Погрешность невоспроизводимых косвенных измерений. Теория ошибок. Порядок выполнения работы

Погрешность невоспроизводимых косвенных измерений. Теория ошибок. Порядок выполнения работы
Погрешность невоспроизводимых косвенных измерений. Теория ошибок. Порядок выполнения работы

Рассмотрим сначала случай, когда величина у зависит только от одной переменной х , которая находится прямым измерением,

Среднее арифметическое <y > можно найти, подставив в (8) вместо х среднее арифметическое <х >.

.

Абсолютную погрешность можно рассматривать как приращение функции (8) при приращении аргумента ∆х (полная погрешность измеряемой величины х ). При малых значениях ∆х она приближенно равна дифференциалу функции

, (9)

где - производная функции, вычисленная при . Относительная погрешность будет равна

.

Пусть определяемая величина у является функцией нескольких переменных х i ,

. (10)

Предполагается, что погрешности всех величин в рабочей формуле носят случайный характер, независимы и рассчитаны с одной и той же доверительной вероятностью (например Р = 0,95). Такую же доверительную вероятность будет иметь и погрешность искомой величины. В этом случае наиболее вероятное значение величины <у > определяют по формуле (10), используя для расчета наиболее вероятные значения величин х i , т. е. их средние значения:

<у > = f (<x 1 >, <x 2 >, …,<x i >, …,<x m >).

В этом случае абсолютная погрешность окончательного результата Δу определяется по формуле

, (11)

где ∂у /∂х i – частные производные функции у по аргументам х i , вычисленные для наиболее вероятных значений величин х i . Частная производная – это производная, которая вычисляется от функции у по аргументу х i при условии, что все остальные аргументы считаются постоянными.

Относительную погрешность величины у получим, поделив ∆у на <у>

. (12)

Принимая во внимание, что (1/у ) dy/dx представляет производную по х от натурального логарифма у относительную погрешность можно записать так

. (13)

Формулу (12) удобнее использовать в тех случаях, когда в зависимости (10) измеряемые величины х i входят, в основном, в виде слагаемых, а формула (13) является удобной для расчетов тогда, когда (10) представляет собой произведения величин х i . В последнем случае предварительное логарифмирование выражения (10) существенно упрощает вид частных производных. Измеряемая величина у является величиной размерной и логарифмировать размерную величину нельзя. Чтобы устранить эту некорректность, нужно разделить у на постоянную, имеющую данную размерность. После логарифмирования получится дополнительное слагаемое, которое не зависит от величин х i и поэтому исчезнет при взятии частных производных, так как производная от постоянной величины равна нулю. Поэтому при логарифмировании наличие такого слагаемого просто подразумевается.



Учитывая простую связь между абсолютной и относительной погрешностями ε у = Δу /<у >, легко по известной величине Δу вычислить ε у и наоборот.

Функциональная связь между погрешностями прямых измерений и погрешностью косвенного измерения для некоторых простых случаев приведена в табл. 3.

Рассмотрим некоторые особые случаи, возникающие при вычислении погрешностей измерений. Приведенные выше формулы для расчета погрешностей косвенных измерений справедливы только тогда, когда все х i независимые величины и измерены различными приборами и методами. На практике это условие не всегда соблюдается. Например, если какие-либо физические величины в зависимости (10) измеряются одним и тем же прибором, то приборные погрешности Δх i пр этих величин уже не будут независимыми, и приборная погрешность косвенно измеряемой величины Δу пр в этом случае будет несколько больше, чем при «квадратичном суммировании». Например, если площадь пластины длиной l и шириной b измерены одним штангенциркулем, то относительная приборная погрешность косвенного измерения будет

(ΔS/S ) пр = (Δl /l ) пр + (Δb/b ) пр,

т.е. погрешности суммируются арифметически (погрешности Δl пр и Δb пр одного знака и их величины одинаковы), вместо относительной приборной погрешности

при независимых погрешностях.

Таблица 3

Функциональная связь погрешностей прямых и косвенных измерений

Рабочая формула Формула для расчета погрешности

При проведении измерений возможны случаи, когда величины х i имеют разные значения, специально изменяемые или задаваемые во время эксперимента, например, вязкость жидкости по методу Пуазейля определяют для разной высоты столба жидкости над капилляром, или ускорение свободного падения g определяют с помощью математического маятника для разных длин). В таких случаях следует вычислять значение косвенно измеряемой величины у в каждом из n опытов по отдельности, а в качестве наиболее вероятного значения ее брать среднее значение, т.е. . Случайная погрешность Δу сл вычисляется как погрешность при прямом измерении. Вычисление приборной погрешности Δу пр производится через частные производные по формуле (11), а окончательная полная погрешность косвенно измеряемой величины подсчитывается по формуле

В результате прямого измерения получается не истинное значение х измеряемой величины, а серия изn значений . Пусть теперь

Суммируя последнее равенство, получим

(7)

где средне арифметическое измеренных значений. Таким образом,

(8)

Из этого простого результата вытекают весьма важные следствия. Действительно, при

и
.

значит, при бесконечно большом числе измерений
и, следовательно, при конечныхn результат тем ближе к среднему арифметическому, чем больше число измерений. Отсюда также следует, что при оценке Х в качестве
целесообразно взять .

На практике n конечно и
. В задачу математической теории случайной погрешности входит оценка интервала

в котором заключено истинное значение измеряемой величины. Интервал (9) называется доверительным интервалом , а величина
абсолютной погрешностью результата серии измерений. Теория оценки х достаточно сложна, поэтому здесь будут рассмотрены лишь её основные результаты. Прежде всего нужно отметить, что, поскольку х – случайная величина, ошибка х может быть определенна лишь с той или иной степенью надежности α , которую также называют доверительной вероятностью. Доверительная вероятность – это вероятность того, что истинное значение измеряемой величины х попадает в доверительный интервал (9). Если положить α =1 (100%), то это будет соответствовать достоверному событию, т.е. вероятности того, что х принимает какое-то значение в интервале (
). При этом
. Очевидно, такой выбор надёжностиα нецелесообразен. При малых α доверительный интервал х определяется с малой достоверностью. В дальнейшем мы будем полагать α =0.90 или 0.95. Доверительный интервал и надёжность взаимосвязаны. Для оценки границ доверительного интервала английский математик В. Госсет (публиковавший свои работы под псевдонимом Стьюдент) ввёл в 1908 г. коэффициент:

(10)

равный отношению погрешности х к средней квадратичной ошибке*

(11)

Коэффициент зависит от надёжностиα , а также от числа измерений n и называется коэффициентом Стьюдента. Этот коэффициент табулирован (см. приложение 1), поэтому рассчитав и задав доверительную вероятностьα , нетрудно найти случайную ошибку:

(12)

Расчёт погрешности косвенных измерений.

При косвенных измерениях измеряемая величина f находится из функциональной зависимости:

где x , y , z – результаты прямых измерений. Формулу для f можно получить, заменив в (2) дифференциалы погрешностями и взяв все слагаемые по модулю

(13)

Соотношение (13) рекомендуется для оценки погрешности f , обусловленной приборными погрешностями величины x, y, z, … Для оценки погрешности, связанной со случайными ошибками прямых измерений, рекомендуется соотношение:

(14)

Следует правда отметить, что формулы (13) и (14) приводят практически к одинаковым результатам. Производные в (13) и (14) берутся при средних, т.е. при измеренных значениях аргументов.

Очень часто функция f представлена степенной зависимостью от аргументов

(15)

где c, n, m и p – постоянные. Частным случаями формулы (15) являются соотнощения
,
и др.

Задание . Покажите, что для функции вида (15) формулы (13) и (14) принимают вид:


(13)

(14)

Из соотношений (13) и (14) следует, что для степенных функций расчёт погрещностей существенно упрощается, причём целесообразно сначала найти относительную погрешность, которая выражается через относительную погрешность прямых измерений, а затем найти абсолютную погрешность

(16)

Под понимается функция от средних (измеренных) значений аргументов

.

Алгоритм расчета погрешностей

- Для прямых измерений

1. Вычислить среднее арифметическое результатов
серии из n измерений:

Замечание: при расчете удобнее исходить из формулы:

где - любое удобное значение, близкое к.

2. Найти отклонения отдельных измерений от среднего значения

Замечание. При
можно положить
и рассчитывать по формуле

5. Если
,
то случайную ошибку можно не рас­считывать.

6. В противном случае задать доверительную вероятность и найти по таблице коэффициент Стьюдента .

Замечание 1. Если приборная погрешность
имеет тот же порядок величины что и, то абсолютная погрешность результата серии измерений находится по формуле:

где
Практически в качестве
можно взять табличное значение
отвечающее самому большо­му из приведенных в ней значенийп (например, п=500 ) .

Замечание 2. При большом числе измерений
можно по­ложить

где
.

8. Результат измерения представить в виде:

- Для косвенных измерений

Погрешность
косвенного измерения можно рассчитать по одной из формул (13), (14), (13*), (14*). Две последние формулы выпол­няются для степенных зависимостей, а соотношения (13) и (14) име­ют общий характер.

Сводка соотношений для расчета погрешности косвенного измере­ния
для некоторых простых функциональных за­висимостей представлена в таблице.

Формулы для расчета погрешностей

;

Пример. Пусть джоулево тепло Q рассчитывается по формуле

Поскольку это степенная зависимость, целесообразно воспользоваться формулой (13*)

Правила представления результатов измерений и их погрешностей

Погрешности могут лишь оцениваться, поэтому обычно достаточно указать погрешность с одной значащей цифрой. Например, Δm=0,2 г.
г. Записьт = 3,0 г означает, что измерение произведено с точностью до десятых долей грамма. Однако при про­межуточных вычислениях целесообразно оставлять больше значащих цифр.

Правила округления чисел (результатов измерений) иллюстрируют­ся в таблице (обратите внимание на особенности округления цифры 5).

Таблица Округление до десятых значащих цифр

Результат измерения принято округлять так, чтобы числовое зна­чение оканчивалось цифрой того же разряда, что и значение погреш­ности. Например, запись

см.

непреемлема, т.к. само значение погрешности Δl = 0,1 см указыва­етна то, что цифры 018 результата не могут гарантироваться. Нуж­нозаписать так:
см.

При обработке результатов косвенных измерений физической величины, связанной функционально с физическими величинами А, В и С, которые измеряются прямым способом, сначала определяют относительную погрешность косвенного измерения e= DХ/Х пр, пользуясь формулами, приведенными в таблице (без доказательств).

Абсолютную погрешность определяется по формуле DХ=Х пр *e,

где e выражается десятичной дробью, а не в процентах.

Окончательный результат записывается так же, как и в случае прямых измерений

Вид функции Формула
Х=А+В+С
Х=А-В
Х=А*В*С
Х=А n
Х=А/В
Х=

(+ http://fiz.1september.ru/2001/16/no16_01.htm полезно) Как правильно проводить измерения http://www.fizika.ru/fakultat/index.php?theme=01&id=1220

Пример: Вычислим погрешность измерения коэффициента трения с помощью динамометра. Опыт заключается в том, что брусок равномерно тянут по горизонтальной поверхности и измеряют прикладываемую силу: она равна силе трения скольжения.

С помощью динамометра взвесим брусок с грузами: 1,8 Н. F тр =0,6 Н

μ=0,33. Инструментальная погрешность динамометра (находим по таблице) составляет Δ и =0,05Н, Погрешность отсчета (половина цены деления)

Δ о =0,05Н. Абсолютная погрешность измерения веса и силы трения 0,1 Н.

Относительная погрешность измерения (в таблице 5-я строчка)

Следовательно абсолютная погрешность косвенного измерения μ составляет 0,22*0,33=0,074

Ответ:

Измерить физическую величину - значит сравнить ее с другой однородной величиной, принятой за единицу измерения. Измерение может быть произведено с помощью:

1. мер, представляющих собой образцы единицы измерения (метр, гиря, литровый сосуд и т.п.),

2. измерительных приборов (амперметр, манометр и т.п.),

3. измерительных установок, под которыми понимают совокупность мер, измерительных приборов и вспомогательных элементов.

Измерения бывают прямые и косвенные. В прямых измерениях физическая величина измеряется непосредственно. Прямыми измерениями являются, например, измерение длины линейкой, времени - секундомером, силы тока - амперметром.

В косвенных измерениях непосредственно измеряют не ту величину, значение которой нужно узнать, а другие величины, с которыми искомая величина связана определенной математической зависимостью. Например, плотность тела определяют по измерению его массы и объема, а сопротивление - по измерению силы тока и напряжения.



В силу несовершенства мер и измерительных приборов, а также наших органов чувств, измерения не могут быть выполнены точно, т.е. всякое измерение дает лишь приближенный результат. Кроме того, часто причиной отклонения результатов измерений является природа самой измеряемой величины. Например, температура, измеряемая термометром или термопарой в определенной точке печи, колеблется вследствие конвекции и теплопроводности в определенных пределах. Мерой оценки точности результата измерения служит погрешность измерения (ошибка измерения) .

Для оценки точности указывают либо абсолютную погрешность, либо относительную погрешность измерения. Абсолютная погрешность выражается в единицах измеряемой величины. Например, отрезок пути, пройденный телом, , измерен с абсолютной погрешностью . Относительная погрешность измерения - это отношение абсолютной погрешности к значению измеряемой величины. В приведенном примере относительная погрешность равна . Чем меньше погрешность измерения, тем выше его точность.

По источникам своего происхождения погрешности измерения подразделяют на систематические, случайные и грубые (промахи).

1. Систематические погрешности - погрешности измерения, величина которых остается постоянной при повторных измерениях, проводимых одним и тем же методом, с помощью одних и тех же измерительных приборов. Причинами систематических погрешностей являются:



· неисправности, неточности измерительных приборов

· неправомерность, неточность использованной методики измерения

Примером систематических погрешностей может быть измерение температуры термометром со смещенной нулевой точкой, измерение тока неправильно отградуированным амперметром, взвешивание тела на весах при помощи гирь без учета выталкивающей силы Архимеда.

Для устранения или уменьшения систематических погрешностей надо тщательно проверить измерительные приборы, произвести измерение одних и тех же величин разными методами, вводить поправки, когда ошибки заведомо известны (поправки на выталкивающую силу, поправки на показания термометра).

2. Грубые ошибки (промахи) - существенное превышение величины погрешности, ожидаемой при данных условиях измерения. Промахи появляются в результате неправильной записи показаний прибора, неправильного отсчета по прибору, из-за ошибки в расчетах при косвенных измерениях. Источник промахов - невнимательность экспериментатора. Путь устранения этих погрешностей - аккуратность экспериментатора, исключение переписывания протоколов измерения.

3. Случайные погрешности - погрешности, величина которых меняется случайным образом при повторных измерениях одной и той же величины одним и тем же методом при помощи тех же приборов. Источником случайных погрешностей является неконтролируемая невоспроизводимость условий измерения. Например, во время измерения неконтролируемым образом может меняться температура, влажность, атмосферное давление, напряжение в электрической сети, состояния органов чувств экспериментатора. Исключить случайные погрешности нельзя. При многократных измерениях случайные ошибки подчиняются статистическим законам, и их влияние можно учесть.

Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т.д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т.е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от с до
с. Таким образом, измеряемая величина всегда содержит в себе некоторую погрешность
, где и X – соответственно истинное и измеренное значения исследуемой величины. Величина
называется абсолютной погрешностью (ошибкой) измерения, а выражение
, характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т.д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т.д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т.п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

2 . Оценка систематической (приборной) погрешности

При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна
мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙10 3 кг/м 3 , то абсолютная погрешность в этом случае равна
кг/м 3 .

Некоторые особенности в расчете приборных погрешностей электроизмерительных приборов будут рассмотрены ниже.

При определении систематической (приборной) погрешности косвенных измерений функциональной величины
используется формула

, (1)

где - приборные ошибки прямых измерений величины , - частные производные функции по переменной .

В качестве примера, получим формулу для расчета систематической погрешности при измерении объема цилиндра. Формула вычисления объема цилиндра имеет вид

.

Частные производные по переменным d и h будут равны

,
.

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с (2. ..) имеет следующий вид

,

где
и
приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность

Ля подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса) , выведенный из следующих эмпирических положений.

    погрешности измерений могут принимать непрерывный ряд значений;

    при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

    чем больше величина случайной погрешности, тем меньше вероятность ее появления.

График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

, (2)

где
- функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки
, σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где - результат i -го измерения; - среднее арифметическое полученных значений; n – число измерений.

Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде
.

Интервал значений от
до
, в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

. (4)

Распределение вероятностей этой величины не зависит от σ 2 , а существенно зависит от числа опытов n . С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

Таблица 1.

Пользуясь данными таблицы, можно:

    определить доверительный интервал, задаваясь определенной вероятностью;

    выбрать доверительный интервал и определить доверительную вероятность.

При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

. (5)

Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

Оценка суммарной погрешности измерений. Запись окончательного результата.

Суммарную погрешность результата измерений величины Х будем определять как среднее квадратичное значение систематической и случайной погрешностей

, (6)

где δх – приборная погрешность, Δх – случайная погрешность.

В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

, α=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений
рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх = 0,042, то отбрасываем 2 и пишем Δх =0,04, а если Δх =0,123, то пишем Δх =0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

4. Методика расчета погрешностей измерений.

Погрешности прямых измерений

При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

. (8)


.

.

    Определяется суммарная погрешность

    Оценивается относительная погрешность результата измерений

.

    Записывается окончательный результат в виде

, с α=… Е=…%.

5. Погрешность косвенных измерений

При оценке истинного значения косвенно измеряемой величины , являющейся функцией других независимых величин
, можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется
, а затем определяется среднее арифметическое из всех значений y i

. (9)

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений. В этом случае величина рассчитывается по средним значениям . В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y . Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y . Задание доверительной вероятности α, нахождение коэффициента Стьюдента , определение случайной и суммарной ошибок осуществляются так же, как и в случае прямых измерений. Аналогичным образом представляется результат всех расчетов в виде

, с α=… Е=…%.

6. Пример оформления лабораторной работы

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.

Порядок выполнения работы

Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

Расчетная формула для вычисления объема цилиндра

где d – диаметр цилиндра; h – высота.

Результаты измерений

Таблица 2.

;

Абсолютная погрешность

;
.

5. Относительная погрешность, или точность измерений

; Е = 0,5%.

6. Запись окончательного результата

Окончательный результат для исследуемой величины записывается в виде

, Е = 0,5%.

Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.

6. Графическое представление результатов измерений

Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

г) дают возможность определять некоторые величины или проводить графическое дифференцирование, интегрирование, решение уравнения и др.

Рафики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т.е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.

Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.

При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).

Документ

От конкретных условий, требований и возможностей оценки погрешности результатов измерений . Согласно общим положениям информационной теории...

  • Погрешности измерений

    Документ

    В.И.Ивероновой. М., Наука, 1967. 4. П.В.Новицкий, И.А.Зограф. Оценка погрешностей результатов измерений . Л., Энергоатомиздат, 1991. 5. Лабораторные работы по...

  • Методические указания по определению погрешностей при измерениях в лабораторном практикуме по физике

    Методические указания

    ... измерения искомой вели­чины в обязательном порядке входит оценка погрешности полу­ченного результата . Без такой оценки результат ... значение абсолютной погрешности и сам результат измерений . Как правило, точность оценки погрешности оказывается очень...

  • № измерения

    Расчет погрешностей при прямых и косвенных измерениях

    Под измерением понимают сравнение измеряемой величины с другой величиной, принятой за единицу измерения . Измерения выполняются опытным путем с помощью специальных технических средств.

    Прямыми измерениями называются измерения, результат которых получается непосредственно из опытных данных (например, измерение длины линейкой, времени – секундомером, температуры – термометром). Косвенными измерениями называются измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, значения которых получают в процессе прямых измерений (например, определение скорости по пройденному пути и времени https://pandia.ru/text/78/464/images/image002_23.png" width="65" height="21 src=">).

    Всякое измерение, как бы оно тщательно не было выполнено, обязательно сопровождается погрешностью (ошибкой) – отклонением результата измерений от истинного значения измеряемой величины.

    Систематические погрешности – это погрешности, величина которых одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов, в одних и тех же условиях. Систематические погрешности происходят:

    В результате несовершенства приборов, используемых при измерениях (например, стрелка амперметра может быть отклонена от нулевого деления в отсутствие тока; у коромысла весов могут быть неравные плечи и др.);

    В результате недостаточно полной разработки теории метода измерений, т. е. метод измерений содержит в себе источник ошибок (например, возникает ошибка, когда в калориметрических работах не учитывается потеря тепла в окружающую среду или когда взвешивание на аналитических весах производится без учета выталкивающей силы воздуха);

    В результате того, что не учитывается изменение условий опыта (например, при долговременном прохождении тока по цепи в результате теплового действия тока меняются электрические параметры цепи).

    Систематические погрешности можно исключить, если изучить особенности приборов, полнее разработать теорию опыта и на основе этого вносить поправки в результаты измерений.

    Случайные погрешности – это погрешности, величина которых различна даже для измерений, выполненных одинаковым образом. Причины их кроются как в несовершенстве наших органов чувств, так и во многих других обстоятельствах, сопровождающих измерения, и которые нельзя учесть заранее (случайные ошибки возникают, например, если равенство освещенностей полей фотометра устанавливается на глаз; если момент максимального отклонения математического маятника определяется на глаз; при нахождении момента звукового резонанса на слух; при взвешивании на аналитических весах, если колебания пола и стен передаются весам и т. д.).

    Случайных погрешностей избежать нельзя. Их возникновение проявляется в том, что при повторении измерений одной и той же величины с одинаковой тщательностью получаются числовые результаты, отличающиеся друг от друга. Поэтому, если при повторении измерений получались одинаковые значения, то это указывает не на отсутствие случайных погрешностей, а на недостаточную чувствительность метода измерений.

    Случайные погрешности изменяют результат как в одну, так и в другую сторону от истинного значения, поэтому, чтобы уменьшить влияние случайных ошибок на результат измерений, обычно многократно повторяют измерения и берут среднее арифметическое всех результатов измерений.

    Заведомо неверные результаты - промахи возникают вследствие нарушения основных условий измерения, в результате невнимательности или небрежности экспериментатора. Например, при плохом освещении вместо “3” записывают “8”; из-за того, что экспериментатора отвлекают, он может сбиться при подсчете количества колебаний маятника; из-за небрежности или невнимательности он может перепутать массы грузов при определении жесткости пружины и т. д. Внешним признаком промаха является резкое отличие результата по величине от результатов остальных измерений. При обнаружении промаха результат измерения следует сразу отбросить, а само измерение повторить. Выявлению промахов способствует также сравнение результатов измерений, полученных разными экспериментаторами.

    Измерить физическую величину это значит найти доверительный интервал , в котором лежит ее истинное значение https://pandia.ru/text/78/464/images/image005_14.png" width="16 height=21" height="21">..png" width="21" height="17 src=">.png" width="31" height="21 src="> случаев истинное значение измеряемой величины попадет в доверительный интервал. Величина выражается или в долях единицы, или в процентах. При большинстве измерений ограничиваются доверительной вероятностью 0,9 или 0,95. Иногда, когда требуется чрезвычайно высокая степень надежности, задают доверительную вероятность 0,999. Наряду с доверительной вероятностью часто пользуются уровнем значимости , который задает вероятность того, истинное значение не попадает в доверительный интервал. Результат измерения представляют в виде

    где https://pandia.ru/text/78/464/images/image012_8.png" width="23" height="19"> – абсолютная погрешность. Таким образом, границы интервала , https://pandia.ru/text/78/464/images/image005_14.png" width="16" height="21"> лежит в пределах этого интервала.

    Для того чтобы найти и , выполняют серию однократных измерений. Рассмотрим конкретный пример..png" width="71" height="23 src=">; ; https://pandia.ru/text/78/464/images/image019_5.png" width="72" height="23">.png" width="72" height="24">. Значения могут и повторяться, как значения и https://pandia.ru/text/78/464/images/image024_4.png" width="48 height=15" height="15">.png" width="52" height="21">. Соответственно уровень значимости .

    Среднее значение измеряемой величины

    Измерительный прибор также вносит свой вклад в погрешность измерений. Эта погрешность обусловлена конструкцией прибора (трением в оси стрелочного прибора, округлением, производимым цифровым или дискретным стрелочным прибором и пр.). По своей природе это систематическая ошибка, но ни величина, ни знак ее для данного конкретного прибора неизвестны. Приборную погрешность оценивают в процессе испытаний большой серии однотипных приборов.

    Нормированный ряд классов точности измерительных приборов включает такие значения: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Класс точности прибора равен выраженной в процентах относительной ошибке прибора по отношению к полному диапазону шкалы. Паспортная погрешность прибора