Решение сводится нахождению нок. Наибольший общий делитель (НОД) – определение, примеры и свойства

Решение сводится нахождению нок. Наибольший общий делитель (НОД) – определение, примеры и свойства

Чтобы научиться находить наибольший общий делитель двух или нескольких чисел, необходимо разобраться с тем, что представляют из себя натуральные, простые и сложные числа.


Натуральным называется любое число, которое используется при подсчете целых предметов.


Если натуральное число можно разделить только на само себя и единицу, то его называют простым.


Все натуральные числа можно разделить на себя и единицу, однако единственным четным простым числом является 2, все остальные можно поделить на двойку. Поэтому простыми могут быть только нечетные числа.


Простых чисел достаточно много, полного списка их не существует. Для нахождения НОД удобно использовать специальные таблицы с такими числами.


Большинство натуральных чисел могут делиться не только на единицу, самих себя, но и на другие числа. Так, например, число 15 можно поделить еще на 3 и 5. Все их называют делителями числа 15.


Таким образом, делитель любого А - это число, на которое оно может быть разделено без остатка. Если у числа имеется более двух натуральных делителей, его называют составным.


У числа 30 можно выделить такие делители, как 1, 3, 5, 6, 15, 30.


Можно заметить, что 15 и 30 имеют одинаковые делители 1, 3, 5, 15. Наибольший общий делитель этих двух чисел - 15.


Таким образом, общим делителем чисел А и Б называется такое число, на которое можно поделить их нацело. Наибольшим можно считать максимальное общее число, на которое можно их разделить.


Для решения задач используется такая сокращенная надпись:


НОД (А; Б).


Например, НОД (15; 30) = 30.


Чтобы записать все делители натурального числа, применяется запись:


Д (15) = {1, 3, 5, 15}



НОД (9; 15) = 1


В данном примере у натуральных чисел имеется только один общий делитель. Их называют взаимно простыми, соответственно единица и является их наибольшим общим делителем.

Как найти наибольший общий делитель чисел

Чтобы найти НОД нескольких чисел, нужно:


Найти все делители каждого натурального числа по отдельности, то есть разложить их на множители (простые числа);


Выделить все одинаковые множители у данных чисел;


Перемножить их между собой.


Например, чтобы вычислить наибольший общий делитель чисел 30 и 56, нужно записать следующее:




Чтобы не путаться при , удобно записывать множители при помощи вертикальных столбиков. В левой части от черты нужно разместить делимое, а в правой - делитель. Под делимым следует указать получившееся частное.


Так, в правом столбце окажутся все нужные для решения множители.


Одинаковые делители (найденные множители) можно для удобства подчеркнуть. Их следует переписать и перемножить и записать наибольший общий делитель.





НОД (30; 56) = 2 * 5 = 10


Вот так просто на самом деле найти наибольший общий делитель чисел. Если немного потренироваться, делать это можно будет практически на автомате.

Наибольший общий делитель и наименьшее общее кратное - ключевые арифметические понятия, которые позволяют без усилий оперировать обыкновенными дробями. НОК и чаще всего используются для поиска общего знаменателя нескольких дробей.

Основные понятия

Делитель целого числа X - это другое целое число Y, на которое X разделяется без остатка. К примеру, делитель 4 - это 2, а 36 - 4, 6, 9. Кратное целого X - это такое число Y, которое делится на X без остатка. К примеру, 3 кратно 15, а 6 - 12.

Для любой пары чисел мы можем найти их общие делители и кратные. К примеру, для 6 и 9 общим кратным является 18, а общим делителем - 3. Очевидно, что делителей и кратных у пар может быть несколько, поэтому при расчетах используется наибольший делитель НОД и наименьшее кратное НОК.

Наименьший делитель не имеет смысла, так как для любого числа это всегда единица. Наибольшее кратное также бессмысленно, так как последовательность кратных устремляется в бесконечность.

Нахождение НОД

Для поиска наибольшего общего делителя существует множество методов, самые известные из которых:

  • последовательный перебор делителей, выбор общих для пары и поиск наибольшего из них;
  • разложение чисел на неделимые множители;
  • алгоритм Евклида;
  • бинарный алгоритм.

Сегодня в учебных заведениях наиболее популярными являются методы разложения на простые множители и алгоритм Евклида. Последний в свою очередь используется при решении диофантовых уравнений: поиск НОД требуется для проверки уравнения на возможность разрешения в целых числах.

Нахождение НОК

Наименьшее общее кратное точно также определяется последовательным перебором или разложением на неделимые множители. Кроме того, легко найти НОК, если уже определен наибольший делитель. Для чисел X и Y НОК и НОД связаны следующим соотношением:

НОК (X,Y) = X × Y / НОД(X,Y).

Например, если НОД(15,18) = 3, то НОК(15,18) = 15 × 18 / 3 = 90. Наиболее очевидный пример использования НОК - поиск общего знаменателя, который и является наименьшим общим кратным для заданных дробей.

Взаимно простые числа

Если у пары чисел нет общих делителей, то такая пара называется взаимно простой. НОД для таких пар всегда равен единице, а исходя из связи делителей и кратных, НОК для взаимно простых равен их произведению. К примеру, числа 25 и 28 взаимно просты, ведь у них нет общих делителей, а НОК(25, 28) = 700, что соответствует их произведению. Два любых неделимых числа всегда будут взаимно простыми.

Калькулятор общего делителя и кратного

При помощи нашего калькулятора вы можете вычислить НОД и НОК для произвольного количества чисел на выбор. Задания на вычисление общих делителей и кратных встречаются в арифметике 5, 6 класса, однако НОД и НОК - ключевые понятия математики и используются в теории чисел, планиметрии и коммуникативной алгебре.

Примеры из реальной жизни

Общий знаменатель дробей

Наименьшее общее кратное используется при поиске общего знаменателя нескольких дробей. Пусть в арифметической задаче требуется суммировать 5 дробей:

1/8 + 1/9 + 1/12 + 1/15 + 1/18.

Для сложения дробей выражение необходимо привести к общему знаменателю, что сводится к задаче нахождения НОК. Для этого выберите в калькуляторе 5 чисел и введите значения знаменателей в соответствующие ячейки. Программа вычислит НОК (8, 9, 12, 15, 18) = 360. Теперь необходимо вычислить дополнительные множители для каждой дроби, которые определяются как соотношение НОК к знаменателю. Таким образом, дополнительные множители будут выглядеть как:

  • 360/8 = 45
  • 360/9 = 40
  • 360/12 = 30
  • 360/15 = 24
  • 360/18 = 20.

После этого умножаем все дроби на соответствующий дополнительный множитель и получаем:

45/360 + 40/360 + 30/360 + 24/360 + 20/360.

Такие дроби мы можем легко суммировать и получить результат в виде 159/360. Сокращаем дробь на 3 и видим окончательный ответ - 53/120.

Решение линейных диофантовых уравнений

Линейные диофантовы уравнения - это выражения вида ax + by = d. Если отношение d / НОД(a, b) есть целое число, то уравнение разрешимо в целых числах. Давайте проверим пару уравнений на возможность целочисленного решения. Сначала проверим уравнение 150x + 8y = 37. При помощи калькулятора находим НОД (150,8) = 2. Делим 37/2 = 18,5. Число не целое, следовательно, уравнение не имеет целочисленных корней.

Проверим уравнение 1320x + 1760y = 10120. Используем калькулятор для нахождения НОД(1320, 1760) = 440. Разделим 10120/440 = 23. В результате получаем целое число, следовательно, диофантово уравнение разрешимо в целых коэффициентах.

Заключение

НОД и НОК играют большую роль в теории чисел, а сами понятия широко используются в самых разных областях математики. Используйте наш калькулятор для расчета наибольших делителей и наименьших кратных любого количества чисел.

Наибольший общий делитель

Определение 2

Если натуральное число a делится на натуральное число $b$, то $b$ называют делителем числа $a$, а число $a$ называют кратным числа $b$.

Пусть $a$ и $b$-натуральные числа. Число $c$ называют общим делителем и для $a$ и для $b$.

Множество общих делителей чисел $a$ и $b$ конечно, так как ни один из этих делителей не может быть больше, чем $a$. Значит,среди этих делителей есть наибольший, который называют наибольшим общим делителем чисел $a$ и $b$ и для его обозначения используют записи:

$НОД \ (a;b) \ или \ D \ (a;b)$

Чтобы найти наибольший общий делитель двух, чисел необходимо:

  1. Найти произведение чисел, найденных на шаге 2. Полученное число и будет искомым наибольшим общим делителем.

Пример 1

Найти НОД чисел $121$ и $132.$

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Выбрать числа, которые входят в разложение этих чисел

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=2\cdot 11=22$

Пример 2

Найти НОД одночленов $63$ и $81$.

Будем находить согласно представленному алгоритму. Для этого:

    Разложим числа на простые множители

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Выбираем числа, которые входят в разложение этих чисел

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Найдем произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=3\cdot 3=9$

Найти НОД двух чисел можно и по-другому, используя множество делителей чисел.

Пример 3

Найти НОД чисел $48$ и $60$.

Решение:

Найдем множество делителей числа $48$: $\left\{{\rm 1,2,3.4.6,8,12,16,24,48}\right\}$

Теперь найдем множество делителей числа $60$:$\ \left\{{\rm 1,2,3,4,5,6,10,12,15,20,30,60}\right\}$

Найдем пересечение этих множеств: $\left\{{\rm 1,2,3,4,6,12}\right\}$- данное множество будет определять множество общих делителей чисел $48$ и $60$. Наибольший элемент в данном множестве будет число $12$. Значит наибольший общий делитель чисел $48$ и $60$ будет $12$.

Определение НОК

Определение 3

Общим кратным натуральных чисел $a$ и $b$ называется натуральное число, которое кратно и $a$ и $b$.

Общими кратными чисел называются числа которые делятся на исходные без остатка.Например для чисел $25$ и $50$ общими кратными будут числа $50,100,150,200$ и т.д

Наименьшее из общих кратных будет называться наименьшим общим кратным и обозначается НОК$(a;b)$ или K$(a;b).$

Чтобы найти НОК двух чисел, необходимо:

  1. Разложить числа на простые множители
  2. Выписать множители, входящие в состав первого числа и добавить к ним множители, которые входят в состав второго и не ходят в состав первого

Пример 4

Найти НОК чисел $99$ и $77$.

Будем находить согласно представленному алгоритму. Для этого

    Разложить числа на простые множители

    $99=3\cdot 3\cdot 11$

    Выписать множители, входящие в состав первого

    добавить к ним множители, которые входят в состав второго и не ходят в состав первого

    Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наименьшим общим кратным

    $НОК=3\cdot 3\cdot 11\cdot 7=693$

    Составление списков делителей чисел часто очень трудоемкое занятие. Существует способ нахождение НОД, называемый алгоритмом Евклида.

    Утверждения, на которых основан алгоритм Евклида:

    Если $a$ и $b$ --натуральные числа, причем $a\vdots b$, то $D(a;b)=b$

    Если $a$ и $b$ --натуральные числа, такие что $b

Пользуясь $D(a;b)= D(a-b;b)$, можно последовательно уменьшать рассматриваемые числа до тех пор, пока не дойдем до такой пары чисел, что одно из них делится на другое. Тогда меньшее из этих чисел и будет искомым наибольшим общим делителем для чисел $a$ и $b$.

Свойства НОД и НОК

  1. Любое общее кратное чисел $a$ и $b$ делится на K$(a;b)$
  2. Если $a\vdots b$ , то К$(a;b)=a$
  3. Если К$(a;b)=k$ и $m$-натуральное число, то К$(am;bm)=km$

    Если $d$-общий делитель для $a$ и $b$,то К($\frac{a}{d};\frac{b}{d}$)=$\ \frac{k}{d}$

    Если $a\vdots c$ и $b\vdots c$ ,то $\frac{ab}{c}$ - общее кратное чисел $a$ и $b$

    Для любых натуральных чисел $a$ и $b$ выполняется равенство

    $D(a;b)\cdot К(a;b)=ab$

    Любой общийй делитель чисел $a$ и $b$ является делителем числа $D(a;b)$

Чтобы понять, как вычислять НОК, следует определиться в первую очередь со значением термина "кратное".


Кратным числу А называют такое натуральное число, которое без остатка делится на А. Так, числами кратными 5 можно считать 15, 20, 25 и так далее.


Делителей конкретного числа может быть ограниченное количество, а вот кратных бесконечное множество.


Общее кратное натуральных чисел - число, которое делится на них без остатка.

Как найти наименьшее общее кратное чисел

Наименьшее общее кратное (НОК) чисел (двух, трех или больше) - это самое маленькое натурально число, которое делится на все эти числа нацело.


Чтобы найти НОК, можно использовать несколько способов.


Для небольших чисел удобно выписать в строчку все кратные этих чисел до тех пор, пока среди них не найдется общее. Кратные обозначают в записи заглавной буквой К.


Например, кратные числа 4 можно записать так:


К (4) = {8,12, 16, 20, 24, ...}


К (6) = {12, 18, 24, ...}


Так, можно увидеть, что наименьшим общим кратным чисел 4 и 6 является число 24. Эту запись выполняют следующим образом:


НОК (4, 6) = 24


Если числа большие, найти общее кратное трех и более чисел, то лучше использовать другой способ вычисления НОК.


Для выполнения задания необходимо разложить предложенные числа на простые множители.


Сначала нужно выписать в строчку разложение наибольшего из чисел, а под ним - остальных.


В разложении каждого числа может присутствовать различное количество множителей.


Например, разложим на простые множители числа 50 и 20.




В разложении меньшего числа следует подчеркнуть множители, которые отсутствуют в разложении первого самого большого числа, а затем их добавить к нему. В представленном примере не хватает двойки.


Теперь можно вычислить наименьшее общее кратное 20 и 50.


НОК (20, 50) = 2 * 5 * 5 * 2 = 100


Так, произведение простых множителей большего числа и множителей второго числа, которые не вошли в разложение большего, будет наименьшим общим кратным.


Чтобы найти НОК трех чисел и более, следует их все разложить на простые множители, как и в предыдущем случае.


В качестве примера можно найти наименьшее общее кратное чисел 16, 24, 36.


36 = 2 * 2 * 3 * 3


24 = 2 * 2 * 2 * 3


16 = 2 * 2 * 2 * 2


Так, в разложение большего числа на множители не вошли только две двойки из разложения шестнадцати (одна есть в разложении двадцати четырех).


Таким образом, их нужно добавить к разложению большего числа.


НОК (12, 16, 36) = 2 * 2 * 3 * 3 * 2 * 2 = 9


Существуют частные случаи определения наименьшего общего кратного. Так, если одно из чисел можно поделить без остатка на другое, то большее из этих чисел и будет наименьшим общим кратным.


Например, НОК двенадцати и двадцати четырех будет двадцать четыре.


Если необходимо найти наименьшее общее кратное взаимно простых чисел, не имеющих одинаковых делителей, то их НОК будет равняться их произведению.


Например, НОК (10, 11) = 110.

Множество делителей

Рассмотрим такую задачу: найти делитель числа 140. Очевидно, что у числа 140 не один делитель, а несколько. В таких случаях говорят, что задача имеет множество решений. Найдем их все. Прежде всего разложим данное число на простые множители:

140 = 2 ∙ 2 ∙ 5 ∙ 7.

Теперь мы без труда можем выписать все делители. Начнем с простых делителей, то есть тех, которые присутствуют в разложении, приведенном выше:

Затем выпишем те, которые получаются попарным умножением простых делителей:

2∙2 = 4, 2∙5 = 10, 2∙7 = 14, 5∙7 = 35.

Затем - те, которые содержат в себе три простых делителя:

2∙2∙5 = 20, 2∙2∙7 = 28, 2∙5∙7 = 70.

Наконец, не забудем единицу и само разлагаемое число:

Все найденные нами делители образуют множество делителей числа 140, которое записывается с помощью фигурных скобок:

Множество делителей числа 140 =

{1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.

Для удобства восприятия мы выписали здесь делители (элементы множества ) в порядке возрастания, но, вообще говоря, это делать необязательно. Кроме того, введем сокращение записи. Вместо «Множество делителей числа 140» будем писать «Д(140)». Таким образом,

Точно так же можно найти множество делителей для любого другого натурального числа. Например, из разложения

105 = 3 ∙ 5 ∙ 7

мы получаем:

Д(105) = {1, 3, 5, 7, 15, 21, 35, 105}.

От множества всех делителей следует отличать множество простых делителей, которые для чисел 140 и 105 равны соответственно:

ПД(140) = {2, 5, 7}.

ПД(105) = {3, 5, 7}.

Следует особо подчеркнуть, что в разложении числа 140 на простые множители двойка присутствует два раза, в то время как во множестве ПД(140) - только один. Множество ПД(140) - это, по своей сути, все ответы на задачу: «Найти простой множитель числа 140». Ясно, что один и тот же ответ не следует повторять больше одного раза.

Сокращение дробей. Наибольший общий делитель

Рассмотрим дробь

Мы знаем, что эту дробь можно сократить на такое число, которое одновременно является и делителем числителя (105) и делителем знаменателя (140). Взглянем на множества Д(105) и Д(140) и выпишем их общие элементы.

Д(105) = {1, 3, 5, 7, 15, 21, 35, 105};

Д(140) = {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.

Общие элементы множеств Д(105) и Д(140) =

Последнее равенство можно записать короче, а именно:

Д(105) ∩ Д(140) = {1, 5, 7, 35}.

Здесь специальный значок «∩» («мешок отверстием вниз») как раз и указывает на то, что из двух множеств, записанных по разные стороны от него, надо выбрать только общие элементы. Запись «Д(105) ∩ Д(140)» читается «пересечение множеств Дэ от 105 и Дэ от 140».

[Заметим по ходу дела, что с множествами можно производить разные бинарные операции, почти как с числами. Другой распространенной бинарной операцией является объединение , которое обозначается значком «∪» («мешок отверстием вверх»). В объединение двух множеств входят все элементы как того, так и другого множества:

ПД(105) = {3, 5, 7};

ПД(140) = {2, 5, 7};

ПД(105) ∪ ПД(140) = {2, 3, 5, 7}. ]

Итак, мы выяснили, что дробь

можно сократить на любое из чисел, принадлежащих множеству

Д(105) ∩ Д(140) = {1, 5, 7, 35}

и нельзя сократить ни на какое другое натуральное число. Вот все возможные способы сокращения (за исключением неинтересного сокращения на единицу):

Очевидно, что практичнее всего сокращать дробь на число, по возможности большее. В данном случае это число 35, про которое говорят, что оно является наибольшим общим делителем (НОД ) чисел 105 и 140. Это записывается как

НОД(105, 140) = 35.

Впрочем, на практике, если нам даны два числа и требуется найти их наибольший общий делитель, мы вовсе не должны строить какие-либо множества. Достаточно просто разложить оба числа на простые множители и подчеркнуть те из этих множителей, которые являются общими для обоих разложений, например:

105 = 3 ∙ 5 7 ;

140 = 2 ∙ 2 ∙ 5 7 .

Перемножая подчеркнутые числа (в любом из разложений), получаем:

НОД(105, 140) = 5 7 = 35.

Разумеется, возможен случай, когда подчеркнутых множителей окажется больше двух:

168 = 2 2 ∙ 2 ∙ 3 ∙ 7;

396 = 2 2 3 ∙ 3 ∙ 11.

Отсюда видно, что

НОД(168, 396) = 2 2 3 = 12.

Особого упоминания заслуживает ситуация, когда общих множителей совсем нет и подчеркивать нечего, например:

42 = 2 ∙ 3 ∙ 7;

В этом случае,

НОД(42, 55) = 1.

Два натуральных числа, для которых НОД равен единице, называются взаимно простыми . Если из таких чисел составить дробь, например,

то такая дробь является несократимой .

Вообще говоря, правило сокращения дробей можно записать в таком виде:

a / НОД(a , b )

b / НОД(a , b )

Здесь предполагается, что a и b - натуральные числа, а вся дробь положительна. Если мы теперь припишем знак «минус» к обоим частям этого равенства, то получим соответствующее правило для отрицательных дробей.

Сложение и вычитание дробей. Наименьшее общее кратное

Пусть требуется вычислить сумму двух дробей:

Мы уже знаем, как раскладываются на простые множители знаменатели:

105 = 3 ∙ 5 7 ;

140 = 2 ∙ 2 ∙ 5 7 .

Из этого разложения сразу следует, что, для того чтобы привести дроби к общему знаменателю, достаточно числитель и знаменатель первой дроби умножить на 2 ∙ 2 (произведение неподчеркнутых простых множителей второго знаменателя), а числитель и знаменатель второй дроби - на 3 («произведение» неподчеркнутых простых множителей первого знаменателя). В результате знаменатели обеих дробей станут равны числу, которое можно представить так:

2 ∙ 2 ∙ 3 ∙ 5 7 = 105 ∙ 2 ∙ 2 = 140 ∙ 3 = 420.

Нетрудно видеть, что оба исходных знаменателя (как 105, так и 140) являются делителями числа 420, а число 420, в свою очередь, кратно обоим знаменателям, - и не просто кратно, оно является наименьшим общим кратным (НОК ) чисел 105 и 140. Это записывается так:

НОК(105, 140) = 420.

Приглядевшись повнимательнее к разложению чисел 105 и 140, мы видим, что

105 ∙ 140 = НОК(105, 140) ∙ НОД(105, 140).

Точно так же, для произвольных натуральных чисел b и d :

b d = НОК(b , d ) ∙ НОД(b , d ).

Теперь давайте доведем до конца суммирование наших дробей:

3 ∙ 5 7

2 ∙ 2 ∙ 5 7

2 ∙ 2 ∙ 3 ∙ 5 7

2 ∙ 2 ∙ 3 ∙ 5 7

2 ∙ 2 ∙ 3 ∙ 5 ∙ 7

2 ∙ 2 ∙ 3 ∙ 5 ∙ 7

2 ∙ 2 ∙ 3 ∙ 5

Примечание. Для решения некоторых задач требуется знать, что такое квадрат числа. Квадратом числа a называется число a , помноженное само на себя, то есть a a . (Как нетрудно видеть, оно равно площади квадрата со стороной a ).