта и управляется централизованно.

Также стоит отметить что довольно популярными становятся фотовыключатели, устанавливаемые в подъездах жилых домов. Фотовыключатель автоматически подключает освещение с наступлением темного времени суток и отключает в дневное время. В домах высотой более 9 этажей в схему могут вводится реле времени или специальные микропроцессорные устройства с часовыми механизмами, которые включают и отключают освещения согласно определенного алгоритма. Таким образом, реализуется экономия электроэнергии.

Применяется и схема с установкой, так называемых, лестничных автоматических выключателей на каждой лестничной площадке. Данные автоматы работают с некоторой выдержкой времени и отключают освещение через определенный промежуток времени. При такой схеме идущий по лестнице человек моет включить или выключить свет на следующей площадке, что довольно сильно экономит электроэнергию, но это не совсем удобно для пожилых людей или при переноске тяжелых грузов.

Схемы электроснабжения жилых домов высотой от шести до шестнадцати этажей имеют дополнительные особенности, так как относятся к потребителям 2 категории. В таких домах присутствуют лифты, а иногда и насосы для поддержания напора воды в водопроводах.

Ниже показана схема питания жилого девятиэтажного дома:

Из схемы видно, что питание данного сооружения производится двумя взаимно-резервирующими линиями, рассчитанными на питание всего здания (в аварийном режиме). При пропаже напряжения на одной из линий с помощью переключателя нагрузка дома переводится на другую питающую линию. Стояки проходят через электропанели на лестничных клетках, где установлены аппараты защиты и электросчетчики квартирных сетей, поэтому в данном случае этажные щитки не устанавливаются. К силовому вводу отдельно присоединяются светильники аварийного освещения. Электросчетчики, общие для всего здания, устанавливаются на вводах.

Электроснабжение рабочего освещения, как правило, выполняют самостоятельными линиями от щитов подстанции. При этом электроэнергия от подстанции передается питающими линиями на осветительные магистральные щитки, а от них – групповым осветительным щиткам. Питание источников света осуществляется от групповых щитков групповыми линиями. Светильники аварийного освещения, в том числе для продолжения работ, а также другие, в частности для эвакуации, должны быть присоединены к независимому источнику питания. Электрическая сеть осветительных установок состоит из питающих и групповых линий. Питающие линии выполняют по радиальным, магистральным, а также радиально-магистральным схемам. Выбор схемы питающих и групповых сетей должен определяться: требованиями к бесперебойности действия осветительной установки; технико-экономическими показателями (минимальными приведенными показателями, расходом цветных материалов и электроэнергии); удобством управления и простотой эксплуатации осветительной установки. При выборе трассы осветительной сети и мест установки, магистральных и групповых щитков учитывают: удобство эксплуатации (доступность); исключение возможности повреждения при производстве работ; эстетические требования; уменьшение длины трассы. К групповым линиям не рекомендуется присоединять на фазу более 20 ламп накаливания, а при использовании многоламповых люминесцентных светильников – до 50 ламп. Если к линии вдоль ее длины подключить ряд электроприемников, то токовая нагрузка по мере удаления от источника будет уменьшаться. Поэтому электрические осветительные сети, исходя из экономической целесообразности, строят с убывающей величиной сечения проводов в направлении от источника питания к электроприемникам. На практике производится расчеты сечений осветительных сетей при условии наименьшего расхода проводникового материала, Приведенный момент мощности, определяют фактические потери напряжения, После определения сечений участки проверяют по нагреву, Расчетный ток. В последнее десятилетие получили распространение низковольтные

воздушные сети, выполненные как самонесущая система изолированных проводов (СИП). Используется СИП в городах как обязательная прокладка, как магистраль в сельских зонах со слабой плотностью населения, ответвления к потребителям. Способы прокладки СИП различны: натягивание на опорах; натягивание по фасадам зданий; прокладка вдоль фасадов. Конструкция СИП в общем случае состоит из медной или алюминиевой проводниковой многопроволочной жилы, окруженной внутренним полупроводниковым экраном, затем – изоляцией из сшитого полиэтилена, полиэтилена или ПВХ.

Герметичность обеспечивается порошком и компаундированной лентой, поверх которых расположен металлический экран из меди или алюминия в виде спирально уложенных нитей или ленты, с использованием экструдированного свинца. Поверх подушки кабельной брони, выполненной из бумаги, ПВХ, полиэтилена, делают броню из алюминия в виде сетки из полосок и нитей. Внешняя защита выполнена из ПВХ, полиэтилена или смесей без гелогена. Пролеты прокладки, рассчитанные с учетом ее температуры и сечений проводов (не менее 25 мм2 для магистралей и 16 мм2 на ответвлениях к вводам для потребителей, 10 мм2 для сталеалюминиевого провода) составляют от 40 до 90 м.

Электроснабжение - совокупность мероприятий по обеспечению электроэнергией различных ее потребителей. Системой электроснабжения называется комплекс инженерных сооружений, осуществляющих задачи электроснабжения, или совокупность электроустановок, предназначенных для обеспечения потребителей электрической энергией.

Сеть электроснабжения характерна тем, что связывает территориально удалённые пункты источников и потребителей. Это осуществляется при помощи линии электропередачи - специальных инженерных сооружений, состоящих из проводников электрического тока (провод - неизолированный проводник или кабель - изолированный проводник), сооружений для размещения и прокладки (опоры, эстакады, каналы), средств изоляции (подвесные и опорные изоляторы) и защиты (грозозащитные тросы, разрядники, заземление).

Рациональное и надежное решение вопроса организации электроснабжения в здании или офисе необходимо практически для всех эксплуатируемых помещений. Задача построения системы электроснабжения, соответствующей современным требованиям надежности и качества, с учетом перспектив развития далеко не всегда проста и обычно предполагает несколько вариантов решений, зависящих от эксплуатационных требований и экономических показателей.

Создание системы электроснабжения включает в себя следующие основные этапы:

    поставка необходимого оборудования,

    выполнение электротехнических монтажных и пусконаладочных работ (),

    гарантийное и послегарантийное .

Разработка системы электроснабжения начинается с анализа потребителей, экспертизы объекта, изучения возможных вариантов подключения к действующей системе электропитания объекта. Тщательная работа на стадии предварительного проектирования позволяет оптимизировать задачу электроснабжения конкретного объекта, обеспечить его бесперебойную работу и легкое масштабирование системы в дальнейшем.

Очень важный этап - выбор электротехнического оборудования.

Электротехнические работы в типовом эксплуатируемом помещении (офисное, административное, производственное, складское, торговое и т.п.) состоят из следующих основных частей:

    установка щитов учета и распределения (с автоматами защиты, устройствами защитного отключения, счетчиками электрической энергии);

    устройство электропроводки в помещении, монтаж и подключение электрических приборов (токоприемников).

Распределительные щиты

Электрические распределительные щиты собираются из унифицированных модулей. Устанавливаемые в щит приборы (автоматы защиты, дифференциальные выключатели, реле, контакторы, счетчики, трансформаторы, таймеры, терморегуляторы и т.д.) имеют габаритные размеры кратные размеру одного модуля, щиты выпускаются как для навесного, так и для встроенного монтажа, имеют широкий диапазон типоразмеров, корпуса выполняются из пластмассы или из стали со специальным полимерным покрытием.

Автоматические выключатели

Автоматы защиты имеют отключающий механизм, обеспечивающий отключение для защиты от токов короткого замыкания и отключение с временной задержкой по току перегрузки. Автоматы могут быть однофазными и трехфазными.

Дифференциальные автоматические выключатели

Выключатели автоматические дифференциальные (дифавтоматы) предназначены для использования однофазной или трехфазной электрической сети в системе электроснабжения с заземленной нейтралью. Дифавтомат реагирует на дифференциальный (остаточный) ток (тип АС) и обеспечивает:

    повышение уровня безопасности при эксплуатации людьми бытовых и аналогичных электроприборов;

    предотвращение пожаров из-за возгорания изоляции токоведущих частей электроприборов от дифференциального (остаточного) тока на землю;

    автоматическое отключение участка электрической сети (в том числе квартирной) при перегрузке (Т3) и токе короткого замыкания (МТ3).

Счетчики электрической энергии

Счетчики электрической энергии - электроизмерительные приборы для учета энергии переменного тока в однофазных и трехфазных сетях 220/380В с номинальной частотой 50 Гц. Счетчики могут быть однотарифные и двухтарифные (основная - дневная зона и льготная - ночь, суббота и воскресенье).

Электропроводка

Электропроводка представляет собой совокупность проводов и кабелей. По способу монтажа электропроводка подразделяется на открытую (по поверхности стен, потолков и другим строительным конструкциям), скрытую (внутри стен или перекрытий, в фундаментах, под полом по перекрытиям) и комбинированную (в кабель-каналах и лотках). При выборе кабельной продукции также учитывается класс помещения (по НПБ, ПУЭ) и степень возгораемости строительных материалов на которых монтируется проводка. В зависимости от этих факторов производится выбор марок проводов и кабелей для помещений.

Надежность, долговечность и безопасность проводки во многом определяется выбором материала проводов и кабелей. В современном строительстве не рекомендуется использовать провода и кабели с жилами из алюминия, так как этот металл подвержен коррозии, со временем меняется его кристаллическая структура, а значит и электропроводящие свойства. Увеличение внутреннего сопротивления в итоге ведет к потерям электроэнергии, разогреву проводов и соединений. Медь по сравнению с алюминием имеет значительно более высокие качественные характеристики, поэтому при проведении электротехнических работ все чаще используют провода и кабели на основе меди.

Наиболее простым способом монтажа является открытая проводка. Она удобна тем, что любой ее участок легко доступен для ремонта и подключения новых токоприемников. Монтаж производится быстро, так как связан только с креплением кабеля к несущим конструкциям (стенам, перекрытиям, фальш-потолку и пр.) и с пробивкой стен и перегородок. Недостатком этого способа является малая эстетичность и, в связи с этим, открытая проводка в современных помещениях используется очень редко. Тем не менее, в подсобных помещениях и в индивидуальном жилом секторе (на дачах и т.п.) она применяется довольно часто. Открытая проводка проводов по сгораемым основаниям выполняется по слою листового асбеста. При открытой проводке выключатели и розетки устанавливают на прикрепленных к стене пластмассовых подрозетниках.

Скрытая проводка наиболее распространена и безопасна в эксплуатации, так как расположена в толще несгораемого материала (отсутствуют механические воздействия, доступ воздуха к ней затруднен). Основной недостаток - невозможность без вскрытия стен подключить новые токоприемники. Cкрытые провода выводят на поверхность стен или перекрытий (для присоединения к токоприемникам) через изоляционные пластмассовые трубки. Соединение и ответвление проводов скрытой проводки выполняется сваркой, опрессовкой, пайкой или зажимами в ответвительных коробках. Допускается при скрытой проводке выполнять ответвления проводов во вводных коробках выключателей, розеток или светильников.

Проводка в кабель-каналах (коробах, лотках) находится на стыке открытого и скрытого способа прокладки проводов. С одной стороны, сохраняются все преимущества открытой проводки, с другой стороны, проводка в кабель-каналах более безопасна и изящна. Кроме того, в кабель-канал при наличии разделительной перегородки вместе с электропроводкой можно уложить провода слаботочных систем (компьютерные сети, телевизионный кабель, телефонный провод и т.д.). Этот вид проводки применяется сегодня практически повсеместно. Для прокладки компьютерных сетей, пожарной и охранной сигнализации такой способ является стандартным. Кабель-каналы выпускаются в виде полых коробов различного сечения длиной 2 метра, а также в виде полого плинтуса с внутренними перегородками для укладки кабеля. Крепятся кабель-каналы на саморезы и анкера, прямые и угловые сочленения осуществляются с помощью специальной фурнитуры.

Монтажные изделия

Для проводки в кабель-каналах используют пластиковые короба и металлические лотки. Для скрытой проводки существует целая гамма монтажных изделий для выполнения скрытого монтажа любой конфигурации - монтажные коробки для различных типов стен, распаечные коробки с клемными колодками внутри для разветвления или контактных соединений, ПВХ-трубы или гофротрубы для прокладки проводов в стенах. Для открытой проводки в подвальных и чердачных помещениях используют металлорукав. При открытой проводке за подвесными потолками и под фальш-полом кабель и провода укладываются в гофротрубу (ПВХ).

Электроустановочные изделия

Электроустановочные изделия - розетки, выключатели, выключатели с инфракрасным датчиком, переключатели, электрические соединители, патроны, регуляторы света, диммеры (электронные регуляторы) и прочее. Материалом для установочных изделий служит ударопрочный пластик или поликарбонат, рамочная конструкция электроустановочных изделий позволяет выполнить набор нескольких функционально различных устройств в едином блоке.

Освещение

Создание искусственного освещения помещений реализуется подбором светильников мощностью, достаточной для освещения помещения конкретной площади. Светильники представляют собой осветительную арматуру с установленной в нее лампой. Классификация светильников производится по нескольким характеристикам - по распределению светового потока, по углу излучения, по назначению светильника и по типу используемого в светильнике источника света (лампы). Наиболее широко применяются:

    лампы накаливания (свечение создается путем подогрева вольфрамовой спирали),

    люминесцентные лампы (газоразрядная лампа, свечение создается путем возбуждения слоя люминофора с помощью ультрафиолетового излучения, возникающего во время разряда),

    газоразрядные лампы (свечение создается непосредственно от электрического разряда в газе, парах металла или в их смеси),

    галогенные лампы (заполненная газом лампа накаливания с вольфрамовой нитью).

Измерение параметров электросети

В проекте должно быть предусмотрено измерение параметров смонтированной электросети, таких как:

    сопротивления изоляции;

    сопротивления цепи фаза-ноль;

    возможного тока короткого замыкания (PSC);

    проверка наличия цепи между заземлителем и заземленным элементом;

    прогрузка автоматических выключателей;

    проверка УЗО;

    испытания контура заземления (сопротивление растеканию).

Для получения подробной информации по выполнению электромонтажных работ, проведению электроизмерений и другим нашим услугам, обратитесь к нам в офис по телефону

В книге излагаются теоретические основа и даны практические данные по устройству, проектированию и эксплуатации осветительных установок. Рассматриваются выбор нормируемых характеристик, тип источников света, виды и системы освещения, схемы питания и управления, а также вопросы расчета освещения и осветительных сетей.

С установками искусственного освещения повседневно приходится сталкиваться всем, и из всех инженерных устройств они являются, пожалуй, наиболее массовыми. Их осуществление и эксплуатация требуют больших затрат материальных средств, электроэнергии и человеческого груда, но эти затраты и избытком окупаются тем, что обеспечивается возможность нормальной жизни и деятельности людей в условиях отсутствия или недостаточности естественного освещения. Более того, искусственное освещение решает ряд задач, вообще недоступных естественному освещению, от особенностей же устройства искусственного освещения, подчас кажущихся весьма незначительными, во многом зависят и производительность труда, и безопасность работы, и сохранность зрения, и архитектурный облик помещения.

Предлагаемая книга рассматривает вопросы проектирования, устройства и эксплуатации осветительных установок и в основном предназначена служить практическим пособием для работников организаций, предприяти и санитарных инспекторов. Примерно совпадая по своему содержанию с учебной программой курса «Осветительные установки», читаемого для студентов техникумов специализации 0632 «Осветительные приборы и установки», кафедры светотехники МЭИ , она может также служить учебным пособием по указанному курсу.

Назначение и объем книги заставляют подчеркнуть, что она никоим образом не является курсом светотехники вообще и рассчитана на лиц, знакомых с основами светотехники, а также имеющих общие сведения об источниках света и осветительных приборах. Лишь в порядке краткого напоминания в начале книги приведен перечень основных понятий и соотношений .

Не следует рассматривать книгу и как справочное пособие: объем справочных материалов, необходимых только для проектирования освещения, превышает весь объем данной книги.

Предисловие

Глава первая. Принципиальные основы устройства осветительных установок
1-1. Основные светотехнические единицы в соотношения
1-2. Зрение и освещение
1-3. Приипипы нормирования освещения
1-4. Цвет в технике освещения
1-5. Качество освещения.

Глава вторая. Светотехническая часть осветительных установок
Выбор освещенности .
2-2. Системы освещения.
2-3. Виды освещения
2-4. Выбор
2-5. Расположение светильников
2-6 Характеристики и классификация светильников
2-7 Выбор светильников по светотехническим характеристикам
2-8 Экономическая обоснованность выбора типа светильника
2-9 Выбор конструктивного исполнения светильников
2-10. Общая характеристика сортамента светильников.
2-11. Щелевые светильники-световоды.

Глава третья. Расчет освещенности.
3-1. Основные принпипы расчета.
3-2 Метод коэффициента использования
3-3. Упрошенные формы метода коэффициента использования.
3-4. Точечный метод
3-5. Специальные методы расчета
3-6. Прожекторное освещение.

Глава четвертая. Расчет качественных характеристик освещения
4-1. Цилиндрическая освещенность
4-2. Коэффициент пульсации
4-3. Средняя яркость дорожных покрытий

Глава пятая. Электроснабжение осветительных установок.
5-1. Напряжение осветительных сетей.
5-2. Источники питания и питающие сети.
5-3. Групповые сети.
5-4. Схемы управления освещением .

Глава шестая. Электрические сети осветительных установок
6-1. Выполнение осветительных сетей.
6-2. Выбор сечения проводников по току нагрузки и защита осветительных сетей
6-3. Расчет сетей по потеренапряжения
6-4. Заземление, зануление и путевые провода

Глава седьмая. Особенности освещения некоторых объектов
7-1. Общие сведения
7-2. Пожаро- и взрывоопасные зоны
7-3. Помещения общественных зданий.
7-4. Архитектурно-художественное освещение
7-5. Освещение открытых пространств.

Глава восьмая. Проектирование, эксплуатация и экономическая обоснованность выбора осветительных установок.
8-1 Организация и методика проектных работ
8-2. Стадия рабочего проектирования.