Obliczanie strat temperatury w rurociągach ciepłej wody. Wewnętrzne systemy zaopatrzenia w zimną i ciepłą wodę. Co to jest energia cieplna do dostarczania ciepłej wody? Ustawa o ciepłej wodzie

Obliczanie strat temperatury w rurociągach ciepłej wody.  Wewnętrzne systemy zaopatrzenia w zimną i ciepłą wodę.  Co to jest energia cieplna do dostarczania ciepłej wody?  Ustawa o ciepłej wodzie
Obliczanie strat temperatury w rurociągach ciepłej wody. Wewnętrzne systemy zaopatrzenia w zimną i ciepłą wodę. Co to jest energia cieplna do dostarczania ciepłej wody? Ustawa o ciepłej wodzie

2.2 Wyznaczanie strat ciepła i natężenia przepływu cyrkulacyjnego w rurociągach zasilających systemu zaopatrzenia w ciepłą wodę

Przepływ cyrkulacji ciepłej wody w systemie, l/s:

,(2.14)

gdzie> jest całkowitą stratą ciepła przez rurociągi zasilające systemu zaopatrzenia w ciepłą wodę, kW;

Przyjmuje się, że różnica temperatur na rurociągach zasilających system do najbardziej oddalonego punktu poboru wody wynosi 10;

Współczynnik błędnej regulacji obiegu, zaakceptowany 1

Dla układu o zmiennym oporze pionów cyrkulacyjnych wartość wyznacza się z rurociągów zasilających i pionów wodnych przy = 10 i = 1

Straty ciepła w obszarach, kW, określa się według wzoru

Gdzie: q to strata ciepła 1 m rurociągu, W/m, obliczona zgodnie z Załącznikiem 7 AAAAAAAAAAAAAAAAAAAAAAAAAAA

l - długość odcinka rurociągu, m, przyjęta zgodnie z rysunkiem

Przy obliczaniu strat ciepła odcinków pionów wodnych przyjmuje się stratę ciepła podgrzewanego wieszaka na ręczniki równą 100 W, a jego długość jest wykluczona z długości pionu podłogowego. Dla wygody obliczenia strat ciepła podsumowano w jednej tabeli 2 z obliczeniami hydraulicznymi sieci.

Określmy straty ciepła dla całego systemu jako całości. Dla wygody przyjmuje się, że piony umieszczone na rzucie w odbiciu lustrzanym są sobie równe. Następnie straty ciepła w pionach znajdujących się po lewej stronie wejścia będą równe:

1,328*2+0,509+1,303*2+2,39*2+2,432*2+2,244=15,659 kW

Oraz piony znajdujące się po prawej stronie:

1,328*2+(0,509-0,144) +2,39*2+(0,244-0,155) =7,89 kW

Całkowita strata ciepła na dom wyniesie 23,55 kW.

Określmy przepływ cyrkulacyjny:

l/s

Wyznaczmy obliczone drugie zużycie ciepłej wody, l/s, w odcinkach 45 i 44. W tym celu wyznaczamy stosunek qh/qcir, który dla odcinków 44 i 45 wynosi odpowiednio 4,5 i 5,5. Zgodnie z Załącznikiem 5 współczynnik Kcir = 0 w obu przypadkach, zatem wstępne obliczenia są ostateczne.

Aby zapewnić cyrkulację, przewidziano pompę obiegową WILO Star-RS 30/7

2.3 Dobór wodomierza

wg. z klauzuli a) klauzuli 3.4 sprawdzamy warunek 1,36m<5м, условие выполняется, принимаем крыльчатый водомер METRON Ду 50 мм.

3. Obliczanie i projektowanie sieci kanalizacyjnej

Sieć kanalizacyjna przeznaczona jest do usuwania z budynku zanieczyszczeń powstających podczas zabiegów sanitarno-higienicznych, działalności gospodarczej, a także wód atmosferycznych i roztopowych. Wewnętrzna sieć kanalizacyjna składa się z rurociągów wylotowych, pionów, wylotów, części wyciągowych i urządzeń czyszczących. Rury odprowadzające służą do odprowadzania ścieków z armatury sanitarnej i odprowadzania ich do pionu. Rury wylotowe podłącza się do uszczelnień wodnych armatury sanitarnej i układa ze spadkiem w kierunku pionu. Piony przeznaczone są do transportu ścieków do wylotu kanalizacji. Zbierają ścieki z rur spustowych, a ich średnica nie może być mniejsza niż największa średnica rury wylotowej lub wylotu urządzenia podłączonego do pionu.

W tym projekcie instalacja wewnątrzmieszkaniowa wykonana jest z kielichowych rur PCV o średnicy 50 mm, piony o średnicy 100 mm wykonane są z żeliwa, również połączone kielichami. Połączenie z pionami odbywa się za pomocą krzyżyków i trójników. Sieć poddawana jest przeglądom i czyszczeniu w celu usunięcia zatorów.

3.1 Określenie szacunkowych kosztów kanalizacji

Całkowity maksymalny projektowy przepływ wody:

Gdzie: - przyjmuje się, że zużycie wody przez urządzenie wynosi odpowiednio 0,3 l/s. z aplikacji 4; - współczynnik zależny od całkowitej liczby urządzeń i prawdopodobieństwa ich użycia Рtot

, (7)

Gdzie: - całkowity wskaźnik zużycia na godzinę największego zużycia wody, l, przyjmuje się zgodnie z dodatkiem 4 za równy 20

Liczba odbiorców wody równa 104 * 4,2 osoby

Ilość armatury sanitarnej, przyjęta zgodnie z zamówieniem 416

Wtedy iloczyn N*=416*0,019=7,9, zatem =3,493

Otrzymana wartość jest mniejsza niż 8 l/s, zatem maksymalny drugi przepływ ścieków:

Gdzie: - natężenie przepływu z urządzenia sanitarnego o największym odpływie, l/s, przyjęte zgodnie z Załącznikiem 2 dla toalety ze zbiornikiem spłukującym równej 1,6

3.2 Obliczanie pionów

Zużycie wody dla pionów K1-1, K1-2, K1-5, K1-6 będzie takie samo, ponieważ do tych pionów podłączona jest taka sama liczba urządzeń, każde po 52 urządzenia.

Przyjmujemy, że średnica pionu wynosi 100 mm, średnica odpływu podłogowego wynosi 100 mm, a kąt odpływu podłogowego wynosi 90°. Maksymalna przepustowość 3,2 l/s. Szacowany przepływ 2,95 l/s. W związku z tym pion pracuje w normalnym trybie hydraulicznym.

Zużycie wody dla pionów K1-3, K1-4 będzie takie samo, ponieważ do tych pionów podłączona jest taka sama liczba urządzeń, każde po 104 urządzenia.

W rachunkach za media pojawiła się nowa rubryka – dostarczanie ciepłej wody. Spowodowało to zamieszanie wśród użytkowników, ponieważ nie wszyscy rozumieją, co to jest i dlaczego konieczne jest dokonywanie płatności na tej linii. Są też właściciele mieszkań, którzy skreślają pole. Wiąże się to z kumulacją długów, karami, grzywnami, a nawet sporami sądowymi. Aby nie podejmować ekstremalnych środków, musisz wiedzieć, czym jest CWU, energia cieplna CWU i dlaczego trzeba płacić za te wskaźniki.

Co oznacza CWU na paragonie?

CWU - to oznaczenie oznacza zaopatrzenie w ciepłą wodę. Jej celem jest zapewnienie mieszkańom w apartamentowcach i innych lokalach mieszkalnych ciepłej wody o akceptowalnej temperaturze, przy czym zaopatrzenie w ciepłą wodę to nie sama ciepła woda, ale energia cieplna zużywana na podgrzanie wody do akceptowalnej temperatury.

Eksperci dzielą systemy zaopatrzenia w ciepłą wodę na dwa typy:

  • System centralny. Tutaj woda jest podgrzewana w stacji grzewczej. Następnie jest dystrybuowany do mieszkań w budynkach wielomieszkaniowych.
  • System autonomiczny. Zwykle jest stosowany w domach prywatnych. Zasada działania jest taka sama jak w systemie centralnym, z tą różnicą, że tutaj woda podgrzewana jest w bojlerze lub kotle i wykorzystywana tylko na potrzeby jednego, konkretnego pomieszczenia.


Obydwa systemy mają ten sam cel - zapewnienie właścicielom domów ciepłej wody. W budynkach mieszkalnych zwykle stosuje się system centralny, ale wielu użytkowników instaluje kocioł na wypadek wyłączenia ciepłej wody, co miało miejsce nie raz w praktyce. System autonomiczny instaluje się tam, gdzie nie można podłączyć się do centralnego źródła wody. Za dostawę ciepłej wody płacą jedynie ci odbiorcy, którzy korzystają z systemu centralnego ogrzewania. Użytkownicy obwodu autonomicznego płacą za zasoby komunalne wydawane na podgrzanie chłodziwa - gazu lub energii elektrycznej.

Ważny! Kolejna kolumna na paragonie dotycząca CWU to CWU w jednym urządzeniu. Dekodowanie ODN - ogólne potrzeby domu. Oznacza to, że słup CWU na jednym bloku to wydatek energii na podgrzanie wody wykorzystywanej na ogólne potrzeby wszystkich mieszkańców budynku mieszkalnego.

Obejmują one:

  • prace techniczne wykonywane przed sezonem grzewczym;
  • próba ciśnieniowa instalacji grzewczej przeprowadzona po naprawie;
  • prace naprawcze;
  • ogrzewanie części wspólnych.

Ustawa o ciepłej wodzie

Ustawa o zaopatrzeniu w ciepłą wodę została przyjęta w 2013 roku. Dekret Rządowy nr 406 stanowi, że użytkownicy instalacji centralnego ogrzewania są zobowiązani do uiszczania dwuczęściowej taryfy. Sugeruje to, że taryfa została podzielona na dwa elementy:

  • energia cieplna;
  • zimna woda.


Tak na paragonie pojawiła się CWU, czyli energia cieplna wydana na podgrzanie zimnej wody. Specjaliści ds. mieszkalnictwa i usług komunalnych doszli do wniosku, że piony i podgrzewane wieszaki na ręczniki, które są podłączone do obwodu dostarczania ciepłej wody, zużywają energię cieplną do ogrzewania pomieszczeń niemieszkalnych. Do 2013 roku energia ta nie była uwzględniana w rachunkach, a konsumenci przez dziesięciolecia korzystali z niej bezpłatnie, gdyż powietrze w łazience w dalszym ciągu było podgrzewane poza sezonem grzewczym. Na tej podstawie urzędnicy podzielili taryfę na dwa składniki, a teraz obywatele muszą płacić za ciepłą wodę.

Urządzenia do podgrzewania wody

Sprzętem podgrzewającym ciecz jest podgrzewacz wody. Jego podział nie ma wpływu na taryfę ciepłej wody, ale użytkownicy są zobowiązani do pokrycia kosztów naprawy sprzętu, ponieważ podgrzewacze wody są częścią własności właścicieli domów w budynku mieszkalnym. Odpowiednia kwota pojawi się na rachunku za konserwację i naprawę nieruchomości.

Ważny! Właściciele mieszkań, które nie korzystają z ciepłej wody, powinni dokładnie rozważyć tę płatność, ponieważ w ich mieszkaniach jest zainstalowany autonomiczny system ogrzewania. Specjaliści ds. mieszkalnictwa i usług komunalnych nie zawsze zwracają na to uwagę, po prostu rozdzielając kwotę na naprawy podgrzewaczy wody wśród wszystkich obywateli.

W rezultacie właściciele mieszkań muszą płacić za sprzęt, z którego nie korzystali. Jeśli odkryjesz wzrost taryfy za naprawy i utrzymanie nieruchomości, musisz dowiedzieć się, z czym jest to związane i skontaktować się z firmą zarządzającą w celu ponownego obliczenia, jeśli płatność została obliczona nieprawidłowo.

Składnik energii cieplnej

Co to jest - składnik płynu chłodzącego? To podgrzewanie zimnej wody. Składnik energii cieplnej nie ma zainstalowanego licznika, w przeciwieństwie do ciepłej wody. Z tego powodu nie ma możliwości obliczenia tego wskaźnika za pomocą licznika. Jak w tym przypadku obliczana jest energia cieplna ciepłej wody? Przy obliczaniu płatności brane są pod uwagę następujące punkty:

  • ustawiona taryfa za zaopatrzenie w ciepłą wodę;
  • wydatki poniesione na utrzymanie systemu;
  • koszt strat ciepła w obwodzie;
  • koszty poniesione na transfer chłodziwa.

Ważny! Koszt ciepłej wody oblicza się, biorąc pod uwagę objętość zużytej wody, mierzoną w 1 metrze sześciennym.

Wysokość opłaty za energię wyliczana jest zazwyczaj na podstawie wskazań licznika ciepłej wody oraz ilości energii zawartej w ciepłej wodzie. Energia jest również obliczana dla każdego pojedynczego mieszkania. W tym celu pobierane są dane dotyczące zużycia wody ze wskazań liczników i mnożone przez jednostkowe zużycie energii cieplnej. Otrzymane dane są mnożone przez taryfę. Liczba ta stanowi wymagany wkład, który jest wskazany na paragonie.

Jak wykonać własne obliczenia

Nie wszyscy użytkownicy ufają centrum płatności, dlatego pojawia się pytanie, jak samodzielnie obliczyć koszt zaopatrzenia w ciepłą wodę. Otrzymaną kwotę porównuje się z kwotą na paragonie i na tej podstawie wyciąga się wniosek o prawidłowości opłat.

Aby obliczyć koszt zaopatrzenia w ciepłą wodę, musisz znać taryfę za energię cieplną. Na kwotę wpływa również obecność lub brak licznika. Jeśli taki istnieje, odczyty są pobierane z licznika. W przypadku braku licznika przyjmuje się normę zużycia energii cieplnej wykorzystywanej do podgrzewania wody. Ten standardowy wskaźnik jest ustalany przez organizację zajmującą się oszczędzaniem energii.

Jeżeli licznik zużycia energii jest zainstalowany w budynku wielopiętrowym, a obudowa posiada licznik ciepłej wody, ilość ciepłej wody jest obliczana na podstawie ogólnych danych pomiarowych budynku i późniejszego proporcjonalnego podziału chłodziwa między mieszkania. W przypadku braku licznika przyjmuje się wskaźnik zużycia energii na 1 metr sześcienny wody oraz odczyty poszczególnych liczników.

Reklamacja z powodu błędnego obliczenia paragonu

Jeżeli po niezależnym obliczeniu kwoty składek za zaopatrzenie w ciepłą wodę zostanie stwierdzona różnica, należy skontaktować się z firmą zarządzającą w celu wyjaśnienia. Jeżeli pracownicy organizacji odmówią składania wyjaśnień w tej sprawie, należy złożyć pisemną skargę. Pracownicy firmy nie mają prawa tego ignorować. Odpowiedź musi wpłynąć w ciągu 13 dni roboczych.

Ważny! Jeżeli nie otrzymano odpowiedzi lub nie wynika z niej jasno, dlaczego powstała taka sytuacja, obywatel ma prawo złożyć pozew w prokuraturze lub pozew w sądzie. Organ rozpatrzy sprawę i podejmie odpowiednią, obiektywną decyzję. Możesz także skontaktować się z organizacjami kontrolującymi działalność spółki zarządzającej. Tutaj reklamacja abonenta zostanie rozpatrzona i podjęta zostanie odpowiednia decyzja.

Energia elektryczna wykorzystywana do podgrzewania wody nie jest usługą bezpłatną. Opłata za to pobierana jest na podstawie Kodeksu mieszkaniowego Federacji Rosyjskiej. Każdy obywatel może samodzielnie obliczyć kwotę tej płatności i porównać uzyskane dane z kwotą na paragonie. W przypadku wystąpienia jakichkolwiek nieścisłości należy skontaktować się z firmą zarządzającą. W takim przypadku różnica zostanie wyrównana w przypadku rozpoznania błędu.

Rozbieżność strat ciśnienia w dwóch kierunkach przez bliższe i dalsze piony określamy za pomocą wzoru:

gdzie ΣΔp1, ΣΔp2 to odpowiednio straty ciśnienia przy obliczaniu kierunków przez odległe i bliskie piony.

5. Obliczanie strat ciepła w rurociągach systemu zaopatrzenia w ciepłą wodę

Straty ciepła DQ, (W) w obliczonym odcinku rurociągu zasilającego lub pionu określa się na podstawie standardowych jednostkowych strat ciepła lub poprzez obliczenia według wzoru:

gdzie K jest współczynnikiem przenikania ciepła izolowanego rurociągu, K=11,6 W/(m2-°C); tгср - średnia temperatura wody w systemie, tгср,=(tн +tк)/2, °С; tн, - temperatura na wylocie grzejnika (temperatura ciepłej wody na wejściu do budynku), °C; tk to temperatura w najbardziej odległym kranie, °C; h - skuteczność izolacji termicznej (0,6); / - długość odcinka rurociągu, m; dH - średnica zewnętrzna rurociągu, m; t0 - temperatura otoczenia, °C.

Temperaturę wody w najbardziej oddalonym kranie tk należy przyjąć o 5°C niższą od temperatury wody na wejściu do budynku lub na wylocie grzejnika.

Temperaturę otoczenia t0 podczas układania rurociągów w bruzdach, kanałach pionowych, szybach komunikacyjnych i szybach kabin sanitarnych należy przyjmować równą 23 ° C, w łazienkach - 25 ° C, w kuchniach i toaletach budynków mieszkalnych, akademików i hoteli - 21 ° C Z .

Ogrzewanie łazienek odbywa się za pomocą podgrzewanych wieszaków na ręczniki, dlatego do strat ciepła pionu dolicza się straty ciepła z podgrzewanych wieszaków na ręczniki w wysokości 100p (W), gdzie 100 W to średnie przenikanie ciepła przez jeden podgrzewany ręcznik szyna, n to liczba podgrzewanych wieszaków na ręczniki podłączonych do pionu.

Przy określaniu natężenia przepływu wody obiegowej nie uwzględnia się strat ciepła przez rurociągi cyrkulacyjne. Jednak przy obliczaniu systemów zaopatrzenia w ciepłą wodę z podgrzewanymi wieszakami na ręczniki na pionach cyrkulacyjnych zaleca się dodanie przenikania ciepła przez podgrzewane wieszaki na ręczniki do wielkości strat ciepła przez dostarczające rury cieplne. Zwiększa to cyrkulację przepływu wody, poprawia ogrzewanie podgrzewanych wieszaków na ręczniki i ogrzewanie łazienek. Wyniki obliczeń wpisuje się do tabeli.

(tсрг-t0), °С

Straty ciepła, W

Notatki

q na długości 1 m

ΔQ na stronie

Autostrada

ΔQ=1622,697 W

Całkowite straty w pionie

ΔQ=459,3922 W

Całkowite straty pionu, łącznie z podgrzewanymi wieszakami na ręczniki

ΔQ=1622,284 W

Całkowite straty w pionie

ΔQ=459,3922 W

UDC 621,64 (083,7)

Opracowano przez: Kompleks badawczo-produkcyjny CJSC „Wektor”, Moskiewski Instytut Energetyczny (Politechnika)

Wykonawcy: Tishchenko A.A., Shcherbakov A.P.

Pod redakcją generalną Semenova V.G.

Zatwierdzony przez Szefa Departamentu Państwowego Nadzoru Energetycznego Ministerstwa Energii Federacji Rosyjskiej w dniu 20 lutego 2004 r.

Metodologia ustanawia procedurę określania rzeczywistych strat energii cieplnej poprzez izolację termiczną rurociągów sieci podgrzewania wody scentralizowanych systemów zaopatrzenia w ciepło, których część odbiorców jest wyposażona w urządzenia pomiarowe. Rzeczywiste straty energii cieplnej dla odbiorców posiadających urządzenia pomiarowe ustalane są na podstawie wskazań liczników ciepła, a dla odbiorców niewyposażonych w urządzenia pomiarowe - w drodze obliczeń.

Straty energii cieplnej wyznaczone zgodnie z niniejszą Metodologią należy traktować jako wyjściową podstawę do opracowania charakterystyki energetycznej sieci ciepłowniczej, a także do opracowania środków technicznych mających na celu zmniejszenie rzeczywistych strat energii cieplnej.

Metodologia została zatwierdzona przez Szefa Departamentu Państwowego Nadzoru Energetycznego Ministerstwa Energii Federacji Rosyjskiej w dniu 20 lutego 2004 roku.

Dla organizacji przeprowadzających inspekcje energetyczne przedsiębiorstw dostarczających ciepło, a także dla przedsiębiorstw i organizacji obsługujących sieci ciepłownicze, niezależnie od ich przynależności wydziałowej i formy własności.

Niniejsza „Metodologia…” ustanawia procedurę określania rzeczywistych strat energii cieplnej 1 poprzez izolację termiczną rurociągów sieci podgrzewania wody systemów centralnego ogrzewania, z których część odbiorców jest wyposażona w urządzenia pomiarowe. Rzeczywiste straty energii cieplnej dla odbiorców posiadających urządzenia pomiarowe ustalane są na podstawie wskazań liczników ciepła, a dla odbiorców niewyposażonych w urządzenia pomiarowe - w drodze obliczeń.

1 Terminy i definicje podano w Załączniku A.

„Metodologia...” opiera się na obliczeniowej i eksperymentalnej metodzie oceny strat energii cieplnej, określonej w.

„Metodologia...” przeznaczona jest dla organizacji przeprowadzających inspekcje energetyczne przedsiębiorstw dostarczających ciepło, a także dla przedsiębiorstw i organizacji obsługujących sieci ciepłownicze, niezależnie od ich przynależności wydziałowej i formy własności.

Straty energii cieplnej wyznaczone zgodnie z niniejszą „Metodyką…” należy traktować jako wyjściową podstawę do opracowania charakterystyki energetycznej sieci ciepłowniczej, a także do opracowania środków technicznych mających na celu zmniejszenie rzeczywistych strat energii cieplnej.

1. POSTANOWIENIA OGÓLNE

Celem niniejszej „Metodologii…” jest określenie rzeczywistych strat energii cieplnej poprzez izolację termiczną rurociągów sieci podgrzewania wody systemów centralnego ogrzewania bez specjalnych badań. Straty energii cieplnej wyznaczane są dla całej sieci ciepłowniczej podłączonej do jednego źródła energii cieplnej. Dla poszczególnych odcinków sieci ciepłowniczej nie wyznacza się rzeczywistych strat energii cieplnej.

Wyznaczanie strat energii cieplnej zgodnie z niniejszą „Metodyką…” zakłada obecność certyfikowanych liczników energii cieplnej u źródła energii cieplnej i u odbiorców energii cieplnej. Liczba odbiorców wyposażonych w urządzenia pomiarowe musi stanowić co najmniej 20% ogólnej liczby odbiorców danej sieci ciepłowniczej.

Urządzenia pomiarowe muszą posiadać archiwum z godzinową i dobową rejestracją parametrów. Głębokość archiwum godzinnego musi wynosić co najmniej 720 godzin, a archiwum dziennego musi wynosić co najmniej 30 dni.

Najważniejszą rzeczą przy obliczaniu strat energii cieplnej jest godzinowe archiwum liczników ciepła. Jeśli z jakiegoś powodu brakuje danych godzinowych, używane jest archiwum dzienne.

Określenie rzeczywistych strat energii cieplnej odbywa się na podstawie pomiarów natężenia przepływu i temperatury wody sieciowej w rurociągu zasilającym 1 dla odbiorców posiadających urządzenia pomiarowe oraz temperatury wody sieciowej u źródła energii cieplnej. Straty energii cieplnej dla odbiorców nie posiadających przyrządów pomiarowych określa się w drodze obliczeń z wykorzystaniem niniejszej „Metodologii...”.

__________________

1 Symbole wielkości podano w dodatku B.

W niniejszej „Metodologii…” za źródła i odbiorców energii cieplnej uważa się:

1. w przypadku braku urządzeń pomiarowych bezpośrednio w budynkach: źródła energii cieplnej - elektrownie cieplne, kotłownie itp.; odbiorcy energii cieplnej – centralne (DTP) lub indywidualne (ITP) punkty grzewcze;

2. jeżeli bezpośrednio w budynkach znajdują się urządzenia pomiarowe(oprócz pkt. 1): źródła energii cieplnej – punkty centralnego ogrzewania; odbiorcami energii cieplnej są same budynki.

Dla wygody obliczania strat energii cieplnej przez izolację termiczną rurociąg zasilający w niniejszej „Metodologii…” dzieli się na: rurociąg główny i odgałęzienie od rurociągu głównego.

Główny rurociąg- jest to część rurociągu zasilającego ze źródła energii cieplnej do komory termicznej, z której znajduje się odgałęzienie do odbiorcy energii cieplnej.

Odgałęzienie od głównego rurociągu- jest to część rurociągu zasilającego z odpowiedniej komory termicznej do odbiornika energii cieplnej.

Przy określaniu rzeczywistych strat energii cieplnej stosuje się standardowe wartości strat, określone zgodnie z normami strat energii cieplnej dla sieci ciepłowniczych, których izolację termiczną wykonano zgodnie z normami projektowymi lub (normy są określone zgodnie z do projektu i dokumentacji powykonawczej).

Przed wykonaniem obliczeń:

zbierane są wstępne dane o sieci ciepłowniczej;

sporządza się schemat projektowy sieci ciepłowniczej, który wskazuje średnicę nominalną (średnicę nominalną), długość i rodzaj instalacji rurociągów dla wszystkich odcinków sieci ciepłowniczej;

gromadzone są dane dotyczące podłączonego obciążenia wszystkich odbiorców sieci;

ustala się rodzaj urządzeń pomiarowych oraz to, czy posiadają one archiwa godzinowe i dobowe.

W przypadku braku scentralizowanego gromadzenia danych z urządzeń pomiarowych energii cieplnej przygotowywane są odpowiednie urządzenia do odbioru: adapter lub laptop. Laptop musi być wyposażony w specjalny program dostarczany wraz z licznikiem, który umożliwia odczyt archiwów godzinowych i dobowych z zainstalowanych ciepłomierzy.

Aby zwiększyć dokładność określania strat energii cieplnej, lepiej jest zbierać dane z urządzeń pomiarowych przez pewien przedział czasu w okresie nieogrzewania, gdy przepływ wody w sieci jest minimalny, po wcześniejszym sprawdzeniu z organizacją dostarczającą ciepło o planowanych przerwy w dostawie ciepła do odbiorców w celu wyłączenia tego czasu z okresu gromadzenia danych z urządzeń pomiarowych.

2. ZBIERANIE I PRZETWARZANIE DANYCH WSTĘPNYCH

2.1. ZBIERANIE WSTĘPNYCH DANYCH O SIECI CIEPŁOWNICZEJ

Na podstawie dokumentacji projektowej i powykonawczej sieci ciepłowniczej sporządzana jest tabela charakterystyk wszystkich odcinków sieci ciepłowniczej (Tabela B.1, Załącznik B).

Za odcinek sieci ciepłowniczej uważa się odcinek rurociągu, który różni się od pozostałych jedną z następujących cech (wskazanych w tabeli B.1 w dodatku B):

średnica nominalna rurociągu (średnica nominalna rurociągu);

rodzaj instalacji (naziemna, kanał podziemny, podziemny bezkanałowy);

materiał warstwy głównej konstrukcji termoizolacyjnej (izolacja termiczna);

rok zniesienia.

Również w tabeli. Klauzula 1 Załącznika B wskazuje:

nazwa węzłów początkowych i końcowych przekroju;

długość odcinka.

Na podstawie danych służb pogodowych opracowano tabelę średnich miesięcznych temperatur powietrza zewnętrznego w °C i gleby w °C na różnych głębokościach rurociągu, uśrednionych z ostatnich pięciu lat (Tabela D.1, Załącznik D). Średnie roczne temperatury powietrza zewnętrznego w °C i gleby w °C ustala się jako średnią arytmetyczną średnich miesięcznych wartości z całego okresu pracy sieci ciepłowniczej.

Na podstawie zatwierdzonego harmonogramu temperatur dostarczania energii cieplnej u źródła energii cieplnej określa się średnie miesięczne temperatury wody sieciowej w rurociągach zasilającym, °C i powrotnym, °C, (Tabela D.1, Załącznik D ). Średnie miesięczne temperatury wody sieciowej wyznaczane są na podstawie średniej miesięcznej temperatury powietrza zewnętrznego. Średnie roczne temperatury wody sieciowej na zasilaniu, °C i powrocie, °C, rurociągach wyznacza się jako średnią arytmetyczną średnich miesięcznych wartości, z uwzględnieniem czasu pracy sieci w poszczególnych miesiącach i latach.

Na podstawie danych z usługi pomiaru dostaw ciepła organizacji dostarczającej ciepło sporządzana jest tabela, w której wskazano dla każdego konsumenta (tabela E.1, dodatek E):

nazwa odbiorcy energii cieplnej;

rodzaj systemu grzewczego (otwarty lub zamknięty);

podłączone średnie obciążenie systemu zaopatrzenia w ciepłą wodę;

nazwa (marka) urządzeń pomiarowych;

głębokość archiwów (dzienna i godzinowa);

obecność lub brak scentralizowanego gromadzenia danych.

Jeżeli istnieje scentralizowane gromadzenie danych na podstawie wyników pomiarów, wybierany jest okres, dla którego zostaną określone straty energii cieplnej. Należy wziąć pod uwagę następujące kwestie:

aby zwiększyć dokładność określania strat energii cieplnej, zaleca się wybrać okres przy minimalnym zużyciu wody sieciowej (zwykle okres nieogrzewający);

w wybranym okresie nie powinno być planowanych odłączeń odbiorców od sieci ciepłowniczej;

dane pomiarowe zbierane są przez co najmniej 30 dni kalendarzowych.

W przypadku braku scentralizowanego gromadzenia danych konieczne jest gromadzenie archiwizacji godzinowych i dobowych urządzeń pomiarowych od odbiorców energii cieplnej i u źródła energii cieplnej w ciągu 3-5 dni, za pomocą adaptera lub laptopa z zainstalowanym programem do odczytu dane z odpowiedniego typu ciepłomierza.

Aby określić straty energii cieplnej, musisz mieć następujące dane:

zużycie wody sieciowej w rurociągu zasilającym odbiorców energii cieplnej;

temperatura wody sieciowej w rurociągu zasilającym odbiorców energii cieplnej;

zużycie wody sieciowej w rurociągu zasilającym u źródła energii cieplnej;

temperatura wody sieciowej w rurociągach zasilających i powrotnych u źródła energii cieplnej;

zużycie wody uzupełniającej w źródle energii cieplnej.

2.2. PRZETWARZANIE DANYCH WSTĘPNYCH URZĄDZEŃ POMIAROWYCH

Głównym zadaniem przetwarzania danych z urządzeń pomiarowych jest konwersja plików źródłowych odczytywanych bezpośrednio z ciepłomierzy do jednego formatu, który pozwala na późniejszą weryfikację (sprawdzenie ważności) zmierzonych wartości parametrów zużycia ciepła i obliczenia.

W przypadku różnych typów ciepłomierzy dane odczytywane są w różnych formatach i wymagają specjalnych procedur przetwarzania. Dla jednego typu ciepłomierzy dla różnych odbiorców parametry przechowywane w archiwum mogą wymagać zastosowania różnych współczynników do przeliczenia danych źródłowych na wspólne wielkości fizyczne. Różnica pomiędzy tymi współczynnikami wynika ze średnicy przetwornika przepływu oraz charakterystyki wejść impulsowych przelicznika. Dlatego wstępna obróbka wyników pomiarów wymaga indywidualnego podejścia do każdego pliku danych źródłowych.

Do weryfikacji zmierzonych wartości wykorzystywane są dzienne i godzinowe wartości parametrów płynu chłodzącego. Podczas wykonywania tej procedury należy zwrócić szczególną uwagę na następujące kwestie:

temperatury i natężenia przepływu chłodziwa nie powinny przekraczać fizycznie uzasadnionych granic;

w pliku dziennym nie powinno być nagłych zmian w przepływie chłodziwa;

średnia dzienna temperatura chłodziwa w rurociągu zasilającym u odbiorców nie powinna przekraczać średniej dziennej temperatury w rurociągu zasilającym u źródła ciepła;

zmiana średniej dziennej temperatury chłodziwa w rurociągu zasilającym u odbiorców musi odpowiadać zmianie średniej dziennej temperatury w rurociągu zasilającym u źródła energii cieplnej.

Na podstawie wyników weryfikacji danych początkowych urządzeń pomiarowych sporządzana jest tabela, w której dla każdego odbiorcy energii cieplnej posiadającego urządzenia pomiarowe oraz dla źródła energii cieplnej wskazany jest okres, w którym wiarygodność danych początkowych jest bez wątpliwości. Na podstawie tej tabeli wybierany jest ogólny okres, dla którego dostępne są wiarygodne wyniki pomiarów dla wszystkich odbiorców i u źródła ciepła (okres dostępności danych).

Na podstawie pliku danych godzinowych uzyskanych u źródła energii cieplnej określa się liczbę godzin w okresie pomiarowym N oraz, dla których dane będą wykorzystywane do dalszego przetwarzania.

Przed określeniem okresu pomiarowego czas napełnienia wszystkich rurociągów zasilających chłodziwem t p, s oblicza się ze wzoru:

Gdzie V

Średnie natężenie przepływu chłodziwa przez rurociąg zasilający u źródła energii cieplnej w całym okresie pomiarowym, kg/s.

Okres pomiarowy musi spełniać następujące warunki: średnia temperatura wody sieciowej w rurociągu zasilającym u źródła energii cieplnej w czasie t p poprzedzającym początek okresu pomiarowego oraz średnia temperatura wody sieciowej w rurociągu zasilającym u źródła energii cieplnej źródło dla czasu tp na koniec okresu pomiarowego nie różni się o więcej niż 5°C;

okres pomiarowy jest w całości zawarty w okresie dostępności danych;

Okres pomiaru musi być ciągły i wynosić co najmniej 240 godzin.

Jeżeli nie można wybrać takiego okresu ze względu na brak danych od jednego lub większej liczby odbiorców, wówczas dane z urządzeń pomiarowych tych odbiorców nie są wykorzystywane w dalszych obliczeniach.

Liczba pozostałych odbiorców posiadających dane z urządzeń pomiarowych musi wynosić co najmniej 20% całkowitej liczby odbiorców tej sieci ciepłowniczej.

Jeżeli liczba odbiorców posiadających urządzenia pomiarowe spadnie poniżej 20%, należy wybrać inny okres gromadzenia danych i powtórzyć procedurę weryfikacji.

Dla danych uzyskanych w źródle energii cieplnej wyznacza się średnią temperaturę wody sieciowej w rurociągu zasilającym w okresie pomiarowym, °C, oraz średnią temperaturę wody sieciowej w rurociągu powrotnym, w okresie pomiarowym, °C :

Gdzie

N oraz - liczba godzin w okresie pomiarowym.

Dla okresu pomiarowego określa się średnią temperaturę gruntu na średniej głębokości osi rurociągu, °C, oraz średnią temperaturę powietrza zewnętrznego, °C.

3. OKREŚLENIE NORMATYWNYCH STRAT ENERGII CIEPLNEJ

3.1. OKREŚLENIE ŚREDNIOROCZNYCH STRAT STANDARDOWYCH

ENERGIA CIEPLNA

Dla każdego odcinka sieci ciepłowniczej ustala się średnioroczne, normatywne (na 1 metr długości rurociągu) wartości strat energii cieplnej zgodnie z normami projektowymi lub zgodnie z którymi wykonywana jest izolacja termiczna rurociągów sieci ciepłowniczej.

Średnioroczne jednostkowe straty energii cieplnej wyznacza się przy średniorocznych temperaturach wody sieciowej na rurociągach zasilających i powrotnych oraz średniorocznych temperaturach powietrza zewnętrznego lub gleby.

Wartości średniorocznych jednostkowych strat energii cieplnej w przypadku, gdy średnioroczne temperatury wody sieciowej i otoczenia różnią się od wartości podanych w normach, wyznaczane są metodą interpolacji liniowej lub ekstrapolacji.

Dla odcinków podziemnych sieci ciepłowniczych z izolacją termiczną wykonaną zgodnie z (tabela E.1 w załączniku E), standardowe jednostkowe straty energii cieplnej określa się łącznie dla rurociągów zasilających i powrotnych Q n, W/m, zgodnie ze wzorem:

(3.1)

gdzie są jednostkowe straty energii cieplnej ogółem na rurociągach zasilającym i powrotnym z wartością tabelaryczną różnicy średniorocznych temperatur wody i gruntu w sieci, W/m, która jest mniejsza niż dla danej sieci;

Tabelaryczna wartość różnicy pomiędzy średniorocznymi temperaturami wody i gruntu w sieci, °C, jest większa niż dla danej sieci.

Różnicę pomiędzy średniorocznymi temperaturami wody sieciowej i gruntu określa wzór:

(3.2)

gdzie , to średnioroczna temperatura wody sieciowej odpowiednio na rurociągu zasilającym i powrotnym, °C;

Średnia roczna temperatura gleby na średniej głębokości osi rurociągu, °C.

Aby rozdzielić jednostkowe straty energii cieplnej na odcinkach podziemnych pomiędzy rurociągiem zasilającym i powrotnym, wyznacza się średnie roczne standardowe straty energii cieplnej w rurociągu powrotnym Q ale W/m, które przyjmuje się jako równe wartościom standardowych strat właściwych w rurociągu powrotnym podanych w tabeli. E.1 Załącznika E.

Q

Q np. = Q N - Q Ale. (3.3)

Dla odcinków podziemnych sieci ciepłowniczych z izolacją termiczną wykonaną zgodnie z (Tabela I.1 Załącznika I, Tablica K.1 Załącznika K, Tablica N.1 Załącznika H), przed określeniem normatywnych strat jednostkowych energii cieplnej, należy dodatkowo wyznaczyć różnicę temperatur średniorocznych, °C, dla każdej pary wartości średniorocznych temperatur wody sieciowej w rurociągach zasilających i powrotnych oraz gruntu, podanych w tabeli. I.1 Załącznika I, tabela. K.1 Załącznik K i tabela. N.1 Załącznika N:

(3.4)

gdzie - odpowiednio tabelaryczne wartości średniorocznych temperatur wody sieciowej w rurociągach zasilającym (65, 90, 110 °C) i powrotnym (50 °C), °C;

Standardowa wartość średniej rocznej temperatury gleby, °C (przyjęta jako 5°C).

Dla każdej pary średniorocznych temperatur wody sieciowej na rurociągach zasilającym i powrotnym wyznacza się całkowite standardowe właściwe straty energii cieplnej, W/m:

gdzie odpowiednio są wartościami standardowych właściwych strat energii cieplnej dla instalacji podziemnej na rurociągach zasilających i powrotnych, podanych w tabeli. I.1 Załącznika I, tabela. K.1 Załącznik K i tabela. Nr 1 Załącznika N.

Wartości średniorocznych jednostkowych strat energii cieplnej dla rozpatrywanej sieci ciepłowniczej, gdy różnica między średniorocznymi temperaturami wody sieciowej i otoczenia różni się od wartości określonych wzorem 3.4, wyznacza się metodą interpolacji liniowej lub ekstrapolacji .

Wartości całkowitych właściwych strat energii cieplnej Q n, W/m, określa się za pomocą wzorów 3.1 i 3.2.

Średnie roczne standardowe jednostkowe straty energii cieplnej w rurociągu zasilającym Q np, W/m, określa się według wzoru:

(3.6)

gdzie , - jednostkowe straty energii cieplnej w rurociągu zasilającym przy dwóch sąsiadujących ze sobą, odpowiednio mniejszych i większych niż dla danej sieci, tabelarycznych wartości różnicy średniorocznych temperatur wody i gruntu sieciowego, W/m;

Sąsiadujące ze sobą, odpowiednio mniejsze i większe niż dla danej sieci, tabelaryczne wartości różnicy średniorocznych temperatur wody sieciowej w rurociągu zasilającym i gruntu, °C.

Średnie roczne wartości różnicy temperatur pomiędzy wodą sieciową a gruntem dla rurociągu zasilającego określa się według wzoru:

gdzie oznacza średnią roczną temperaturę gleby na średniej głębokości osi rurociągu, °C.

Wartości tabelaryczne różnicy między średniorocznymi temperaturami wody sieciowej w rurociągu zasilającym a gruntem określa się według wzoru:

Średnie roczne standardowe straty ciepła jednostkowego w rurociągu powrotnym Q ale W/m określa się według wzoru:

Q ale = Q N - Q np. (3.9)

Dla wszystkich odcinków naziemnych sieci ciepłowniczych z izolacją termiczną wykonaną zgodnie z (Tabela G.1 Załącznika G, Tablica L.1 Załącznika L, Tablica P.1 Załącznika P), standardowe straty jednostkowe energii cieplnej ustalane są odrębnie dla rurociągów zasilających i powrotnych, odpowiednio, Q np. i Q ale W/m, zgodnie ze wzorami:

(3.10)

(3.11)

gdzie , - jednostkowe straty energii cieplnej w rurociągu zasilającym na dwóch sąsiadujących ze sobą, odpowiednio mniejszych i większych niż dla danej sieci, tabelarycznych wartości różnicy pomiędzy średniorocznymi temperaturami wody sieciowej i powietrza zewnętrznego, W/m ;

Różnica pomiędzy średniorocznymi temperaturami odpowiednio wody sieciowej i powietrza zewnętrznego dla rurociągów zasilających i powrotnych dla danej sieci ciepłowniczej, °C;

Sąsiednie, odpowiednio mniejsze i większe niż dla danej sieci, tabelaryczne wartości różnicy pomiędzy średniorocznymi temperaturami wody sieciowej w rurociągu powrotnym i powietrzem zewnętrznym, °C.

Wartości różnicy pomiędzy średniorocznymi temperaturami wody sieciowej i powietrza zewnętrznego dla rurociągów zasilających i powrotnych wyznacza się według wzorów:

gdzie oznacza średnią roczną temperaturę zewnętrzną, °C.

Do układania w kanałach przelotowych i półprzelotowych, tunelach, piwnicach jednostkowe straty energii cieplnej odcinków określa się zgodnie z odpowiednimi normami dotyczącymi instalacji w pomieszczeniach (tabela M.1 w załączniku M, tabela P.1 w załączniku P) przy średniorocznych temperaturach otoczenia: tunele i kanały komunikacyjne - +40°C, dla piwnic - + 20°C.

Dla każdego odcinka sieci ciepłowniczej ustalane są odrębnie standardowe średnioroczne wartości strat energii cieplnej dla rurociągów zasilających i powrotnych:

gdzie jest średnią roczną standardową stratą ciepła przez rurociąg zasilający, W;

L

b - współczynnik lokalnych strat energii cieplnej, uwzględniający straty energii cieplnej przez armaturę, kompensatory i podpory, przyjmowany zgodnie z równym 1,2 dla kanałów podziemnych i instalacji naziemnych dla średnic nominalnych rurociągów do 150 mm i 1,15 dla średnic nominalnych 150 mm i więcej oraz dla wszystkich przejść nominalnych do montażu bezkanałowego.

3.2. OKREŚLANIE NORMATYWNYCH STRAT ENERGII CIEPLNEJ

W OKRESIE POMIARU

Dla każdego odcinka sieci ciepłowniczej określa się standardowe średnie straty energii cieplnej w rurociągach zasilającym W i powrotnym W w okresie pomiarowym.

Dla odcinków podziemnej sieci ciepłowniczej

Do układania naziemnych odcinków sieci ciepłowniczej standardowe średnie straty energii cieplnej w okresie pomiarowym wyznacza się według wzorów:

(3.18)

(3.19)

gdzie , to średnia temperatura wody sieciowej w okresie pomiarowym na rurociągach zasilającym i powrotnym u źródła energii cieplnej, °C;

Średnia roczna temperatura wody sieciowej odpowiednio na rurociągu zasilającym i powrotnym, °C;

Odpowiednio średnia temperatura gleby i powietrza zewnętrznego w okresie pomiaru, °C;

Średnia roczna temperatura odpowiednio gleby i powietrza zewnętrznego, °C.

Do odcinków układanych w kanałach przelotowych i półprzelotowych, tunelach, piwnicach standardowe średnie straty energii cieplnej w okresie pomiarowym wyznacza się ze wzorów (3.18) i (3.19) przy średniej temperaturze powietrza zewnętrznego równej średniej rocznej: dla tuneli i kanałów przejściowych - +40°C, dla piwnic - +20°C .

Dla całej sieci wyznacza się standardowe średnie straty energii cieplnej w rurociągu zasilającym w okresie pomiarowym, W:

Dla wszystkich odcinków instalacji podziemnej wyznacza się średnie standardowe z okresu pomiaru strat energii cieplnej w rurociągu zasilającym, W:

(3.21)

Dla wszystkich odcinków instalacji podziemnej wyznacza się średnie standardowe z okresu pomiaru strat energii cieplnej w rurociągu powrotnym, W:

(3.22)

Dla wszystkich odcinków instalacji naziemnej wyznacza się średnie standardowe z okresu pomiaru strat energii cieplnej w rurociągu zasilającym, W:

(3.23)

Dla wszystkich odcinków instalacji naziemnej wyznacza się średnie standardowe z okresu pomiaru strat energii cieplnej w rurociągu powrotnym, W:

(3.24)

Standardowe średnie z okresu pomiaru strat energii cieplnej w rurociągu zasilającym wyznacza się dla wszystkich odcinków zlokalizowanych w kanałach przelotowych i półprzelotowych, tunelach, W:

(3.25)

Standardowe średnie z okresu pomiaru strat energii cieplnej w rurociągu powrotnym wyznacza się dla wszystkich odcinków zlokalizowanych w kanałach przelotowych i półprzelotowych, tunelach, W:

(3.26)

Dla wszystkich odcinków zlokalizowanych w piwnicach wyznacza się średnie standardowe z okresu pomiaru strat energii cieplnej w rurociągu zasilającym, W:

(3.27)

Dla wszystkich odcinków zlokalizowanych w piwnicach wyznacza się średnie standardowe z okresu pomiaru strat energii cieplnej w rurociągu powrotnym, W:

(3.28)

4. OKREŚLENIE RZECZYWISTYCH STRAT ENERGII CIEPLNEJ

4.1. OKREŚLENIE RZECZYWISTYCH STRAT ENERGII CIEPLNEJ

W OKRESIE POMIARU

U źródła energii cieplnej i dla wszystkich odbiorców energii cieplnej wyposażonych w urządzenia pomiarowe ( I--ci odbiorcy energii cieplnej) wyznacza się średnie natężenie przepływu chłodziwa w rurociągu zasilającym w całym okresie pomiarowym:

gdzie jest średnim natężeniem przepływu chłodziwa w całym okresie pomiarowym przez rurociąg zasilający u źródła energii cieplnej, kg/s;

Zmierzone wartości natężenia przepływu chłodziwa w źródle energii cieplnej w okresie pomiarowym, pobrane z pliku godzinowego, t/h;

I-ty odbiorca energii cieplnej, kg/s;

Wartości przepływu chłodziwa zmierzone w okresie pomiarowym I odbiorca energii cieplnej, pobrany z pliku godzinowego, t/h.

Do zamkniętego systemu grzewczego Wyznacza się średni przepływ wody uzupełniającej w źródle energii cieplnej w całym okresie pomiarowym:

(4.3)

gdzie jest średnim natężeniem przepływu wody uzupełniającej w źródle energii cieplnej w całym okresie pomiarowym, kg/s;

Wartości zużycia chłodziwa na uzupełnienie w źródle energii cieplnej zmierzone w okresie pomiarowym, pobrane z pliku godzinowego, t/h.

Średnie natężenie przepływu chłodziwa w rurociągu zasilającym dla całego okresu pomiarowego, kg/s, dla wszystkich odbiorców energii cieplnej nie posiadających urządzeń pomiarowych ( J odbiorców energii cieplnej) dla zamkniętych systemów zaopatrzenia w ciepło określa się według wzoru:

Do otwartych systemów grzewczych, które nie posiadają całodobowych odbiorników chłodziwa, w całym okresie pomiarowym określa się średnie zużycie wody uzupełniającej w źródle energii cieplnej w porze nocnej.

W tym celu dla każdego dnia okresu pomiarowego wybiera się nocne (od godz. 1:00 do 3:00) średnie godzinowe zużycie doładowań w źródle energii cieplnej. Z uzyskanych danych wyznaczana jest średnia arytmetyczna wartości natężenia przepływu, która jest średnim godzinowym ładowaniem sieci ciepłowniczej w porze nocnej, t/h. Aby określić wartość, kg/s, stosuje się wzór:

(4.5)

W przypadku otwartych systemów zaopatrzenia w ciepło, które mają odbiorców przemysłowych, którzy zużywają chłodziwo przez całą dobę i mają urządzenia pomiarowe, określa się średnie godzinne zużycie chłodziwa w nocy. W tym celu dla każdego dnia okresu pomiarowego wybiera się nocne (od 1:00 do 3:00) średnie godzinne natężenie przepływu chłodziwa dla każdego takiego odbiorcy. Z uzyskanych danych określa się średnią arytmetyczną wartości natężenia przepływu, t/h. Aby określić wartość, kg/s, stosuje się wzór:

(4.6)

Średnie natężenie przepływu chłodziwa w rurociągu zasilającym dla całego okresu pomiarowego dla wszystkich J odbiorców określa wzór 4.4.

Średnie natężenie przepływu chłodziwa w rurociągu zasilającym dla całego okresu pomiarowego dla każdego J konsumenta, kg/s, ustala się poprzez podział całkowitego przepływu chłodziwa pomiędzy odbiorniki proporcjonalnie do średniego godzinowego obciążenia podłączonego:

(4.7)

gdzie jest średnim godzinowym obciążeniem podłączonym w okresie pomiarowym J-ty konsument, GJ/h;

J-ci odbiorcy bez urządzeń pomiarowych w okresie pomiarowym, GJ/h.

Dla każdego I odbiorcy określa się średnią stratę energii cieplnej w okresie pomiarowym przez izolację termiczną rurociągu zasilającego, W:

(4.8)

Gdzie ze str- ciepło właściwe wody, ze str= 4,187×10 3 J/(kg×K);

Zmierzone wartości temperatury wody sieciowej w rurociągu zasilającym u źródła energii cieplnej, pobrane z pliku godzinowego, °C;

I konsumenta, wzięte z pliku godzinowego, °C.

Dla wszystkich określa się średnie całkowite straty energii cieplnej w rurociągach zasilających w okresie pomiarowym I odbiorcy z urządzeniami pomiarowymi, , W:

(4.9)

Średnia strata energii cieplnej w okresie pomiarowym, W, przez izolację termiczną rurociągu zasilającego, odniesiona do I-ty odbiorca minus straty energii cieplnej w odgałęzieniu od głównego rurociągu:

(4.10)

W pierwszym przybliżeniu przyjmuje się, że straty energii cieplnej w odgałęzieniu głównego rurociągu są równe standardowym średnim stratom energii cieplnej w okresie pomiarowym:

(4.11)

gdzie są standardowe średnie straty energii cieplnej w okresie pomiarowym w odgałęzieniu od głównego rurociągu zasilającego I konsument, W.

Całkowite straty energii cieplnej, W, w głównych rurociągach zasilających dla wszystkich I-th odbiorcy z urządzeniami pomiarowymi:

Współczynnik strat energii cieplnej sieci R straty p, J/(kg×m) w głównych rurociągach zasilających wyznacza się na podstawie danych pomiarowych dla odbiorców posiadających urządzenia pomiarowe:

(4.13)

Gdzie ja- najkrótsza odległość od źródła energii cieplnej do odgałęzienia od głównego rurociągu do odbiorcy z urządzeniami pomiarowymi, m.

Przy określaniu średnich strat energii cieplnej w okresie pomiarowym, W, y J--ci odbiorcy bez urządzeń pomiarowych stosuje się następujący stosunek:

Gdzie ja J-ty konsument bez urządzeń pomiarowych, m.in.

Średnie całkowite straty energii cieplnej, W, w rurociągach zasilających dla J-th odbiorcy, którzy nie posiadają urządzeń pomiarowych:

(4.15)

Rzeczywista średnia za okres pomiarowy całkowite straty energii cieplnej, W, we wszystkich rurociągach zasilających:

Po ustaleniu rzeczywistych strat energii cieplnej w rurociągu zasilającym dla wszystkich odbiorców określa się stosunek tych strat energii cieplnej do standardowych strat energii cieplnej w rurociągu zasilającym:

i całe obliczenia przeprowadza się od nowa (drugie przybliżenie), zaczynając od wzoru 4.10, a straty w odgałęzieniach od głównych rurociągów określa się według wzoru:

(4.18)

Po ustaleniu wartości rzeczywistych strat energii cieplnej w rurociągu zasilającym dla wszystkich odbiorców w drugim przybliżeniu, jej wartość porównuje się z wartością rzeczywistych strat energii cieplnej w rurociągu zasilającym dla wszystkich odbiorców, uzyskaną w pierwszym przybliżeniu , i określa się różnicę względną:

(4.19)

Jeżeli wartość wynosi > 0,05, wówczas przeprowadza się kolejne przybliżenie w celu ustalenia wartości, tj. powtarza się całe obliczenia, zaczynając od wzoru 4.10.

Zwykle do uzyskania zadowalającego wyniku wystarczą dwa lub trzy przybliżenia. W dalszych obliczeniach wykorzystuje się wartość strat ciepła uzyskaną ze wzoru 4.16 w ostatnim przybliżeniu.

Możliwa jest inna metoda uwzględnienia wpływu oddziałów. Po wykonaniu obliczeń przy użyciu wzorów 4.1 - 4.9 określa się czas przepływu chłodziwa t, s od źródła energii cieplnej do każdego z odbiorców:

(4.21)

gdzie tk jest czasem ruchu chłodziwa w jednorodnym odcinku sieci ciepłowniczej, s;

l k

Tydzień

r jest gęstością wody w średniej temperaturze wody sieciowej w rurociągu zasilającym u źródła energii cieplnej w pierwszym dniu okresu dostępności danych, kg/m 3 ;

Fk- powierzchnia przekroju rurociągu na jednorodnym obszarze, m2;

gr- przepływ chłodziwa w obszarze jednorodnym, kg/s.

Jednorodny odcinek sieci ciepłowniczej to odcinek, na którym nie zmieniają się natężenie przepływu chłodziwa i średnica nominalna rurociągu, tj. zapewniona jest stała prędkość chłodziwa.

Współczynnik strat energii cieplnej, wyznaczony przez czas przemieszczania się chłodziwa w rurociągach zasilających, J/(kg×s):

(4.22)

gdzie t I I-ty konsument z urządzeniami pomiarowymi, s. 20

Średnie straty energii cieplnej w okresie pomiarowym przez izolację termiczną rurociągu zasilającego, W, o której mowa J-ty konsument bez urządzeń pomiarowych:

(4.23)

gdzie t J J-ty odbiorca bez urządzeń pomiarowych, s. 25

Po ustaleniu ze wzoru 4.15 obliczamy ze wzoru 4.16. W dalszych obliczeniach wykorzystuje się wartość strat energii cieplnej uzyskaną ze wzoru 4.16.

Wyznacza się średnie rzeczywiste straty energii cieplnej w rurociągach zasilających dla wszystkich odcinków instalacji podziemnej, W, w okresie pomiarowym:

(4.24)

Wyznacza się średnie rzeczywiste straty energii cieplnej w rurociągach zasilających dla wszystkich odcinków instalacji napowietrznej, W, w okresie pomiarowym:

(4.25)

Średnie rzeczywiste straty energii cieplnej w rurociągach zasilających dla wszystkich odcinków zlokalizowanych w kanałach przelotowych i półprzelotowych, tunelach, W wyznacza się w okresie pomiarowym:

(4.26)

Wyznacza się średnie rzeczywiste straty energii cieplnej w rurociągach zasilających dla wszystkich odcinków zlokalizowanych w piwnicach, , W, w okresie pomiarowym:

(4.27)

W okresie pomiarowym wyznacza się średnie rzeczywiste straty energii cieplnej na rurociągach powrotnych dla wszystkich odcinków instalacji podziemnej, W:

(4.28)

Średnie rzeczywiste straty energii cieplnej w rurociągach powrotnych dla wszystkich odcinków instalacji napowietrznej, W, wyznacza się w okresie pomiarowym:

(4.29)

Rzeczywiste straty energii cieplnej w rurociągach powrotnych uśrednione z okresu pomiarowego wyznacza się dla wszystkich odcinków zlokalizowanych w kanałach przelotowych i półprzelotowych, tunelach, W:

(4.30)

Wyznacza się średnie rzeczywiste straty energii cieplnej w rurociągach powrotnych dla wszystkich odcinków znajdujących się w piwnicach, , W, w okresie pomiarowym:

(4.31)

Wyznacza się rzeczywiste całkowite straty energii cieplnej w rurociągach powrotnych, uśrednione w okresie pomiarowym:

Rzeczywiste całkowite straty energii cieplnej W w sieci, uśrednione w okresie pomiarowym, wyznacza się:

4.2. OKREŚLENIE RZECZYWISTYCH STRAT ENERGII CIEPLNEJ W ROKU

Rzeczywiste straty energii cieplnej w ciągu roku ustala się jako sumę rzeczywistych strat energii cieplnej za każdy miesiąc pracy sieci ciepłowniczej.

Rzeczywiste miesięczne straty energii cieplnej ustala się na podstawie średniomiesięcznych warunków pracy sieci ciepłowniczej.

Do wszystkich instalacji podziemnych rzeczywiste średniomiesięczne straty energii cieplnej wyznacza się łącznie na rurociągach zasilającym i powrotnym, W, według wzoru:

Do wszystkich obszarów instalacji napowietrznych Rzeczywiste średniomiesięczne straty energii cieplnej wyznacza się odrębnie dla rurociągu zasilającego W i powrotnego W, korzystając ze wzorów:

(4.35)

(4.36)

Do wszystkich obszarów znajdujących się w kanałach i tunelach przelotowych i półprzelotowych

(4.37)

(4.38)

Dla wszystkich obszarów znajdujących się w piwnicach rzeczywiste średniomiesięczne straty energii cieplnej wyznacza się odrębnie dla rurociągów zasilających W i powrotnych W, korzystając ze wzorów:

(4.39)

(4.40)

Rzeczywiste straty energii cieplnej w całej sieci w ciągu miesiąca, GJ, wyznaczane są ze wzoru:

Gdzie N miesiące - czas pracy sieci ciepłowniczej w danym miesiącu, godziny.

Rzeczywiste straty energii cieplnej w całej sieci w ciągu roku, GJ, wyznaczane są ze wzoru:

(4.42)

ZAŁĄCZNIK A

Warunki i definicje

System podgrzewania wody- system zaopatrzenia w ciepło, w którym chłodziwem jest woda.

Zamknięty system podgrzewania wody- system zaopatrzenia w ciepło wodne, który nie przewiduje korzystania przez odbiorców z wody sieciowej poprzez pobór jej z sieci ciepłowniczej.

Indywidualny punkt grzewczy- punkt grzewczy przeznaczony do podłączenia systemów odbioru ciepła jednego budynku lub jego części.

Dokumentacja powykonawcza- zestaw rysunków roboczych opracowanych przez organizację projektującą, z napisami dotyczącymi zgodności pracy wykonanej w naturze z tymi rysunkami lub zmianami wprowadzonymi w nich przez osoby odpowiedzialne za pracę.

Źródło energii cieplnej (ciepła)- elektrownia wytwarzająca ciepło lub ich kombinacja, w której chłodziwo jest podgrzewane poprzez przekazywanie ciepła spalonego paliwa, a także poprzez ogrzewanie elektryczne lub inne, w tym nietradycyjne metody, uczestniczące w dostawie ciepła do odbiorców.

Komercyjne opomiarowanie (pomiar) energii cieplnej- określanie, na podstawie pomiarów i innych regulowanych procedur, mocy cieplnej oraz ilości energii cieplnej i chłodziwa na potrzeby prowadzenia rozliczeń handlowych pomiędzy organizacjami dostarczającymi energię a odbiorcami.

Kotłownia- zespół technologicznie połączonych elektrociepłowni, zlokalizowanych w oddzielnych budynkach przemysłowych, pomieszczeniach zabudowanych, dobudowanych lub nadbudowanych, wyposażonych w kotły, podgrzewacze wody (w tym instalacje niekonwencjonalnego sposobu pozyskiwania energii cieplnej) oraz urządzenia pomocnicze kotła, przeznaczone do wytwarzania ciepła .

Współczynnik strat energii cieplnej (wskaźnik gęstości strumienia ciepła przez izolowaną powierzchnię)- wartość jednostkowych strat energii cieplnej przez rurociągi sieci ciepłowniczej przez ich konstrukcje termoizolacyjne przy obliczonych średniorocznych temperaturach chłodziwa i otoczenia.

Otwarty system podgrzewania wody- system podgrzewania wody, w którym wykorzystuje się całość lub część wody sieciowej, pobierając ją z sieci ciepłowniczej na potrzeby odbiorców w zakresie ciepłej wody.

Sezon grzewczy- czas w godzinach lub dniach w roku, podczas którego energia cieplna jest dostarczana do ogrzewania.

Woda do makijażu- specjalnie przygotowana woda dostarczana do sieci ciepłowniczej w celu uzupełnienia strat chłodziwa (wody sieciowej), a także poboru wody na potrzeby ciepła.

Straty energii cieplnej- energia cieplna tracona przez czynnik chłodzący w wyniku izolacji rurociągów, a także energia cieplna tracona wraz z czynnikiem chłodzącym podczas wycieków, wypadków, drenów i nieuprawnionych poborów wody.

Odbiorca energii cieplnej- osoba prawna lub fizyczna, która wykorzystuje energię cieplną (prąd) i chłodziwa.

- całkowite projektowe maksymalne obciążenie cieplne (moc) wszystkich systemów zużycia ciepła przy obliczonej temperaturze powietrza zewnętrznego dla każdego rodzaju obciążenia lub całkowite projektowe maksymalne godzinowe natężenie przepływu chłodziwa dla wszystkich systemów zużycia ciepła podłączonych do sieci ciepłowniczych (źródło energii cieplnej ) organizacji dostarczającej ciepło.

Woda sieciowa- specjalnie przygotowana woda, która wykorzystywana jest w systemie podgrzewania wody jako czynnik chłodzący.

System zużycia ciepła- zespół elektrowni cieplnych z łączącymi rurociągami i (lub) sieciami ciepłowniczymi, zaprojektowanymi w celu zaspokojenia jednego lub więcej rodzajów obciążenia cieplnego.

System grzewczy- zespół wzajemnie połączonych źródeł ciepła, sieci ciepłowniczych i systemów odbioru ciepła.

System ciepłowniczy- źródła energii cieplnej, sieci ciepłownicze i odbiorcy energii cieplnej, których łączy wspólny proces technologiczny.

Obciążenie cieplne systemu grzewczego (obciążenie cieplne)- całkowitą ilość energii cieplnej otrzymanej ze źródeł energii cieplnej, równą sumie zużycia ciepła przez odbiorniki energii cieplnej i strat w sieciach ciepłowniczych w jednostce czasu.

Sieć ciepłownicza- zespół urządzeń przeznaczonych do przesyłania i dystrybucji chłodziwa i energii cieplnej.

Punkt grzewczy- zespół urządzeń umieszczony w wydzielonym pomieszczeniu, składający się z elementów elektrowni cieplnych zapewniających przyłączenie tych elektrowni do sieci ciepłowniczej, ich sprawność, kontrolę trybów zużycia ciepła, transformację, regulację parametrów chłodziwa.

Płyn chłodzący elektrownię cieplną, płyn chłodzący- ośrodek ruchomy służący do przenoszenia energii cieplnej w elektrowni cieplnej z ciała bardziej nagrzanego do ciała mniej nagrzanego.

Instalacja zużywająca ciepło- elektrownię cieplną lub zespół urządzeń służących do wykorzystania ciepła i chłodziwa na potrzeby ogrzewania, wentylacji, klimatyzacji, zaopatrzenia w ciepłą wodę i na potrzeby technologiczne.

Dostawy ciepła- dostarczanie odbiorcom energii cieplnej (ciepła).

Elektrociepłownia kogeneracyjna (CHP)- elektrownia turbinowa parowa przeznaczona do wytwarzania energii elektrycznej i cieplnej.

Jednostka do komercyjnego pomiaru energii cieplnej i (lub) chłodziw- zestaw odpowiednio certyfikowanych przyrządów pomiarowych i systemów oraz innych urządzeń przeznaczonych do komercyjnego rozliczania ilości energii cieplnej i (lub) chłodziw, a także do zapewnienia kontroli jakości trybów zużycia energii cieplnej i ciepła.

Ciepło miejskie- dostawa ciepła do odbiorców ze źródła energii cieplnej poprzez wspólną sieć ciepłowniczą.

Punkt centralnego ogrzewania (CHS)- punkt grzewczy przeznaczony do połączenia dwóch lub więcej budynków.

Dokumentacja operacyjna- dokumenty przeznaczone do stosowania podczas eksploatacji, konserwacji i napraw podczas eksploatacji.

Organizacja zaopatrzenia w energię (zaopatrzenia w ciepło).- przedsiębiorstwo lub organizacja posiadająca osobowość prawną, posiadająca lub sprawująca pełną kontrolę ekonomiczną nad instalacjami wytwarzającymi energię elektryczną i (lub) cieplną, sieciami elektrycznymi i (lub) cieplnymi oraz zapewniająca przesył energii elektrycznej i (lub) cieplnej do odbiorców na podstawie umowy.

ZAŁĄCZNIK B

Symbole wielkości

Rzeczywiste straty energii cieplnej w całej sieci w ciągu roku, GJ;

Rzeczywiste straty energii cieplnej w całej sieci w miesiącu, GJ;

Rzeczywiste średniomiesięczne straty energii cieplnej ogółem na rurociągach zasilającym i powrotnym dla wszystkich odcinków instalacji podziemnej, W;

Rzeczywiste średnie miesięczne straty energii cieplnej oddzielnie przez rurociąg zasilający dla wszystkich odcinków instalacji naziemnej, W;

Rzeczywiste średnie miesięczne straty energii cieplnej oddzielnie na rurociągu powrotnym dla wszystkich odcinków instalacji naziemnej, W;

Rzeczywiste średnie miesięczne straty energii cieplnej oddzielnie w rurociągu zasilającym dla wszystkich odcinków zlokalizowanych w kanałach przelotowych i półprzelotowych, tunelach, W;

Rzeczywiste średnie miesięczne straty energii cieplnej oddzielnie w rurociągu powrotnym dla wszystkich odcinków zlokalizowanych w kanałach przelotowych i półprzelotowych, tunelach, W;

Rzeczywiste średnie miesięczne straty energii cieplnej oddzielnie przez rurociąg zasilający dla wszystkich obszarów znajdujących się w piwnicach, W;

Rzeczywiste średnie miesięczne straty energii cieplnej oddzielnie na rurociągu powrotnym dla wszystkich obszarów zlokalizowanych w piwnicach, W;

Rzeczywiste całkowite straty energii cieplnej w sieci są wartościami średnimi z okresu pomiarowego, W;

Rzeczywiste straty energii cieplnej w rurociągach zasilających dla wszystkich odcinków instalacji podziemnej są średnie dla okresu pomiarowego, W;

Rzeczywiste straty energii cieplnej w rurociągach zasilających dla wszystkich odcinków instalacji naziemnej są średnie dla okresu pomiarowego, W;

Rzeczywiste straty energii cieplnej w rurociągach zasilających dla wszystkich odcinków zlokalizowanych w kanałach przelotowych i półprzelotowych, tunelach, średnie z okresu pomiarowego, W;

Rzeczywiste straty energii cieplnej w rurociągach zasilających dla wszystkich odcinków zlokalizowanych w piwnicach są średnie dla okresu pomiarowego, W;

Rzeczywiste straty energii cieplnej w rurociągach powrotnych dla wszystkich odcinków instalacji podziemnej są średnie dla okresu pomiarowego, W;

Rzeczywiste straty energii cieplnej w rurociągach powrotnych dla wszystkich odcinków instalacji naziemnej są średnie dla okresu pomiarowego, W;

Rzeczywiste straty energii cieplnej w rurociągach powrotnych dla wszystkich odcinków zlokalizowanych w kanałach przelotowych i półprzelotowych, tunelach są średnie dla okresu pomiarowego, W;

Rzeczywiste straty energii cieplnej w rurociągach powrotnych dla wszystkich odcinków zlokalizowanych w piwnicach są średnie dla okresu pomiarowego, W;

Rzeczywiste całkowite straty energii cieplnej we wszystkich rurociągach zasilających są średnie dla okresu pomiarowego, W;

Rzeczywiste całkowite straty energii cieplnej we wszystkich rurociągach powrotnych są średnie dla okresu pomiarowego, W;

Całkowite straty energii cieplnej w rurociągach zasilających dla J odbiorcy nie posiadający urządzeń pomiarowych, średnia z okresu pomiarowego, W;

Straty energii cieplnej Jśrednia odbiorców bez urządzeń pomiarowych z okresu pomiarowego, W;

Całkowite straty energii cieplnej w rurociągach zasilających dla wszystkich I odbiorcy posiadający urządzenia pomiarowe, średnia z okresu pomiarowego, W;

Straty energii cieplnej przez izolację termiczną rurociągu zasilającego dla każdego I-ty konsument z urządzeniami pomiarowymi średnia z okresu pomiarowego, W;

Średnie godzinowe obciążenie podłączone w okresie pomiarowym J-ty konsument, GJ/h;

Średnie godzinowe obciążenie wszystkich podłączonych urządzeń J odbiorcy bez urządzeń pomiarowych w okresie pomiarowym, GJ/h;

Średnie straty energii cieplnej w okresie pomiarowym przez izolację termiczną rurociągu zasilającego, o którym mowa I-ty odbiorca minus straty energii cieplnej w odgałęzieniu od głównego rurociągu, W;

Straty energii cieplnej w odgałęzieniu głównego rurociągu, W;

Średnia standardowa z okresu pomiarowego strat energii cieplnej w odgałęzieniu od głównego rurociągu zasilającego do I-ty konsument, W;

Całkowite straty energii cieplnej w głównych rurociągach zasilających dla wszystkich I odbiorcy z urządzeniami pomiarowymi, W;

Standardowe straty energii cieplnej w rurociągu zasilającym są średnie dla okresu pomiarowego, W;

Standardowe straty energii cieplnej w rurociągu powrotnym są średnie dla okresu pomiarowego, W;

Średnia standardowa z okresu pomiaru strat energii cieplnej w rurociągu zasilającym dla całej sieci, W;

Średnia standardowa z okresu pomiaru strat energii cieplnej w rurociągu zasilającym dla wszystkich odcinków instalacji podziemnej, W;

Średnia standardowa z okresu pomiaru strat energii cieplnej w rurociągu powrotnym dla wszystkich odcinków instalacji podziemnej, W;

Średnia standardowa z okresu pomiaru strat energii cieplnej w rurociągu zasilającym dla wszystkich odcinków instalacji naziemnej, W;

Standardowe średnie straty energii cieplnej w rurociągu powrotnym dla wszystkich odcinków instalacji naziemnej w okresie pomiarowym, W;

Średnia standardowa z okresu pomiaru strat energii cieplnej w rurociągu zasilającym dla wszystkich odcinków zlokalizowanych w kanałach przelotowych i półprzelotowych, tunelach, W;

Średnia standardowa z okresu pomiaru strat energii cieplnej w rurociągu powrotnym dla wszystkich odcinków zlokalizowanych w kanałach przelotowych i półprzelotowych, tunelach, W;

Średnia standardowa z okresu pomiaru strat energii cieplnej w rurociągu zasilającym dla wszystkich obszarów znajdujących się w piwnicach, W;

Średnia standardowa z okresu pomiaru strat energii cieplnej na rurociągu powrotnym dla wszystkich odcinków zlokalizowanych w piwnicach, W;

Średnie roczne standardowe straty energii cieplnej w rurociągu zasilającym, W;

Średnie roczne standardowe straty energii cieplnej w rurociągu powrotnym, W;

Różnica względna porównująca wartość rzeczywistych strat energii cieplnej w rurociągu zasilającym dla wszystkich odbiorców w drugim przybliżeniu z wartością rzeczywistych strat energii cieplnej w rurociągu zasilającym dla wszystkich odbiorców, uzyskaną w pierwszym przybliżeniu;

Q n - standardowe jednostkowe straty energii cieplnej ogółem na rurociągach zasilających i powrotnych dla odcinków podziemnych sieci ciepłowniczych, W/m;

Specyficzne straty energii cieplnej ogółem na rurociągach zasilającym i powrotnym z tabelaryczną wartością różnicy pomiędzy średniorocznymi temperaturami wody i gruntu sieciowego, W/m, niższej niż dla danej sieci;

Specyficzne straty energii cieplnej ogółem na rurociągach zasilającym i powrotnym o wartości tabelarycznej różnicy pomiędzy średniorocznymi temperaturami wody i gruntu sieciowego większej niż dla danej sieci, W/m;

Q a - średnie roczne standardowe straty energii cieplnej w rurociągu powrotnym, W/m;

Q np - średnie roczne standardowe właściwe straty energii cieplnej w rurociągu zasilającym, W/m;

Całkowite standardowe właściwe straty energii cieplnej dla instalacji podziemnej, W/m;

Odpowiednio, tabelaryczne wartości standardowych strat energii cieplnej dla instalacji podziemnej na rurociągach zasilających i powrotnych, W/m;

Specyficzne straty energii cieplnej w rurociągu zasilającym z dwoma sąsiadującymi, odpowiednio mniejszymi i większymi niż dla danej sieci, tabelarycznymi wartościami różnicy średniorocznych temperatur wody i gruntu sieciowego, W/m;

Specyficzne straty energii cieplnej w rurociągu zasilającym z dwoma sąsiadującymi, odpowiednio mniejszymi i większymi niż dla danej sieci, tabelarycznymi wartościami różnicy pomiędzy średniorocznymi temperaturami wody sieciowej i powietrza zewnętrznego, W/m;

Specyficzne straty energii cieplnej przez rurociąg powrotny z dwoma sąsiadującymi ze sobą, odpowiednio mniejszymi i większymi niż dla danej sieci, tabelarycznymi wartościami różnicy pomiędzy średniorocznymi temperaturami wody sieciowej i powietrza zewnętrznego, W/m;

Średnie natężenie przepływu chłodziwa przez rurociąg zasilający u źródła energii cieplnej w całym okresie pomiarowym, kg/s;

Zmierzone wartości natężenia przepływu chłodziwa w źródle energii cieplnej, pobrane z pliku godzinowego, t/h;

Średnie natężenie przepływu chłodziwa przez rurociąg zasilający w całym okresie pomiarowym wynosi I-ty odbiorca energii cieplnej wraz z urządzeniami pomiarowymi, kg/s;

Zmierzone wartości natężenia przepływu chłodziwa I-ty odbiorca energii cieplnej, pobrany z pliku godzinowego, t/h;

Średnie zużycie wody uzupełniającej w źródle energii cieplnej za cały okres pomiarowy, kg/s;

Zmierzone wartości natężenia przepływu chłodziwa do uzupełnienia u źródła energii cieplnej, pobrane z pliku godzinowego, t/h;

Średnie natężenie przepływu chłodziwa w rurociągu zasilającym w całym okresie pomiarowym dla wszystkich odbiorców energii cieplnej nie posiadających urządzeń pomiarowych, kg/s;

Średnie godzinowe ładowanie sieci ciepłowniczej w nocy, t/h;

Średnie godzinowe zużycie płynu chłodzącego dla każdego I-ty odbiorca posiadający urządzenia pomiarowe w porze nocnej za każdy dzień okresu pomiarowego, t/h;

Średnie natężenie przepływu chłodziwa w rurociągu zasilającym dla całego okresu pomiarowego dla każdego J-ty konsument nie posiadający urządzeń pomiarowych, kg/s;

gr- przepływ chłodziwa w obszarze jednorodnym, kg/s;

Średnia miesięczna temperatura zewnętrzna, °C;

Średnia miesięczna temperatura gleby na średniej głębokości osi rurociągu, °C;

Średnia roczna temperatura zewnętrzna, °C;

Średnia roczna temperatura gleby na średniej głębokości osi rurociągu, °C;

Średnia miesięczna temperatura wody sieciowej w rurociągu zasilającym, °C;

Średnia miesięczna temperatura wody sieciowej na rurociągu powrotnym, °C;

Średnia roczna temperatura wody sieciowej w rurociągu zasilającym, °C;

Średnia roczna temperatura wody sieciowej na rurociągu powrotnym, °C;

Średnia temperatura wody sieciowej w rurociągu zasilającym u źródła ciepła w okresie pomiarowym, °C;

Średnia temperatura wody sieciowej w okresie pomiarowym na rurociągu powrotnym u źródła energii cieplnej, °C;

Zmierzone wartości temperatury wody sieciowej w rurociągu zasilającym u źródła energii cieplnej, pobrane z pliku godzinowego, °C;

Zmierzone wartości temperatury wody sieciowej na rurociągu powrotnym u źródła energii cieplnej, pobrane z pliku godzinowego, °C;

Średnia temperatura gleby na średniej głębokości osi rurociągu w okresie pomiarowym, °C;

Średnia temperatura powietrza zewnętrznego w okresie pomiarowym, °C;

Odpowiednio, tabelaryczne wartości średnich rocznych temperatur wody sieciowej w rurociągach zasilającym (65, 90, 110 °C) i powrotnym (50 °C), °C;

Standardowa wartość średniej rocznej temperatury gleby, °C;

Zmierzone wartości temperatury wody sieciowej w rurociągu zasilającym o godz I-ty konsument, pobrany z pliku godzinowego, °C;

Różnica pomiędzy średniorocznymi temperaturami wody sieciowej i gruntu dla danej sieci ciepłowniczej, °C;

Wartość tabelaryczna różnicy pomiędzy średnimi rocznymi temperaturami wody i gleby w sieci, °C, jest niższa niż dla tej sieci;

Tabelaryczna wartość różnicy pomiędzy średniorocznymi temperaturami wody i gruntu w sieci, °C, jest większa niż dla danej sieci;

Różnica średnich rocznych temperatur dla każdej pary wartości średnich rocznych temperatur w rurociągach zasilających i powrotnych oraz w glebie, °C;

Różnica między średniorocznymi temperaturami wody sieciowej i gruntu dla rurociągu zasilającego rozpatrywanej sieci ciepłowniczej, °C;

Sąsiednie, odpowiednio mniejsze i większe niż dla danej sieci, tabelaryczne wartości różnicy średniorocznych temperatur wody sieciowej w rurociągu zasilającym i gruntu, °C;

Różnica pomiędzy średniorocznymi temperaturami odpowiednio wody sieciowej i powietrza zewnętrznego dla rurociągów zasilających i powrotnych dla danej sieci ciepłowniczej, °C;

Sąsiednie, odpowiednio mniejsze i większe niż dla danej sieci, tabelaryczne wartości różnicy pomiędzy średniorocznymi temperaturami wody sieciowej w rurociągu zasilającym i powietrzem zewnętrznym, °C;

Sąsiednie, odpowiednio mniejsze i większe niż dla danej sieci, tabelaryczne wartości różnicy pomiędzy średniorocznymi temperaturami wody sieciowej na rurociągu powrotnym i powietrzem zewnętrznym, °C;

V n to całkowita objętość wszystkich rurociągów zasilających sieć ciepłowniczą, m 3 ;

L- długość odcinka sieci ciepłowniczej, m;

ja- najkrótsza odległość od źródła energii cieplnej do odgałęzienia od głównego rurociągu do I-ty konsument z urządzeniami pomiarowymi, m;

ja- najkrótsza odległość od źródła energii cieplnej do odgałęzienia J-ty konsument bez urządzeń pomiarowych, m (s. 18);

l k- długość jednorodnego przekroju, m;

r jest gęstością wody w średniej temperaturze wody sieciowej w rurociągu zasilającym u źródła energii cieplnej w pierwszym dniu okresu dostępności danych, kg/m 3 ;

c str- ciepło właściwe wody, J/(kg×K);

Tydzień- prędkość chłodziwa w obszarze jednorodnym, m/s;

Fk- powierzchnia przejścia rurociągu na obszarze jednorodnym, m2;

b - współczynnik lokalnych strat energii cieplnej, uwzględniający straty energii cieplnej przez armaturę, kompensatory i podpory;

R straty n - współczynnik strat energii cieplnej sieci w głównych rurociągach zasilających, J/(kg × m);

Współczynnik straty energii cieplnej, wyznaczony na podstawie czasu ruchu chłodziwa w rurociągach zasilających, J/(kg × s);

N oraz - liczba godzin w okresie pomiarowym;

N miesiące - czas pracy sieci ciepłowniczej w danym miesiącu, godziny;

t p - czas napełnienia wszystkich rurociągów zasilających chłodziwem, s;

t to czas ruchu chłodziwa ze źródła energii cieplnej do każdego z odbiorców, s;

tk to czas ruchu chłodziwa w jednorodnym odcinku sieci ciepłowniczej, s;

T I- czas przepływu chłodziwa przez rurociąg zasilający od źródła energii cieplnej do I-ty konsument z urządzeniami pomiarowymi, s;

T J- czas przemieszczania się chłodziwa na najkrótszą odległość od źródła energii cieplnej do J-ty konsument bez urządzeń pomiarowych, s;

K- stosunek rzeczywistych strat energii cieplnej w rurociągu zasilającym dla wszystkich odbiorców do standardowych strat energii cieplnej w rurociągu zasilającym.

ZAŁĄCZNIK B

Charakterystyka odcinków sieci ciepłowniczej

Tabela B.1


ZAŁĄCZNIK D

Średnie miesięczne i średnioroczne temperatury otoczenia i wody sieciowej

Tabela D.1

Miesiące Średnia temperatura za 5 lat, °C Temperatura wody w sieci, °C
gleba powietrze na zewnątrz w linii zasilającej w rurociągu powrotnym
Styczeń
Luty
Marsz
Kwiecień
Móc
Czerwiec
Lipiec
Sierpień
Wrzesień
Październik
Listopad
Grudzień
Średnia roczna temperatura, °C

ZAŁĄCZNIK D

Charakterystyka odbiorców energii cieplnej i urządzeń pomiarowych

Tabela E.1

Nazwa konsumenta Rodzaj systemu grzewczego (otwarty, zamknięty) Marka miernika Głębokość archiwum Dostępność scentralizowanego gromadzenia danych (tak, nie)
ogrzewanie wentylacja CWU Całkowity codziennie cogodzinny
1 2 3 4 5 6 7 8 9 10

ZAŁĄCZNIK E

Normy strat energii cieplnej przez izolowane wodne rurki cieplne umieszczone w nieprzechodnich kanałach oraz podczas instalacji bezkanałowej (przy projektowej temperaturze gruntu +5 °C na głębokości rur cieplnych) zgodnie

Tabela E.1

Zewnętrzna średnica rur, mm
Powrót rury cieplnej przy średniej temperaturze wody ( T o =50°C) Instalacja dwururowa z różnicą średniorocznych temperatur wody i gleby 52,5°C ( T n=65°C) Układanie dwóch rur z różnicą średnich rocznych temperatur wody i gleby 65 ° C ( T p=90°C) Instalacja dwururowa z różnicą średniorocznych temperatur wody i gleby 75°C ( T p=110°C)
32 23 52 60 67
57 29 65 75 84
76 34 75 86 95
89 36 80 93 102
108 40 88 102 111
159 49 109 124 136
219 59 131 151 165
273 70 154 174 190
325 79 173 195 212
377 88 191 212 234
426 95 209 235 254
478 106 230 259 280
529 117 251 282 303
630 133 286 321 345
720 145 316 355 379
820 164 354 396 423
920 180 387 433 463
1020 198 426 475 506
1220 233 499 561 591
1420 265 568 644 675

ZAŁĄCZNIK G

Normy strat energii cieplnej przez jedną izolowaną wodę

rura cieplna do montażu naziemnego

(przy szacunkowej średniej rocznej temperaturze zewnętrznej +5°C) wg

Tabela G.1

Zewnętrzna średnica rur, mm Normy strat energii cieplnej, W/m
Różnica między średnioroczną temperaturą wody sieciowej na rurociągach zasilających lub powrotnych a powietrzem zewnętrznym, °C
45 70 95 120
32 17 27 36 44
49 21 31 42 52
57 24 35 46 57
76 29 41 52 64
89 32 44 58 70
108 36 50 64 78
133 41 56 70 86
159 44 58 75 93
194 49 67 85 102
219 53 70 90 110
273 61 81 101 124
325 70 93 116 139
377 82 108 132 157
426 95 122 148 174
478 103 131 158 186
529 110 139 168 197
630 121 154 186 220
720 133 168 204 239
820 157 195 232 270
920 180 220 261 302
1020 209 255 296 339
1420 267 325 377 441

ZAŁĄCZNIK I

Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów dwururowych sieci ciepłowniczych układanych w nieprzechodnich kanałach, W/m, zgodnie

Tabela I.1

Rurociąg
serwer z powrotem serwer z powrotem serwer z powrotem
65 50 90 50 110 50
25 16 11 23 10 28 9
30 17 12 24 11 30 10
40 18 13 26 12 32 11
50 20 14 28 13 35 12
65 23 16 34 15 40 13
80 25 17 36 16 44 14
100 28 19 41 17 48 15
125 31 21 42 18 50 16
150 32 22 44 19 55 17
200 39 27 54 22 68 21
250 45 30 64 25 77 23
300 50 33 70 28 84 25
350 55 37 75 30 94 26
400 58 38 82 33 101 28
450 67 43 93 36 107 29
500 68 44 98 38 117 32
600 79 50 109 41 132 34
700 89 55 126 43 151 37
800 100 60 140 45 163 40
900 106 66 151 54 186 43
1000 117 71 158 57 192 47
1200 144 79 185 64 229 52
1400 152 82 210 68 252 56

ZAŁĄCZNIK K

Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów dla dwururowych podziemnych bezkanałowych instalacji wodnych sieci ciepłowniczych, W/m, wg

Tabela K.1

Warunkowa średnica rurociągu, mm Z ponad 5000 godzin pracy rocznie
Rurociąg
serwer z powrotem serwer z powrotem
Średnia roczna temperatura płynu chłodzącego, °C
65 50 90 50
25 33 25 44 24
50 40 31 54 29
65 45 34 60 33
80 46 35 61 34
100 49 38 65 35
125 53 41 72 39
150 60 46 80 43
200 66 50 89 48
250 72 55 96 51
300 79 59 105 56
350 86 65 113 60
400 91 68 121 63
450 97 72 129 67
500 105 78 138 72
600 117 87 156 80
700 126 93 170 86
800 140 102 186 93

Współczynnik uwzględniający zmiany norm gęstości strumienia ciepła przy zastosowaniu warstwy termoizolacyjnej z pianki poliuretanowej, polimerobetonu, pianki fenolowej FL

Tabela K.2

ZAŁĄCZNIK L

Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów sieci ciepłowniczych zlokalizowanych na zewnątrz, W/m, zgodnie

Tabela L.1

Warunkowa średnica rurociągu, mm Z ponad 5000 godzin pracy rocznie
Średnia roczna temperatura płynu chłodzącego, °C
50 100 150
15 10 20 30
20 11 22 34
25 13 25 37
40 15 29 44
50 17 31 47
65 19 36 54
80 21 39 58
100 24 43 64
125 27 49 70
150 30 54 77
200 37 65 93
250 43 75 106
300 49 84 118
350 55 93 131
400 61 102 142
450 65 109 152
500 71 119 166
600 82 136 188
700 92 151 209
800 103 167 213
900 113 184 253
1000 124 201 275
35 54 70

ZAŁĄCZNIK M

Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów sieci ciepłowniczych zlokalizowanych w pomieszczeniu lub tunelu, W/m, zgodnie z

Tabela M.1

Warunkowa średnica rurociągu, mm Z ponad 5000 godzin pracy rocznie
Średnia roczna temperatura płynu chłodzącego, °C
50 100 150
15 8 18 28
20 9 20 32
25 10 22 35
40 12 26 41
50 13 28 44
65 15 32 50
80 16 35 54
100 18 39 60
125 21 44 66
150 24 49 73
200 29 59 88
250 34 68 100
300 39 77 112
350 44 85 124
400 48 93 135
450 52 101 145
500 57 109 156
600 67 125 176
700 74 139 199
800 84 155 220
900 93 170 241
1000 102 186 262
Zakrzywione powierzchnie z zewnętrznym otworem nominalnym większym niż 1020 mm i płaskie Normy gęstości strumienia ciepła powierzchniowego, W/m2
29 50 68

ZAŁĄCZNIK H

Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów dwururowych sieci ciepłowniczych ułożonych w nieprzechodnich kanałach i podziemnych instalacjach bezkanałowych, W/m, zgodnie

Tabela H.1

Warunkowa średnica rurociągu, mm Z ponad 5000 godzin pracy rocznie
Rurociąg
serwer z powrotem serwer z powrotem serwer z powrotem
Średnia roczna temperatura płynu chłodzącego, °C
65 50 90 50 110 50
25 14 9 20 9 24 8
30 15 10 20 10 26 9
40 16 11 22 11 27 10
50 17 12 24 12 30 11
65 20 13 29 13 34 12
80 21 14 31 14 37 13
100 24 16 35 15 41 14
125 26 18 38 16 43 15
150 27 19 42 17 47 16
200 33 23 49 19 58 18
250 38 26 54 21 66 20
300 43 28 60 24 71 21
350 46 31 64 26 80 22
400 50 33 70 28 86 24
450 54 36 79 31 91 25
500 58 37 84 32 100 27
600 67 42 93 35 112 31
700 76 47 107 37 128 31
800 85 51 119 38 139 34
900 90 56 128 43 150 37
1000 100 60 140 46 163 40
1200 114 67 158 53 190 44
1400 130 70 179 58 224 48

ZAŁĄCZNIK P

Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów sieci podgrzewania wody, gdy są one zlokalizowane na zewnątrz

Tabela A.1

Warunkowa średnica rurociągu, mm Z ponad 5000 godzin pracy rocznie
Średnia roczna temperatura płynu chłodzącego, °C
50 100 150
25 11 20 30
40 12 24 36
50 14 25 38
65 15 29 44
80 17 32 47
100 19 35 52
125 22 40 57
150 24 44 62
200 30 53 75
250 35 61 86
300 40 68 96
350 45 75 106
400 49 83 115
450 53 88 123
500 58 96 135
600 66 110 152
700 75 122 169
800 83 135 172
900 92 149 205
1000 101 163 223
Zakrzywione powierzchnie z zewnętrznym otworem nominalnym większym niż 1020 mm i płaskie Normy gęstości strumienia ciepła powierzchniowego, W/m2
28 44 57

ZAŁĄCZNIK P

Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów sieci ciepłowniczych zlokalizowanych w pomieszczeniach zamkniętych i w tunelach zgodnie z

Tabela R.1

Warunkowa średnica rurociągu, mm Z ponad 5000 godzin pracy rocznie
Średnia roczna temperatura płynu chłodzącego, °C
50 100 150
Normy liniowej gęstości strumienia ciepła, W/m
25 8 18 28
40 10 21 33
50 10 22 35
65 12 26 40
80 13 28 43
100 14 31 48
125 17 35 53
150 19 39 58
200 23 47 70
250 27 54 80
300 31 62 90
350 35 68 99
400 38 74 108
450 42 81 116
500 46 87 125
600 54 100 143
700 59 111 159
800 67 124 176
900 74 136 193
1000 82 149 210
Zakrzywione powierzchnie z zewnętrznym otworem nominalnym większym niż 1020 mm i płaskie Normy gęstości strumienia ciepła powierzchniowego, W/m2
23 40 54

Notatka. Umieszczając w tunelu izolowane powierzchnie (kanały przelotowe i półprzelotowe) do wzorców gęstości należy dodać współczynnik 0,85.

ZAŁĄCZNIK C

Lista dokumentów normatywnych i technicznych, do których znajdują się linki

1. Wyznaczanie rzeczywistych strat ciepła przez izolację termiczną w scentralizowanych sieciach ciepłowniczych / Semenov V. G. - M.: Wiadomości o zaopatrzeniu w ciepło, 2003 (nr 4).

2. Normy dotyczące projektowania izolacji cieplnych rurociągów i urządzeń elektrowni i sieci ciepłowniczych. - M.: Gosstroyizdat, 1959.

3.SNiP 2.04.14-88*. Izolacja termiczna urządzeń i rurociągów. - M .: Państwowe Przedsiębiorstwo Unitarne TsPP Gosstroy z Rosji, 1999.

4. Metodyka obliczania strat ciepła w sieciach ciepłowniczych podczas transportu. - M.: Firma ORGRES, 1999.

5. Zasady ruchu technicznego elektrowni cieplnych. - M.: Wydawnictwo NC ENAS, 2003.

6. Standardowe instrukcje obsługi technicznej systemów przesyłu i dystrybucji energii cieplnej (sieci ciepłowniczych): RD 153-34.0-20.507-98. - M.: SPO ORGRES, 1986.

7. Metodologia wyznaczania standardowych wartości wskaźników wydajności sieci podgrzewania wody publicznych systemów ciepłowniczych. - M.: Roskommunenergo, 2002.

9. GOST 26691-85. Energetyka cieplna. Warunki i definicje.

10. GOST 19431-84. Energia i elektryfikacja. Warunki i definicje.

11. Zasady opracowywania regulaminów, okólników, instrukcji eksploatacyjnych, wytycznych i listów informacyjnych w elektroenergetyce: RD 153-34.0-01.103-2000. - M.: SPO ORGRES, 2000.

1. POSTANOWIENIA OGÓLNE

2. ZBIERANIE I PRZETWARZANIE DANYCH WSTĘPNYCH

2.1. Zebranie wstępnych danych o sieci ciepłowniczej

2.2. Przetwarzanie danych początkowych urządzeń pomiarowych

3. OKREŚLENIE NORMATYWNYCH STRAT ENERGII CIEPLNEJ

3.1. Wyznaczanie średniorocznych normalnych strat energii cieplnej

3.2. Wyznaczanie standardowych strat energii cieplnej dla okresu pomiarowego

4. OKREŚLENIE RZECZYWISTYCH STRAT ENERGII CIEPLNEJ

4.1. Określenie rzeczywistych strat energii cieplnej w okresie pomiarowym

4.2. Określenie rzeczywistych strat energii cieplnej w ciągu roku

APLIKACJE

Dodatek A. Terminy i definicje

Dodatek B. Symbole wielkości

Załącznik B. Charakterystyka odcinków sieci ciepłowniczej

Załącznik D. Średnie miesięczne i średnioroczne temperatury otoczenia i wody sieciowej

Załącznik D. Charakterystyka odbiorców energii cieplnej i urządzeń pomiarowych

Załącznik E. Normy dotyczące strat energii cieplnej w izolowanych rurociągach ciepłowniczych zlokalizowanych w kanałach nieprzechodnich oraz w przypadku instalacji bezkanałowej

Załącznik G. Normy strat energii cieplnej przez jeden izolowany rurociąg ciepłowniczy ułożony na powierzchni gruntu

Dodatek I. Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów dwururowych sieci podgrzewania wody, układanych w kanałach nieprzechodnich

Załącznik K. Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów dla dwururowych podziemnych bezkanałowych instalacji wodnych sieci ciepłowniczych

Dodatek L. Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów sieci podgrzewania wody, gdy są one zlokalizowane na wolnym powietrzu

Dodatek M. Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów sieci podgrzewania wody, gdy są one umieszczone w pomieszczeniu lub tunelu

Dodatek H. Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów dwururowych sieci ciepłowniczych przy układaniu w kanałach nieprzelotowych i podziemnych instalacjach bezkanałowych

Dodatek P. Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów sieci podgrzewania wody, gdy są one zlokalizowane na zewnątrz

Dodatek R. Normy gęstości strumienia ciepła przez izolowaną powierzchnię rurociągów sieci podgrzewania wody, gdy są one umieszczone w pomieszczeniu lub tunelu

Dodatek C. Lista dokumentów normatywnych i technicznych, do których znajdują się linki

Straty ciepła DQ, (W) w obliczonym odcinku rurociągu zasilającego lub pionu określa się na podstawie standardowych jednostkowych strat ciepła lub poprzez obliczenia według wzoru:

Gdzie DO - współczynnik przenikania ciepła izolowanego rurociągu, K=11,6 W/(m 2 -°C); t g av -średnia temperatura wody w instalacji, t g średnio,=(t n + t k)/2,°C; t n, - temperatura na wylocie grzejnika (temperatura ciepłej wody na wejściu do budynku), °C; t do - temperatura w najdalszym kranie, °C; H- Sprawność termoizolacyjna (0,6); / - długość odcinka rurociągu, m; dH -średnica zewnętrzna rurociągu, m; t 0 - temperatura otoczenia, °C.

Temperatura wody w najdalszym kranie t do należy pobrać o 5°C poniżej temperatury wody na wejściu do budynku lub na wylocie grzejnika.

Temperatura otoczenia t 0 przy układaniu rurociągów w bruzdach, kanałach pionowych, szybach komunikacyjnych i szybach kabin sanitarnych należy przyjmować temperaturę równą 23 ° C, w łazienkach - 25 ° C, w kuchniach i toaletach budynków mieszkalnych, akademików i hoteli - 21 ° C .

Łazienki ogrzewane są podgrzewanymi wieszakami na ręczniki, zatem straty ciepła z podgrzewanych wieszaków na ręczniki doliczane są do strat ciepła pionu w wysokości 100 pensów(W), gdzie 100 W to średni transfer ciepła z jednego podgrzewanego wieszaka na ręczniki, P - liczba podgrzewanych wieszaków na ręczniki podłączonych do pionu.

Przy określaniu natężenia przepływu wody obiegowej nie uwzględnia się strat ciepła przez rurociągi cyrkulacyjne. Jednak przy obliczaniu systemów zaopatrzenia w ciepłą wodę z podgrzewanymi wieszakami na ręczniki na pionach cyrkulacyjnych zaleca się dodanie przenikania ciepła przez podgrzewane wieszaki na ręczniki do wielkości strat ciepła przez dostarczające rury cieplne. Zwiększa to cyrkulację przepływu wody, poprawia ogrzewanie podgrzewanych wieszaków na ręczniki i ogrzewanie łazienek. Wyniki obliczeń wpisuje się do tabeli.

l, m D, m t 0 , o C t g av -t 0, o C 1-n q, W/m DQ, W åDQ, W Notatka
Boner 6
1-3 0,840 0,0213 21,00 36,50 0,30 8,4996 7,139715 7,139715
2-3 1,045 0,0268 21,00 36,50 0,30 10,6944 11,17566 18,31537
3-4 2,9 0,0268 21,00 36,50 0,30 10,6944 31,01379 49,32916
4-5 2,9 0,0335 21,00 36,50 0,30 13,3680 38,76723 88,09639 åDQ=497,899+900=
5-6 2,9 0,0423 21,00 36,50 0,30 16,8796 48,95086 137,0473 =1397,899 W
6-7 2,9 0,0423 21,00 36,50 0,30 16,8796 48,95086 185,9981
7-8 2,9 0,0423 21,00 36,50 0,30 16,8796 48,95086 234,9490
8-9 2,9 0,0423 21,00 36,50 0,30 16,8796 48,95086 283,8998
9-10 2,9 0,0423 21,00 36,50 0,30 16,8796 48,95086 332,8507
10-11 2,9 0,0423 21,00 36,50 0,30 16,8796 48,95086 381,8016
11-12 4,214 0,048 5,00 52,50 0,30 27,5505 116,0979 497,8994
12-13 4,534 0,048 5,00 52,50 0,30 27,5505 124,9140 622,8134
13-14 13,156 0,048 5,00 52,50 0,30 27,5505 362,4545 985,2680
14-15 4,534 0,060 5,00 52,50 0,30 34,4381 156,1425 1141,4105
15-Wejście 6,512 0,060 5,00 52,50 0,30 34,4381 224,2612 1365,6716
Podnośnik 1
1a-3a 0,840 0,0213 21,00 36,50 0,30 8,4996 7,139715 7,139715 åDQ=407,504+900= =1307,504 W
2a-3a 1,045 0,0268 21,00 36,50 0,30 10,6944 11,17566 18,31537
3a-4a 2,9 0,0268 21,00 36,50 0,30 10,6944 31,01379 49,32916
4a-5a 2,9 0,0268 21,00 36,50 0,30 10,6944 31,01379 80,34294
5a-6a 2,9 0,0268 21,00 36,50 0,30 10,6944 31,01379 111,3567
6a-7a 2,9 0,0335 21,00 36,50 0,30 13,3680 38,76723 150,1240
7a-8a 2,9 0,0335 21,00 36,50 0,30 13,3680 38,76723 188,8912
8a-9a 2,9 0,0335 21,00 36,50 0,30 13,3680 38,76723 227,6584
9:00-10:00 2,9 0,0335 21,00 36,50 0,30 13,3680 38,76723 266,4257
10a-11a 2,9 0,0335 21,00 36,50 0,30 13,3680 38,76723 305,1929
11a-15 4,214 0,0423 5,00 52,50 0,30 24,2789 102,3112 407,5041
15-Wejście 6,512 0,060 5,00 52,50 0,30 34,4381 224,2612 631,7652

åQп=5591,598 W

Obliczenia hydrauliczne rurociągów cyrkulacyjnych

Natężenie przepływu wody obiegowej w systemie zaopatrzenia w ciepłą wodę G c (kg/h) rozkłada się proporcjonalnie do całkowitych strat ciepła:

gdzie åQ c to całkowita strata ciepła przez wszystkie rurociągi zasilające, W; Dt jest różnicą temperatur wody w rurociągach zasilających system zaopatrzenia w ciepłą wodę, Dt=t g -t do =5°C; c to pojemność cieplna wody, J/(kg°C).

Natężenia przepływu cyrkulacyjnego wody w głównych sekcjach systemu zaopatrzenia w ciepłą wodę składają się z natężeń przepływu cyrkulacyjnego sekcji i pionów, które znajdują się z przodu, wzdłuż kierunku ruchu wody.

Podstawka 1:


Sekcja 2


Podnośnik 2:


Sekcja 3:


Podnośnik 3:

Sekcja 4:


Obliczenia hydrauliczne rurociągów cyrkulacyjnych otwartego systemu zaopatrzenia w ciepłą wodę.

l, m G, l/s D, mm w, m/s R, Pa/m km DP, Pensylwania åDP, Pa
Pierścień cyrkulacyjny przez pion 1
15-16 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 1954,602
11-15 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 4248,074
1-11 0,073767 0,015 0,4326 579,868 0,5 399529,12 403777,20
1’-11’ 0,073767 0,015 0,4326 579,868 0,5 399529,12 803306,32
11’-15’ 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 805599,79
15’-16’ 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 807554,39
Pierścień cyrkulacyjny przez pion 2
15-16 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 1954,602
14-15 4,534 0,181492 0,032 0,1915 44,4186 0,2 953,399 2908,001
11-14 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 5201,473
1-11 0,073767 0,015 0,4326 579,868 0,5 399529,12 404730,59
1’-11’ 0,073767 0,015 0,4326 579,868 0,5 399529,12 804259,72
11’-14’ 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 806553,19
14’-15’ 4,534 0,181492 0,032 0,1915 44,4186 0,2 953,399 807506,59
15’-16’ 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 809461,19
Pierścień cyrkulacyjny przez pion 3
15-16 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 1954,602
14-15 4,534 0,181492 0,032 0,1915 44,4186 0,2 953,399 2908,001
13-14 13,156 0,099485 0,020 0,3085 209,147 0,2 36749,54 39657,542
11-13 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 41951,014
1-11 0,073767 0,015 0,4326 579,868 0,5 399529,12 441480,07
1’-11’ 0,073767 0,015 0,4326 579,868 0,5 399529,12 841009,12
11’-13’ 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 843320,59
13’-14’ 13,156 0,099485 0,020 0,3085 209,147 0,2 36749,54 880052,13
14’-15’ 4,534 0,181492 0,032 0,1915 44,4186 0,2 953,399 881005,53
15’-16’ 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 882960,13
Pierścień cyrkulacyjny przez pion 4
15-16 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 1954,602
14-15 4,534 0,181492 0,032 0,1915 44,4186 0,2 953,399 2908,001
13-14 13,156 0,099485 0,020 0,3085 209,147 0,2 36749,54 39657,542
12-13 4,534 0,006592 0,020 0,0201 11,2013 0.2 240,4178 39897,960
11-12 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 42191,432
1-11 0,073767 0,015 0,4326 579,868 0,5 399529,12 441720,48
1’-11’ 0,073767 0,015 0,4326 579,868 0,5 399529,12 841249,54
11’-12’ 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 843543,01
12’-13’ 4,534 0,006592 0,020 0,0201 11,2013 0.2 240,4178 843783,43
13’-14’ 13,156 0,099485 0,020 0,3085 209,147 0,2 36749,54 880532,87
14’-15’ 4,534 0,181492 0,032 0,1915 44,4186 0,2 953,399 881486,37
15’-16’ 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 883440,97

Rozbieżność strat ciśnienia w dwóch kierunkach przez bliższe i dalsze piony określamy za pomocą wzoru: DH ch - strata ciśnienia w wodomierza, m; H St - dostępne wolne ciśnienie na mieszaczu wannowym (3m); wys. cm - straty w mieszalniku (5 m); Ng - geometryczna wysokość wzniosu wody od osi rurociągu na wlocie do osi najwyżej położonego kranu (24,2 m).

Wodomierz dobiera się na podstawie przepływu wody na wlocie G i średnica nominalna Dy Przez . Strata ciśnienia w wodomierza DH w połowie(m), wyznacza się według wzoru:

gdzie S jest oporem hydraulicznym wodomierza, przyjętym według (0,32 m/(l/s 2)). Akceptujemy wodomierz VK-20.

Nadmierne ciśnienie wlotowe:


Bibliografia.

1. Przepisy i przepisy budowlane. SNiP 3.05.01-85. Wewnętrzne instalacje sanitarne. M: Stroyizdat, 1986.

2. Przepisy i przepisy budowlane. SNiP 2.04.01-85. Wewnętrzne zaopatrzenie w wodę i kanalizacja budynków. M.: Stroyizdat, 1986.

3. Przepisy i przepisy budowlane. SNiP II-34-76. Zaopatrzenie w ciepłą wodę. M.: Stroyizdat, 1976.

4. Poradnik projektanta. Ogrzewanie, wodociągi, kanalizacja / wyd. I. G. Staroverova. - M.: Stroyizdat, 1976. Część 1.

5. Podręcznik zaopatrzenia w ciepło i wentylacji / R.V. Shchekin, S.M. Korenevsky, G.E. Bem itp. - Kijów: Budivelnik, 1976. Część 1.

6. Zaopatrzenie w ciepło: Podręcznik dla uniwersytetów / A. A. Ionin, B. M. Khlybov itp.; wyd. A. A. Ionina. M.: Stroyizdat, 1982.

7. Zaopatrzenie w ciepło (projekt kursu): Podręcznik dla uniwersytetów o tematyce specjalistycznej. „Zaopatrzenie w ciepło i gaz oraz wentylacja” / V. M. Kopko, N. K. Zaitseva i inni; wyd. V. M. Kopko. - Mn.: Wyżej. szkoła, 1985.

8. Zaopatrzenie w ciepło: podręcznik dla studentów uniwersytetu / V. E. Kozin, T. A. Levina, A. P. Markov itp. - M .: Vyssh. szkoła, 1980r.

9. Zinger N. M. Reżimy hydrauliczne i termiczne systemów grzewczych. - M.: Energoatomizdat, 1986.

10. Sokołow E.Ya. Sieci ciepłownicze i ciepłownicze. - M.: Wydawnictwo MPEI, 2001.

11. Konfiguracja i obsługa sieci podgrzewania wody: Katalog / V. I. Manyuk, Ya. I. Kaplinsky, E. B. Khizh i inni - M.: Stroyizdat, 1988.