Определение расхода воды. Измерение расхода воды с помощью гидрометрической вертушки Примерное количество воды, исчисляемое в м3 за час

Определение расхода воды. Измерение расхода воды с помощью гидрометрической вертушки Примерное количество воды, исчисляемое в м3 за час
Определение расхода воды. Измерение расхода воды с помощью гидрометрической вертушки Примерное количество воды, исчисляемое в м3 за час

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО СТАНДАРТАМ

ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ
РАСХОДОМЕТРИИ (ВНИИР)

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ
ЕДИНСТВА ИЗМЕРЕНИЙ

РАСХОД ВОДЫ НА РЕКАХ И КАНАЛАХ.
МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
МЕТОДОМ «СКОРОСТЬ - ПЛОЩАДЬ»

МИ 1759-87

Москва
ИЗДАТЕЛЬСТВО СТАНДАРТОВ
1987

РАЗРАБОТАНЫ Государственным гидрологическим институтом Государственного комитета СССР по гидрометеорологии и контролю природной среды

ИСПОЛНИТЕЛИ:

Карасев И.Ф., докт. техн. наук, профессор (руководитель темы), Савельева А.В., канд. техн. наук, Ременюк В.А., канд. техн. наук

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Всесоюзным научно-исследовательским институтом метрологической службы

Ст. эксперт отдела Трейвас Л.Г.

УТВЕРЖДЕНЫ Всесоюзным научно-исследовательским институтом расходометрии на НТС института 11 июня 1986 г., протокол № 8

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ГСИ. Расход воды на реках и каналах. Методика выполнения
измерений методом «скорость - площадь»

МИ 1759-87

Введены в действие

Настоящие методические указания устанавливают основные положения методики измерений расхода воды на реках и каналах методом «скорость - площадь» с использованием гидрометрических вертушек для измерения скоростей течения.

Применение методических указаний обеспечивает суммарную относительную погрешность измерений расхода воды S Q , не более:

6 % - при детальном способе;

10 % - при основном способе;

12 % - при ускоренно-сокращенном способе.

МУ не распространяются на измерения расхода воды с помощью поплавков и интеграции скоростей течения по ширине потока.

Определения и пояснения терминов, встречающихся в тексте, даны в приложении .

1. ПРИНЦИП ИЗМЕРЕНИЯ РАСХОДА ВОДЫ МЕТОДОМ «СКОРОСТЬ - ПЛОЩАДЬ» И КЛАССИФИКАЦИЯ ЕГО ВАРИАНТОВ

1.1. Сущность метода и принципы измерения

1.1.1. Метод «скорость - площадь» является разновидностью косвенных измерений расхода воды. При этом в результате наблюдений в фиксированном гидрометрическом створе определяются следующие элементы расхода:

глубины на промерных вертикалях и их удаление от постоянного начала по линии гидрометрического створа, для определения площади водного сечения (с точностью до трех значащих цифр, но не точнее 1 см);

продольные (нормальные к гидрометрическому створу) составляющие средних скоростей течения на вертикалях, на основе которых рассчитываются средние скорости в отсеках между ними (с точностью до трех значащих цифр, но не точнее 1 см/с).

1.1.2. Расход воды вычисляют по его элементам одним из следующих способов (с точностью до трех значащих цифр):

аналитическим, как сумму частных расходов воды, проходящих через отсеки водного сечения потока, ограниченные скоростными вертикалями;

графическим, как площадь эпюры распределения элементарных расходов воды по ширине потока.

1.1.3. При вычислении расхода воды должны определяться также основные гидравлические характеристики потока, используемые при оценке точности измерений и учете речного стока:

уровень воды над нулем поста Н ;

площадь водного сечения F ;

средняя и наибольшая скорости течения: v и v н (v = Q / F ); v н является наибольшей из скоростей, измеренных вертушкой;

ширина водного сечения В ;

глубины потока: средняя h ср и наибольшая h н (h ср = F / B ); h н является наибольшей из измеренных на промерных вертикалях.

1.2. Классификация способов измерения

1.2.1. В зависимости от методики определения средних скоростей на вертикали различают интеграционный и точечные способы.

1.2.2. Интеграционный способ основан на измерении средней скорости течения на вертикали вертушкой, равномерно перемещаемой по глубине.

1.2.3. Точечные способы, основанные на определении средней скорости течения на вертикали по результатам измерений в точках, подразделяются на:

основной способ - при измерении скорости течения на вертикали в двух (свободное русло) или трех точках (наличие водной растительности, ледостав);

детальный способ - при измерении скорости течения на вертикали в пяти (свободное) или шести точках (ледостав, водная растительность).

При малых глубинах (см. табл. ) допускается применение одноточечного способа.

1.2.4. Для основного способа измерений расхода воды в однорукавном русле назначается 8 - 10 скоростных вертикалей.

В случае применения детального способа количество скоростных вертикалей увеличивается в 1,5 - 2 раза. Детальный способ применяется при научно-методических работах по оценке точности и оптимизации процессов измерения расхода воды - для уточнения числа промерных и скоростных вертикалей, а также обоснования возможности перехода к основному способу в данном гидростворе.

Сокращенный способ измерений расхода допускает использование менее восьми скоростных вертикалей при двух-, трехточечном измерении скоростей на вертикалях (аналогично основному способу).

2. УЧАСТОК ГИДРОМЕТРИЧЕСКОГО СТВОРА

2.1. Гидрометрический створ (в дальнейшем - гидроствор) входит в состав гидрологического поста наряду с его устройствами для измерения уровней, температуры воды и других элементов водного режима реки (канала). К участку гидроствора относится часть реки, непосредственно примыкающая к гидроствору на удалении двух - трех ширин русла сверху и снизу по течению.

2.2. Условия измерений расхода воды считаются нормальными, если на участке гидроствора соблюдается прямолинейность русла:

отсутствуют резкие переломы, профиль водного сечения и эпюры распределения скоростей по ширине потока устойчивый;

обеспечен правильный одномодальный, выпуклый профиль распределения скоростей течения по глубине потока;

отсутствует выраженная пульсация скорости течения по значению и направлению, а также значительная систематическая косоструйность потока;

отсутствуют помехи при измерении скоростей течения, глубин, уровня воды и координирования скоростных и промерных вертикалей.

расположение гидроствора на плесовых участках реки;

отсутствие поймы с протоками и рукавами;

отсутствие естественных или искусственных преград;

отсутствие водной растительности в самом гидростворе, а также выше и ниже его на расстоянии до 30 м;

коэффициент вариации скорости (число Кармана Ka ) в среднем по сечению должен быть не более 15 %;

косоструйность течения на гидростворе (отклонение в плане направлений течения в отдельных точках от его среднего значения для сечения в целом) должно быть не более 20°;

мертвые пространства должны иметь четкие границы и составлять не более 10 % от площади водного сечения;

при ледоставе должен отсутствовать многоярусный ледяной покров и незамерзающие полыньи;

зашугованность русла не должна превышать 25 % площади водного сечения;

средняя скорость течения в живом сечении должна быть не менее 0,08 и не более 5 м/с;

при измерении расхода воды вблизи моста участок гидроствора должен быть расположен выше, но в случаях частых скоплений льда и заломов леса - ниже моста (на удалении не менее 3 - 5 ширин русла в обоих случаях).

2.4. Во всех случаях, где это возможно, для приведения участка в соответствие с требованиями п. должны производиться работы по упорядочению и канализованию русла.

2.5. Гидроствор должен быть расположен на однорукавном участке реки. При необходимости допускается назначать гидроствор» на участке разветвления русла на рукава и протоки.

3. ГИДРОСТВОРЫ И ИХ ОБОРУДОВАНИЕ

3.1. Местоположение и направление гидроствора

Это требование считается удовлетворительно выполненным при соблюдении следующих условий:

для беспойменных участков рек - среднее значение отклонения направления течения от нормали к гидроствору (косина струй в плане) на скоростных вертикалях не должна превышать ± 10°;

для пойменных участков рек - средняя косина струй на скоростных вертикалях не должна превышать ± 20°. При расхождении средних направлений течения в основном русле и на пойме более 20° допускается разбивать гидроствор в виде ломаной линии, участки которой соответствуют условию перпендикулярности направлению течений.

3.1.2. В случаях, когда направление гидроствора удовлетворяет указанным требованиям только при определенном наполнении русла, для данных разных фаз водного режима должны оборудоваться гидростворы, удовлетворяющие условиям п. .

3.2. Оборудование гидроствора

3.2.1. Гидроствор должен быть закреплен на местности стальным канатом или гидрометрическим мостиком, или створными знаками. Створные знаки должны быть хорошо видимыми со стороны реки и обеспечивать предельное уклонение судна от линии створа g = 1° (угол g образован линией гидроствора и линией визирования, проходящей через створные знаки и гидрометрическое судно, причем вершина угла g совпадает с положением ближнего к реке створного знака).

3.2.2. В створе устанавливается береговой знак (столб, репер и т.п.), закрепляющий постоянное начало для отсчета расстояний до урезов берегов, промерных и скоростных вертикалей, границ мертвого пространства и водоворотных зон.

3.2.4. При координировании промерных вертикалей геодезическими методами участок дополнительно оборудуется стоянкой угломерного инструмента.

4. ИЗМЕРЕНИЯ УРОВНЯ ВОДЫ

4.1. При каждом измерении расхода воды на гидрологическом посту должен быть измерен соответствующий ему уровень воды.

Правила выполнения измерений уровня воды должны соответствовать требованиям ГОСТ 25855-83 .

Время каждого измерения уровня фиксируется.

4.3. При наличии в гидростворе дополнительного уровенного поста (п. ) наблюдения за уровнем должны проводиться на обоих постах: основном и дополнительном.

5. КООРДИНИРОВАНИЕ ПРОМЕРНЫХ И СКОРОСТНЫХ ВЕРТИКАЛЕЙ В ГИДРОСТВОРЕ

5.1. Способы координирования вертикалей

5.1.1. Местоположение промерных и скоростных вертикалей в гидростворе определяется расстоянием от постоянного начала.

5.1.2. На гидростворах, оборудованных лодочной, паромной или люлечной переправой с постоянно подвешенным разметочным канатом либо гидрометрическим мостиком, необходимо закреплять положение вертикалей согласно п. .

5.1.3. При наличии прочного ледяного покрова местоположение вертикалей следует определять теодолитным ходом по льду или мерной лентой.

5.1.4. На судоходных реках или при ширине сечения более 300 м местоположение вертикалей должно определяться засечками теодолитом или кипрегелем с берега.

В отдельных случаях (например, в условиях заболоченных или широких пойм и др.) допускается применение косых или веерных створов для закрепления рабочих вертикалей.

5.2. Точность координирования промерных вертикалей в гидростворе

5.2.1. Относительная средняя квадратическая погрешность координирования вертикалей в гидростворе () должна удовлетворять требованию

(5.1)

где s к - абсолютная среднеквадратическая погрешность координирования, м;

B - ширина реки, м.

5.2.2. При назначении мест мензульных (теодолитных) стоянок необходимо, чтобы угол, образуемый направлением гидроствора и лучом визирования, a был не менее 30°.

5.2.3. Длина линий на плане l (см) при мензульной съемке должна удовлетворять условию

(5.2)

где L - длина линии на местности, м.

5.2.4. Абсолютная погрешность координирования s к , обусловленная уклонением судна от гидроствора (D Х , м), определяется по зависимости

(5.3)

где D X ср - среднее уклонение судна от гидроствора, м (табл. );

a cp - среднее значение угла, образованного лучом визирования и направлением гидроствора.

Значение уклонения судна на каждой вертикали определяется расстоянием между створными знаками l c и удалением судна от ближайшего знака L c . Допускаемое расстояние между створными знаками определяется по зависимости D X ср от l с и L c в табл. .

Таблица 1

L с, км

h - глубина на вертикали, м;

при

D X д = h . (5.5)

6. ИЗМЕРЕНИЕ ГЛУБИН И ВЫЧИСЛЕНИЕ ПЛОЩАДЕЙ ОТСЕКОВ МЕЖДУ СКОРОСТНЫМИ ВЕРТИКАЛЯМИ

6.1. Требования к точности измерения глубин

6.1.1. Измерения глубин должны производиться по линии гидрометрического створа с соблюдением требований п. .

6.1.2.. Средства измерения должны обеспечивать определение глубины в точке с инструментальной погрешностью не более 2 %. Это требование должно отвечать существующим и вновь разрабатываемым средствам измерения глубин.

гидрометрическая штанга или наметка должны применяться во всех случаях, когда наибольшая глубина в створе не превышает длину инструмента и условия измерений позволяют устойчиво зафиксировать штангу на вертикали и снять отсчет глубины (если указанные требования не выполняются, необходимо использовать промерный канат с гидрометрическим грузом или эхолот);

на каждой промерной вертикали судно должно устанавливаться на якорь или фиксироваться на канатной переправе;

при работе в руслах с илистым дном должны применяться наметки и штанги, снабженные круглым поддоном диаметром 12 - 15 см, препятствующим их погружению в ил;

при промерах штангой на реках со сплошным скальным дном следует применять штангу без конусообразного наконечника.

Масса груза, кг

Таблица 3

Угол отклонения каната от вертикали, градус

6.1.6. На мелководных горных реках глубина должна определяться как разность расстояний до дна и поверхности воды, измеряемых штангой или наметкой от перетянутого через реку каната, настила моста и т.п.

6.1.7. При набеге воды на штангу, необходимо использовать свободно перемещающийся по штанге металлический ползунок со стрелкой - указателем поверхности воды вне зоны набега.

6.2. Промеры глубин на гидростворе при измерении расхода воды

6.2.1. Промеры глубин производятся для определения площади водного сечения F и его отсеков f в . При устойчивом русле допускается использовать результаты предшествующих промеров и не производить их при каждом измерении расхода воды. Устойчивость русла оценивается на основании анализа совмещенных профилей поперечного сечения потока по гидроствору, а также по рассеянию точек эмпирической связи F (Н ) - зависимости площади водного сечения от уровня воды.

вертикальные деформации русла выражены, но за время измерения расхода воды не превышают допускаемой среднеквадратической погрешности промеров глубин;

русло устойчиво, свободно от ледовых образований, но измерения расхода проводятся эпизодически (один - два раза за период характерной фазы гидрологического режима).

6.2.4. Промеры глубин следует выполнять при каждом измерении расхода воды в два хода, если:

вертикальные деформации русла за время измерения расхода превышают допускаемую среднеквадратическую погрешность промеров глубин;

расход воды измеряется реже трех раз за фазу водности и в живом сечении отмечаются шуга и внутриводный лед;

русло в створе измерений неровное, сложено валунами или с выходами коренных пород.

6.2.5. В случаях, когда выполнение промеров на пойме затруднено, глубины в пойменной части гидроствора должны определяться по профилю, полученному инструментальной съемкой в меженный период с учетом фактических уровней воды.

6.2.6. В первые два - три года работы гидрологического поста промеры глубин должны выполняться в два хода при каждом измерении расхода воды для обоснования последующих измерений, производимых в соответствии с пп. , .

6.3. Количество промерных вертикалей

6.3.1. Количество промерных вертикалей (или засечек местоположения гидрометрического судна при промерах с помощью эхолота) следует назначать в зависимости от формы профиля водного сечения, исходя из требования: относительная среднеквадратическая погрешность измерения площади сечения не должна превышать 2 %.

6.3.2. В основных руслах равнинных и полугорных рек минимальное количество промерных вертикалей n h (min) следует назначать в соответствии с табл. в зависимости от параметра формы русла.

Таблица 4

6.3.3. При неоднородном распределении глубин по ширине потока необходимо назначать дополнительные промерные вертикали в гидростворе на всех участках излома линии дна.

6.4. Местоположение промерных вертикалей

6.4.1. В основных руслах промерные вертикали следует размещать равномерно по ширине реки и дополнительно в переломных точках поперечного профиля.

6.4.2. На реках с неустойчивым руслом в зоне максимальных глубин число промерных вертикалей следует увеличить в 1,5 раза.

6.5. Вычисление рабочей глубины на вертикали

6.5.1. Рабочая глубина на вертикалях должна рассчитываться по имеющемуся поперечному профилю с учетом срезки уровня, если имеет место несовпадение уровней при промерах и измерении расхода воды. При измерении расхода воды используются данные предварительных промеров.

6.5.2. При выполнении промеров глубин в два хода рабочая глубина на вертикалях вычисляется как среднее арифметическое из двух промеров.

6.5.4. В качестве рабочих необходимо принимать глубины с исключенным систематическим отклонением в соответствии с пп. и .

6.6. Вычисление площади водного сечения потока

6.6.1. Площади отсеков водного сечения f s необходимо вычислять по следующим формулам:

(6.2)

где m s - количество промерных вертикалей в s- м отсеке сечения;

h i - рабочая глубина на i -й вертикали, м;

b i , i +1 - расстояние между i -й и (i + 1)-й промерными вертикалями.

6.6.2. Площадь водного сечения потока должна определяться по формуле

(6.3)

где N - число отсеков водного сечения потока.

6.6.3. При наличии в водном сечении зон мертвого пространства расход воды вычисляется по живому сечению потока F

(6.4)

где - площади между скоростными вертикалями, ограничивающими мертвое пространство потока.

7. ИЗМЕРЕНИЕ И ВЫЧИСЛЕНИЕ СРЕДНЕЙ СКОРОСТИ ТЕЧЕНИЙ НА ВЕРТИКАЛИ

7.1. Назначение числа и положения скоростных вертикалей для основного и детального способов измерения расхода воды

7.1.1. Число скоростных вертикалей в створе N v должно составлять от 8 до 15, в зависимости от особенностей скоростного поля потока. При одномодальной плановой эпюре поверхностных скоростей N v = 8 - 10; при многомодальной форме эпюры скоростей N v = 12 - 15. Для особо точных измерений при установившемся режиме число скоростных вертикалей может быть увеличено.

в основной части потока скоростные вертикали должны назначаться таким образом, чтобы отсеки живого сечения, ограниченные соседними скоростными вертикалями, пропускали одинаковые частичные расходы q s полного расхода Q , составляющие

q s Q / N . (7.1)

При многомодальном характере распределения поверхностных скоростей по ширине реки дополнительные скоростные вертикали назначаются в характерных точках плановой эпюры скоростей:

скоростные вертикали назначаются только в пределах живого сечения потока. Границы мертвых пространств должны быть установлены до начала или во время измерения скоростей пуском поверхностных поплавков или по результатам рекогносцировочных измерений скоростей вертушкой;

прибрежные вертикали, а также вертикали, граничащие с мертвым пространством водного сечения, назначаются на таком расстоянии от берегов или мертвого пространства, чтобы частичный расход воды в краевом отсеке не превышал 30 % от частичных расходов основной зоны живого сечения;

на пойме скоростные вертикали должны назначаться в характерных точках поперечного профиля. В понижениях поймы, где образуются обособленные потоки, пропускающие частичный расход q s > 0,1 Q , необходимо назначать не менее трех скоростных вертикалей.

7.2. Точечные способы измерения средней скорости течения на вертикали

7.2.1. Измерение скоростей течения производится на скоростных вертикалях гидрометрическими вертушками, соответствующими ГОСТ 15126-80 .

7.2.2. Количество точек измерения и их относительное заглубление под поверхность воды (льда) назначается в зависимости от способа измерения расхода воды, способа крепления гидрометрической вертушки в потоке, состояния русла и соотношения глубины на скоростной вертикали h и диаметра лопастного винта вертушки D в соответствии с табл. .

Таблица 5

v = q / h , (7.11)

где q - элементарный расход, м 2 /с, представляющий собой площадь эпюры скорости в масштабе чертежа, получаемую в результате планиметрирования.

7.5.3. При работе вертушкой на канатном подвесе в условиях косоструйности, характеризуемой средним углом отклонения a направления струй на вертикали от нормали к гидроствору, среднюю скорость на вертикали необходимо определять по формуле

7.6.1. При выполнении интеграционных измерений скорости на вертикали необходимо выдерживать следующее соотношение между скоростью перемещения вертушки w и продольной скоростью потока v , в зависимости от допускаемой погрешности интеграции δ д:

δ д (%)

w / v

0,12

0,16

0,24

0,30

0,44.

7.6.2. Продольная составляющая средней скорости течения на скоростной вертикали устанавливается с использованием градуировочного графика вертушки по частоте вращения лопастного винта, определенной как частное от деления суммарного числа оборотов винта за время интеграции на время интеграции.

7.6.3. При интеграционном измерении скорости на вертикали среднее значение скорости вычисляется по формуле (), при этом значение среднего угла косоструйности на вертикали принимается по данным специальных наблюдений, выполненных согласно п. .

7.6.4. Для исключения систематической положительной погрешности интегрирования средней скорости на вертикали, обусловленной неполным освещением придонной зоны потока, в измеренное значение скорости следует вводить корректирующий множитель Kh .

а

0,30

0,20

0,15

0,10

0,05

Kh

0,90

0,93

0,95

0,97

0,98,

где а - относительное минимальное удаление оси вертушки от дна потока (в долях от глубины).

8. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ И ВЫЧИСЛЕНИЕ РАСХОДА ВОДЫ

8.1. Вычисление расхода воды на основе линейно-детерминированной модели при основном или детальном способе измерений

8.1.1. В соответствии с линейно-детерминированной моделью (в дальнейшем ЛД-моделью) расход воды рассчитывается по формуле

(8.1)

где f i - площади отсеков живого сечения потока, i = 1 ... п.

Вычисление средней скорости на вертикали v i должно производиться в соответствии с пп. и . Порядок вычисления площадей отсеков поперечного сечения потока приводится в разд. .

8.1.2. Коэффициенты K i и K n для скоростей v i и v n на прибрежных скоростных вертикалях при отсутствии мертвого пространства принимаются равными:

0,7 - при пологом береге с нулевой глубиной на урезе; вблизи границы скопления неподвижной шуги;

0,8 - при естественном обрывистом береге или неровной стенке (бут, неотесанный камень);

0,9 - при гладкой бетонной или сплошь обшитой досками стенке, а также при течении воды поверх льда.

При наличии мертвого пространства в прибрежной зоне коэффициенты K 1 и K n равны соответственно 0,5.

8.1.3. ЛД-модель допустимо использовать при вычислении расхода воды при числе скоростных вертикалей N v , удовлетворяющем требованиям п. .

8.2. Вычисление расхода воды на основе интерполяционно-гидравлической модели при сокращенном способе измерений

8.2.1. Применение сокращенного способа измерений с последующим вычислением расхода воды по интерполяционно-гидравлической модели является целесообразным и допускается, если при уменьшении числа скоростных вертикалей до трех - пяти (для потоков с шириной сечения более 10 м) отклонения результатов измерения от значений, полученных детальным способом, носят случайный характер, а среднеквадратическое отклонение не превышает 5 %.

8.2.2. Согласно линейной интерполяционно-гидравлической модели (в дальнейшем ЛИГ-модели), расход воды должен вычисляться по формуле

(8.2)

где D s - число отсеков водного потока;

i , j - индексы ограничивающих s -й отсек скоростных вертикалей;

P s - весовой коэффициент, равный 0,7 для прибрежных отсеков и 0,5 - для основного водного сечения;

а - гидравлический коэффициент, вычисляемый по формуле

(8.3)

где N v - число скоростных вертикалей в живом сечении.

8.2.3. В случае, когда живое сечение потока состоит из выраженных гидравлически обособленных зон (например, разделено затопленным осередком), в каждой из них необходимо вычислять расход воды как для отдельного русла, а общий расход в гидростворе определять суммированием этих значений.

8.2.4. Прибрежные скоростные вертикали (или ближайшие к границе обособленных зон сечения) должны быть расположены на удалении не более 0,3 b k от урезов (или границ обособленных зон), где b k - ширина соответствующей гидравлически обоснованной зоны живого сечения.

8.3. Графический способ вычисления расхода воды

8.3.1. Графический способ целесообразно применять при сложном распределении скоростей по глубине и ширине потока, обеспечив достаточно большое количество (не менее пяти) точек измерения скоростей течения на вертикали и число вертикалей в сечении N v ³ 8.

8.3.2. Расход воды вычисляется в следующем порядке:

на миллиметровой бумаге вычерчивается профиль поперечного сечения по расчетному уровню воды и приведенным к нему глубинам, с нанесением скоростных вертикалей;

вычерчиваются эпюры распределения скорости течения по вертикали и определяются средние скорости на вертикалях посредством планиметрирования площадей эпюр, выражающих элементарный расход воды на скоростных вертикалях (см. п. );

на профиль живого сечения наносится плавная эпюра распределения средних скоростей на вертикали по ширине потока v (в );

на основе эпюры v (в ) и профиля глубин строится эпюра распределения по ширине потока элементарного расхода воды q (в );

расход воды определяется как площадь эпюры q (в).

8.3.3. Масштаб изображения эпюр распределения скоростей, глубин и удельных расходов должен выбираться таким, чтобы все элементы расхода воды, вычисляемые графическим способом, размещались на листе миллиметровой бумаги размером 407 ´ 288 или 407 ´ 576 мм.

Наиболее удобными масштабами изображения являются:

для эпюр скоростей: вертикальный - в 1 см 0,5 м; горизонтальный - в 1 см 0,2 м/с;

для профиля глубин: вертикальный - в 1 см 0,5 м; горизонтальный - в 1 см 2, 5, 10, 20 м;

для кривой элементарных расходов: вертикальный - в 1 см 1 м 2 /с

8.4. Вычисление уровня, соответствующего измеренному расходу воды

8.4.1. Для построения кривой расхода Q (Н ) измеренному расходу воды Q должен соответствовать уровень Н , при котором расход Q измерен:

(8.4)

где H s - уровень воды, отвечающий частичному расходу q s , полученный интерполяцией между наблюдаемыми значениями уровней (см. п. ).

8.4.2. Если относительное изменение уровня за время измерения расхода воды не превышает 2 % от средней глубины сечения, применяется упрощенная формула

(8.5)

где H н и H к - соответственно уровни воды в начальный и конечный период времени измерений.

8.4.3. Расчетный уровень, определенный для дополнительного поста, приводится к уровню на основном посту по связи соответственных уровней.

8.5. Оперативный контроль точности измерений

8.5.1. Контроль точности измерений должен выполняться непосредственно на гидростворе при производстве измерений. Сомнительные значения элементов расхода воды (глубины, скорости, расстояния, уровня) уточняются и исправляются либо подтверждаются проведением повторных измерений.

8.5.2. При устойчивой (однозначной) связи расхода и уровней расход воды измеряется с целью контроля устойчивости многолетней кривой расхода Q(Н ). В свою очередь эта кривая используется для оперативного контроля точности измерений и выявления промахов наблюдений на основе критериального соотношения

где S Q - относительная, суммарная погрешность измерений;

δ д - допускаемая погрешность.

9.1.3. Поставленная задача оптимизации относится к классу некорректных, так как допускает неоднозначность решений, т.е. неединственность выбора оптимального вектора характеристик детальности. На практике достаточно остановиться на любом векторе (N s , n s , N m ), удовлетворяющем условию () и обеспечивающем достаточные удобство и безопасность, удовлетворительные трудоемкость и энергоемкость процесса измерений расхода воды.

9.1.6. Для практических расчетов оценки составляющих и допустимо выполнять по графическим зависимостям на черт. и .

Зависимость относительной случайной средней квадратической погрешности измерения площади отсека живого сечения от числа промерных вертикалей и параметра формы сечения

n s - числа промерных вертикалей в отсеке; j - параметр формы сечения

Черт. 1

Зависимость относительной случайной среднеквадратической погрешности измерения средней скорости в отсеке от числа Кармана Ka и среднего числа точек N m измерения скорости на вертикали

Черт. 2

9.2. Оптимизация длительности измерений

9.2.1. Длительность измерительного процесса T и является одним из определяющих факторов точности измерений расхода: при уменьшении T и погрешность возрастает за счет недостаточного осреднения пульсаций скорости; при увеличении T и возрастает погрешность, обусловленная «срезкой» пиков и провалов водности при прохождении волн попусков и паводков. Длительность T и должна находиться в интервале

T min £ T и £ T max , (9.5)

где T min и T max - минимально и максимально допустимая длительности измерительного процесса.

Время T min определяется из зависимости (), а T max - по формуле

(9.6)

где T п - период колебания волн попуска (паводка), ч или сут;

j - фаза периода колебаний, на которую приходится середина интервала времени измерений T и ; 0 £ j £ 2 p ;

А - относительная амплитуда волн попуска

(9.7)

где Q max и Q с - максимальный и средний за период попуска расходы воды соответственно.

10. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ИСПОЛНИТЕЛЯ И ТЕХНИКЕ БЕЗОПАСНОСТИ РАБОТ

10.1. Требования к квалификации исполнителя

10.1.1. Квалификация наблюдателя должна соответствовать условиям, средствам и методам измерений.

На малых реках, в условиях межени и небольшой глубины потока, когда допустимо производство наблюдений вброд, а из технических средств используются лишь вертушка и гидрометрическая штанга, а также в других случаях к измерениям расходов воды допустимо привлекать технический персонал с квалификацией гидрометеонаблюдателя, специально обученный и проинструктированный относительно особенностей измерений в данном створе.

10.1.2. В тех случаях, когда используются более сложные технические средства (например, дистанционные установки, различного типа судовые комплексы, эхолоты и т.д.), а также в период повышенной опасности наблюдений при высокой водности потока, значительных глубинах и скоростях течения, при неустойчивости русла, значительной косоструйности потока и других осложняющих измерения факторах к работе следует привлекать исполнителей с квалификацией не ниже техника-гидролога.

10.1.3. Наблюдатель должен знать принцип действия и устройства средств измерения и уметь обращаться с ними при выполнении измерений; знать водный и русловой режим на участке измерений и условия их выполнения при различных фазах режима; уметь использовать электронные калькуляторы для обработки расходов воды и результатов измерений.

10.2. Требования к технике безопасности работ

10.2.1. К выполнению измерений расхода воды в открытых руслах допускаются только лица, прошедшие инструктаж по технике безопасности. Результаты инструктажа фиксируются в специальном журнале, хранящемся на гидрологической станции.

10.2.2. При выполнении измерений расходов воды необходимо руководствоваться «Правилами по технике безопасности при производстве наблюдений и работ на сети Госкомгидромета» (Гидрометеоиздат, 1983).

11. СРЕДСТВА ИЗМЕРЕНИЙ И ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА

11.1. При выполнении измерений расхода воды должны быть применены измерительные установки, средства измерений и устройства, приведенные в табл. .

Таблица 7

Наименование измеряемых физических величин и параметров

Вертушка гидрометрическая: ГР-21, ГР-99

Средняя скорость потока

Кипрегель

Горизонтальное проложение до точки визирования

Теодолит

Превышения

Рейка нивелирная

Рейка водомерная переносная ГР-104

Уровень воды

Рейка водомерная с успокоителем ГР-23

Уровень воды при волнении

Рейка ледоснегомерная ГР-31

Толщина ледяного покрова

Максимальная рейка ГР-45

Наибольший уровень между сроками наблюдений

Штанга гидрометрическая ГР-56

Глубина потока

Самописец уровня: СУВ-М «Валдай», ГР-38

Непрерывная регистрация уровня воды

Секундомер

Длительность измерений

Установка для измерения расхода воды дистанционная: ГР-70, ГР-64М

Глубина и скорость потока, расстояние от постоянного начала

Лебедка гидрометрическая

Глубина потока

Рулетка измерительная

Расстояние

Груз гидрометрический: ГГР, ПИ-1

Глубина потока

Канат разметочный

Расстояние от постоянного начала

Люлька гидрометрическая

Мостик гидрометрический

Канатная переправа

С Y - коэффициент вариации элементов

(2.1)

где s (Y ) - среднее квадратическое отклонение элемента,

- математическое ожидание значений Y (X ) и Y (t ),

ξ к - радиус корреляции (п. )

(2.2)

t к - среднее время корреляции

(2.3)

где R (ξ) и R (t ) - автокорреляционные функции соответственно для Y (X ) и Y (t ). Определение ξ к и t к удобно производить по графикам функции R (ξ) к R (t ), рассчитанных по стандартной программе математического обеспечения ЭЦВМ для данной выборки значений { Y (X )} и { Y (t )}.

Для различных технологических потребностей и иных нужд часто бывает необходимо определение расхода воды в трубе и его динамика в течение периода времени. Для многих циклических процессов важно постоянно контролировать расход воды и здесь не обойтись без современных измерений.

ЗАО «Экспертиза коммунальных сетей» производит:

  • измерение расхода воды и сточных вод в напорных и безнапорных (самотечных) трубопроводах с помощью портативных ультразвуковых расходомеров (временная установка приборов учета воды),
  • оценивает точность показаний стационарных расходомеров Заказчика. Замеры производятся по трубам из различных материалов и диаметром от 50 мм до 2 м.

Точное определение расхода и количества жидкости необходимо при коммерческих разногласиях и судебных спорах, для правильного планирования реконструкции, подбора насосных агрегатов и диаметров труб, гидравлических расчётов и моделирования.

Измерение расхода жидкости является важным мероприятием при выявлении распределения потоков, проверки точности работы стационарных водомеров. Замер расхода воды и сточных вод позволяет определить степень использования (нагруженности) сетей водоснабжения и канализации.

Цены

Измерение расходов воды — от 20000 р.
Цены

Оборудование

В своей работе мы используем высокоточное ультразвуковое оборудование. Каждый расходомерный комплект имеет Сертификат соответствия (Свидетельство об утверждении типа средств измерений), проходит периодическую поверку (подтверждённую соответствующими документами). Перед закупкой все наши расходомеры отбирались по результатам сравнения разных марок оборудования, стабильности показаний даже в неблагоприятных условиях, в т.ч. на старых трубах. Это позволяет нам делать точные измерения на действующих сетях, определять распределение потоков, водопотребление отдельных потребителей, находить источники потерь воды, проводить сравнительные измерения с имеющимися стационарными приборами учёта для оценки корректности их показаний.
Для измерений расхода воды на напорных сетях водоснабжения и теплоснабжения (отопления) мы используем следующее оборудование:

  • Портативный ультразвуковой измеритель потока GE Panametrics PT878 (США), 2 комплект а. Прибор определяет скорость и расход жидкости в трубопроводе. Погрешность измерений находится в пределах 0,5-2%. Внешний диаметр трубопровода может составлять 50-5000 мм. Каждый комплект дополнительно оборудован толщиномером и различными креплениями: на цепях и магнитах.
  • Расходомер ChronoFlo (Hydreka, Франци я). Главным преимуществом этого прибора является долгоживущая аккумуляторная батарея (на протяжении 80 часов с включенным LCD-экраном и выключенной подсветкой).

Приборы, которые определяют расход воды

В нашей компании имеется современное ультразвуковое оборудование известных производителей, которое позволяет точно определить расход воды. В зависимости от особенностей объекта наши специалисты выбирают оптимальный тип прибора. Для установки оборудования не требуется демонтаж части трубопровода.

Пример зоны обследования с целью обнаружения скрытых утечек.

Услуга необходима в ситуациях

  • Определение расхода на различных участках сети дает возможность выявить скрытые утечки.
  • Измерение расхода воды и сточных вод позволяет определить нагруженность трубопровода, возможность увеличения потока (например, подключение новых абонентов).
  • Замеры характеристик потока позволяют определить фактические значения скорости, расхода, наполнения трубопровода: максимальные, минимальные, средние, накопленные. По результатам замеров формируются таблицы и графики
  • С помощью замеров в разных точках сети можно выявить неизвестное подключение.
  • На промышленных предприятиях контроль расхода воды часто важен для соблюдения технологического процесса, планирования модернизации, оптимизации режимов, экономии ресурсов.

Мы точно определим расход воды и предоставим заключение, если вам требуется доказать свою правоту по этому вопросу в суде.

Преимущества нашей компании:

  • Определение расхода воды выполняется с использованием современного оборудования, которое обладает высокой точностью.
  • Возможен выезд на объект в день оформления заказа.
  • Гарантированно высокое качество работ при умеренных ценах.
  • При необходимости наши специалисты выезжают в регионы.
  • После выполнения замеров заказчику предоставляется техническое заключение, а также рекомендации по устранению выявленных проблем учета расхода воды.

Измерение расхода воды гидрометрической вертушкой

Многоточечный (детальный) способ предусматривает измерение расхода воды по увеличенному против обычного числу скоростных вертикалей 10-15 с измерением скорости в 5-10 точках (пов.;0,2;0,6;0,8;дно-при свободном русле; пов.;0,2;0,4;0,6;0,8;дно-при несвободном русле) на каждой вертикали. Многоточечный способ даёт наиболее точное значение расхода.

Основной способ, когда число скоростных вертикалей уменьшается в 1.5-2 раза по сравнению с детальным, а скорости течения измеряются в 2-3 точках на каждой вертикали.

Интеграционный способ по вертикалям применяется при глубинах более 1 м и скоростях течения более 0.2 м/с. Измерение производится с помощью интегральной установки ГР-101.

Ускоренный способ применяется при быстрых изменениях уровня за время измерения расхода воды при интенсивной деформации русла, при наличии переменного подпора и в других неблагоприятных условиях.

Сокращенные способы предусматривают измерение расхода воды по средней скорости на 1-2 репрезентативных вертикалях или единичной скорости в точке 0.2 её рабочей глубины.

Измерение расхода воды поплавками

Измерения поверхностными поплавками. Точность поплавочных измерений существенно ниже, чем вертушечных. При интенсивном ледоходе, когда вертушечные измерения становятся невозможными, а в качестве поплавков служат отдельные льдины.

Измерение расхода воды глубинными поплавками и поплавками-интеграторами

Поплавки этого вида используются для измерения сравнительно малых скоростей течения (до 0,15-0,20 м/с), когда вертушечные измерения мало надежны.

Измерение расхода воды гидравлическим способом

Используется когда измерить расход воды другими способами не представляется возможным. Расход воды вычисляется по формуле

Q=VсрF, Vср=C RJ,

где R-гидравлический радиус; J-продольный уклон; C-скоростной коэффициент или коэффициент Шези C=1/nR x-1,5 n при R<1 м;x-1,3 n при R>1 м.

Наблюдения за уровнями рек

Результаты наблюдений за уровнями позволяют установить зоны и продолжительность затопления отдельных участков речной долины, скорость продвижения паводочной волны вдоль по реке (в том случае, если «а реке имеется не менее двух водомерных постов) и сделать выводы об общем характере изменения водности реки в течение года в многолетнем периоде, о наиболее высоких половодьях и т. д.

Среди этих так называемых характерных уровней наибольший практический интерес представляют уровни: 1) наивысший годовой, 2) весеннего ледохода, 3) осеннего ледохода, 4) летних и осенних паводков, 5) наинизший летний и зимний.

Речной сток - перемещение воды в виде потока по речному руслу.

Происходит под действием гравитации. Является важнейшим элементом круговорота воды в природе, с помощью которого происходит перемещение воды с суши в океаны или области внутреннего стока. Количественное значение стока в единицу времени называется расходом воды.

В гидрологии под речным стоком обычно подразумевается объём стока - объём воды, прошедшей через определённый створ в единицу времени, чаще всего год. Объединяет поверхностный сток (образующийся в результате осадков и снеготаяния) и подземный сток, формируемый за счет грунтовых вод. Речной сток за год является объективным показателем для определения полноводности реки.

Главной характеристикой речного стока являются расходы воды.

Все остальные характеристики речного стока, по сути, являются производными от соответствующих расходов воды. Рассмотрим наиболее часто употребляемые характеристики речного стока.

Объем стока W (м 3 , км 3) - количество воды, стекающей с водосбора за какой-либо интервал времени (сутки, месяц, год и т. д.).

Модуль стока М (л/с * км 2) или q[м 3 /c * км 2)] -количество воды, стекающей с единицы площади водосбора в единицу времени.

Слой стока h (мм) - количество воды, стекающей с водосбора за какой-либо интервал времени, равное толщине слоя, равномерно распределенного по площади этого водосбора.

Коэффициент стока - отношение слоя стока к количеству выпавших на площадь водосбора осадков, обусловивших возникновение стока.

Годовой сток подсчитывается в умеренном климате за гидрологический год, начинающийся осенью (1 октября или 1 ноября), когда запасы влаги в речных бассейнах, переходящие из одного года в другой, малы.

Для измерения скорости течения используют два вида приборов: электрические и механические. Во многих измерениях течений как механических, так и электрических датчиком скорости течения служит вращающаяся на оси крыльчатка, а датчиком направления-магнитный компас. Все эти приборы основаны на измерении числа оборотов крыльчатки за определенный промежуток времени. Это делается с помощью механического (вертушка Экмана) или электрического (измеритель течений Робертса) счетчика. В последнее время широко используются ротор Савокиуса, обороты которого регистрируются электрическим счетчиком, и буквопечатающая вертушка Алексеева. В вертушке Алексеева запись ведется на ленте с помощью специального устройства через определенное количество оборотов вертушки.

В практике лимнологов для определения скорости течения используются также термометры сопротивления-термогидрометры, основанные на изменении сопротивления термопар в зависимости от скорости водного потока, омывающего эти датчики. В последнее время появились усовершенствованные электрические записывающие измерители скорости и направления течений-АЦИТ.

Чтобы установить характер связи между расходами и уровнями, необходимо тщательно проверить и проанализировать исходные материалы. К ним относятся: 1) таблица «Измеренные расходы воды» (ИРВ); 2) таблица «Ежедневные уровни воды» (ЕУВ); 3) совмещенные профили поперечных сечений по гидрометрическому створу; 4) план участка поста; 5) поперечный профиль по гидроствору до уровня высоких вод; 6) техническое дело поста; 7) литературные и архивные материалы, характеризующие режим реки на участке гидрометрического створа.

ГОСТ Р 51657.2-2000

Группа П60

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВОДОУЧЕТ НА ГИДРОМЕЛИОРАТИВНЫХ И ВОДОХОЗЯЙСТВЕННЫХ СИСТЕМАХ

Методы измерения расхода и объема воды. Классификация

Water flow measurement in hydromelioration and water economics systems.
Methods of water flow measurement. Classification

ОКС 17.120
ОКП 43 1100

Дата введения 2001-07-01

Предисловие

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 317 "Измерение расходов жидкости в открытых водотоках и каналах"

ВНЕСЕН Техническим комитетом по стандартизации ТК 317 "Измерение расходов жидкости в открытых водотоках и каналах" и Департаментом мелиорации земель и сельскохозяйственного водоснабжения министерства сельского хозяйства РФ

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 14 декабря 2000 г. N 355-ст

3 ВВЕДЕН ВПЕРВЫЕ

1 Область применения

1 Область применения


Настоящий стандарт устанавливает применяемые на пунктах водоучета в гидромелиоративных и водохозяйственных системах методы измерения расхода и объема воды.

Настоящий стандарт не распространяется на методы измерения расхода, объема и количества жидкостей, используемых для технологических целей общепромышленного и нефтехимического назначения.

Настоящий стандарт применяется для всех водохозяйственных организаций различных Министерств и ведомств, обеспечивающих распределение водных ресурсов между потребителями, а также в КБ, НИИ, проектных и промышленных организациях, осуществляющих разработку, испытания, изготовление и эксплуатацию технических средств водоучета для открытых водотоков, каналов и объектов АПК, напорных, полунапорных и безнапорных трубопроводов и для гидромелиоративных насосных станций.

Настоящий стандарт должен применяться совместно с ГОСТ 8.439 и ГОСТ 15528.

2 Нормативные ссылки


В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.439-81 Государственная система обеспечения единства измерений. Расход воды в напорных трубопроводах. Методика выполнения измерений методом площадь - скорость

ГОСТ 8.563.1-97 Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов методом переменного перепада давления. Диафрагмы, сопла ИСА 1932 и трубы Вентури, установленные в заполненных трубопроводах круглого сечения. Технические условия

ГОСТ 8.563.2-97 Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов методом переменного перепада давления. Методика выполнения измерений с помощью сужающих устройств

ГОСТ 8.563.3-97 Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов методом переменного перепада давления. Процедуры и модуль расчетов. Программное обеспечение

ГОСТ 15528-86 Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения

ГОСТ Р 51657.1-2000 Водоучет на гидромелиоративных и водохозяйственных системах. Термины и определения

3 Определения


В настоящем стандарте применяют термины и определения по ГОСТ Р 51657.1.

4 Общие положения

4.1 Классификация методов измерения расхода и объема воды выполнена как для открытых русел, так и для трубопроводов, т.к. в общем случае гидромелиоративные и водохозяйственные системы транспортируют жидкость как в открытых водотоках и каналах (ГОСТ 8.439 , , ), так и в трубопроводах с перекачивающими насосными станциями ГОСТ 8.563.1 - ГОСТ 8.563.3 .

4.2 Для измерения расхода и объема воды на пунктах водоучета, расположенных как в открытых руслах, так и на трубопроводах, в основном используют методы, отличающиеся друг от друга техническими реализациями, которые объединены в разделе 5.

4.3 Для целей утверждения типа средств измерений, используемых для технической реализации методов измерений расхода и объема воды, должны проводиться обязательные испытания.

5 Классификация методов измерения расходов и объемов воды


По способам получения результатов измерения подразделяют на прямые и косвенные.

5.1 Прямые измерения расходов и объемов воды для открытых русел и напорных трубопроводов

Прямые измерения осуществляют следующими методами:

- объемным, при котором используют градуированные резервуары или образцовые жидкостные мерники, резервные емкости натурных участков каналов или небольших водохранилищ;

- массовым, при котором используют емкость, установленную на образцовых весах, в которой измеряется масса жидкости за заданный интервал времени.

Прямые измерения применяют, как правило, для получения высокоточных данных при исследованиях и опытно-конструкторских разработках расходомеров, метрологических испытаниях и градуировках средств измерений, а также в эталонных расходомерных установках и при учете жидкостей в коммерческих целях.

5.2 Косвенные измерения расходов и объемов воды для открытых водотоков и каналов

5.2.1 В зависимости от стационарного оборудования косвенные измерения осуществляют с использованием:

- закрепленных гидропостов в естественных устойчивых или искусственных необлицованных руслах и облицованных участках русел по ГОСТ 8.439 ;

- гидрометрических сооружений и устройств , включающих водосливы, пороги, гидрометрические лотки и специальные гидрометрические устройства (приставки, насадки);

- градуированных гидротехнических сооружений.

5.2.2 В зависимости от измеряемых параметров косвенные измерения с использованием закрепленных гидропостов в устойчивых необлицованных или облицованных участках русел осуществляются следующими методами :

- скорость - площадь;

- уклон - площадь;

- смешения.

При использовании гидрометрических сооружений и устройств применяют следующие методы:

- уровень (напор) - расход;

- перепад уровней (разность напоров) - расход;

- скорость - расход.

Измерения указанных параметров могут осуществляться как обычным способом, т.е. всего проходящего потока, так и парциальным способом, при котором измеряется только заданная часть потока.

При использовании градуированных гидротехнических сооружений применяют следующие методы:

- уровни (напоры) - открытие регулирующего устройства - расход;

- перепады уровней (разность напоров) - значение открытия регулирующего устройства - расход.

Косвенные методы измерений используют как основные для рабочих средств определения расхода и объемов воды.

Для выбора требуемого метода измерений воды следует использовать ГОСТ 8.439 , .

5.3 Косвенные методы измерения потоков в закрытых трубопроводах

5.3.1 В зависимости от стационарного оборудования косвенные измерения осуществляют с использованием:

- измерительных сечений или участков трубопроводов;

- сужающих устройств, включающих диафрагмы, сопла и трубы Вентури по ГОСТ 8.563.1 - ГОСТ 8.563.3 ;

- градуированного гидромеханического оборудования.

5.3.2 В зависимости от измеряемых параметров косвенные измерения с использованием измерительных сечений или участков трубопроводов осуществляются следующими методами:

- площадь - скорость по ГОСТ 8.439 ;

- перепад давления - площадь по ГОСТ 8.563.1 - ГОСТ 8.563.3 ;

- смешения.

Измерения параметров проводят как обычными методами, т.е. для всего проходящего в трубе потока, так и парциальными методами, т.е. для заданной части отведенного (байпасного) потока в трубопроводе малого диаметра.

При использовании сужающих устройств измерения параметров напорных потоков осуществляют следующими способами по ГОСТ 8.563.1 - ГОСТ 8.563.3 :

- скорость - расход:

- разность давлений - расход.

При использовании градуированного гидромеханического оборудования для измерений применяют следующие способы:

- разность давлений в верхнем и нижнем бьефах - значение открытия регулирующего устройства - расход;

- разность давлений между характерными точками гидромеханического оборудования - значения открытия регулирующего устройства - расход.

Последние методы измерений относятся к приближенным, т.к. гидромеханическое оборудование изменяет со временем свои характеристики.

Косвенные методы измерений используются как основные для рабочих средств определения расходов и объемов воды.

Определения перечисленных методов измерений расхода и объема воды напорных потоков в трубопроводах приведены в ГОСТ 8.563.1 - ГОСТ 8.563.3 , ГОСТ 15528 и .

ПРИЛОЖЕНИЕ А (справочное). Библиография

ПРИЛОЖЕНИЕ А
(справочное)

МИ 2406-97 ГСИ. Расход жидкости в открытых каналах систем водоснабжения и канализации. Методика выполнения измерений при помощи стандартных водосливов и лотков

Наставление гидрометеорологическим станциям и постам, вып.6. часть II . Гидрологические наблюдения и работы на малых реках. Гидрометеоиздат. Л., 1972

Рекомендации по применению расходомерных устройств на мелиоративных насосных станциях с подачей до 6 м/с. ВНИИВОДГЕО Госстроя СССР. М., 1986



Текст документа сверен по:
официальное издание
М.: ИПК Издательство стандартов, 2001

ВВЕДЕНИЕ


Расход воды - основная гидрологическая характеристика реки, которая необходима при проектировании любого гидротехнического сооружения на реке: гидроэлектрической станции - для расчета ее мощности; оросительной системы - чтобы знать возможную площадь орошаемых земель; речного водопровода - чтобы знать, сколько можно брать воды из реки, и т. д.

Расход небольших водотоков (ручья, источника, ключа) можно измерить непосредственно, так называемым объемным способом. Для этого необходимо водоток перекрыть небольшой запрудой, вывести из нее желоб, по которому вода водотока свободно стекала бы в сосуд с известным объемом, и измерить по секундной стрелке, за сколько секунд сосуд наполнится водой, вытекающей из желоба.

Объемный способ измерения расхода воды предложил древнегреческий философ Герон Александрийский около 100 г. н. э.

Первое измерение расхода воды Амазонки заняло трое суток, в нем участвовали военные корабли бразильского флота и, не считая бразильских специалистов, работали четыре инженера-гидролога гидрологической службы США. Расход Амазонки был измерен впервые в 1963 г., лишь через 463 года после открытия ее В. Пинсоном. Измерялся расход не в устье, где ширина реки достигает многих километров и определить его почти невозможно, а на суженном участке русла около города Обидус, в нижнем течении (площадь бассейна около 5 млн. км2). Здесь ширина Амазонки составляет "всего" 2,3 км, средняя глубина около 45 м (максимальная превышает 60 м). Средний расход воды у этого города оказался равным 170 тыс. м3/с, а отнесенный к устью реки - 220 тыс. м3/с Это примерно в 2 раза больше, чем считали до 1963 г., по ориентировочным измерениям поплавками.

Расход воды крупнейшей реки Европы - Волги был впервые определен в августе 1700 г. английским инженером Джоном Перри, приглашенным Петром I на работу в Россию. Скорость течения измерялась поплавками. Перри получил величину расхода, близкую к действительной (средней за август),- 6360 м3/с.

На территории Европы измерения расхода воды крупнейших рек были начаты в 1800-1810 гг., в Северной Америке, Азии и Австралии - в середине 19 в., в Африке и Южной Америке - только в первой четверти 20 в.

Цель курсовой работы - рассмотреть характеристики приборов и методов измерения расходов воды. Для этого в курсовой работе решим следующие задачи:

-рассмотри характеристику приборов, используемых для измерения расходов воды;

изучим характеристики основных методов измерения расходов воды.

Курсовая работа состоит из введения, двух глав, заключения и списка используемой литературы.


ГЛАВА 1. ХАРАКТЕРИСТИКА ПРИБОРОВ, ИСПОЛЬЗУЕМЫХ ДЛЯ ИЗМЕРЕНИЯ РАСХОДОВ ВОДЫ

вода гидрометрический вертушка полевой

1.1 Приборы для измерение расхода открытых потоков


Для измерения расхода воды в открытых каналах и потоках применяются гидрометрические щиты, каналы Вентури, измерительные водосливы, гидрометрические вертушки и другие устройства и способы измерения.

Необходимость измерения расхода открытых потоков возникает при испытаниях гидротурбин и мощных насосов, при определении дебита рек и оросительных сооружений и т. д. Во всех этих случаях мы имеем дело с громадными расходами воды.

Для некоторых случаев водоснабжения открытыми каналами, а также при испытаниях гидротурбин и контроле за их работой получил распространение способ измерения расхода воды с помощью гидрометрического щита. Этот способ легко осуществи и дает хорошие результаты, если при производстве строительных работ предусматривается выделение специального измерительного участка канала с гладкими стенками и дном и специальных приспособлений для крепления и продвижения щита. Заключается этот способ измерения в следующем (рисунок 1.1, Гидрометрический щит).


Рис. 1.1 Гидрометрический щит

Легкая перегородка, выполненная по профилю канала, укрепляете вертикально на каретках, могущих перемещаться по направляющим. В исходном положении перегородка поднята и закреплен замком в поднятом положении. Перед началом измерения пер городка опускается в поток и под действием напора воды перемещается со скоростью потока по течению.

На контрольном участке АВ длиной L фиксируется секундомером за это время перегородка опишет объем, равный произведению площади сечения потока F на длину контрольного участка.

Надежные значения коэффициента а имеют водосливы с вертикальным порогом с острой верхней кромкой при правильном (без падения вдоль стенки порога) истечении через водослив. Это может быть обеспечено подводом воздуха под падающую струю.

Кроме прямоугольной, порог может иметь также трапецеидальную и треугольную формы.

Для правильного определения расхода с помощью измерительных водосливов должны быть выдержаны определенные требования. Основными являются следующие:

) Перед подходом потока к водосливу и при истечении через водослив должна быть обеспечена равномерность потока.

) В конце контрольного участка щит удерживается упором, а нижняя часть перегородки освобождается и удерживается потоком в наклонном положении.

Другим способом измерения расхода открытых потоков является способ измерения при помощи измерительных водосливов. Это способ находит применение при сооружении плотин и других аналогичных гидросооружений.

Устройство водослива показано на рисунке 1.2


Рис.1.2 Устройство водослива


Выполняется прямой канал перед водосливом с гладкими дном и стенками, которые должны быть вертикальными и параллельными как перед водосливом, так и за ним.

) Устойчивость потока, падающего с порога, достигается, как говорилось выше, подводом воздуха под падающую струю. Хороший доступ воздуха под струю возможен при условии, если порог водослива расположен достаточно высоко над уровнем воды за водосливом.

) Порог водослива со стороны подхода воды должен иметь гладкую поверхность и достаточно острую и прямоугольную кромку, которая, кроме этого, должна быть горизонтальна и прямолинейна.


Рисунок 1.3

В отдельных случаях для измерения расхода открытых потоков применяется (рисунок 1.3), который по принципу действия подобен соплу или трубе Вентури с той лишь разницей, что сечение потока в измерительной части канала изменяется с изменением расхода, в то время как сечение потока в закрытом трубопроводе остается постоянным независимо от расхода.

Так же как и для случая сужающих устройств, при совместном решении уравнений Бернулли и неразрывности струи может быть получена зависимость между расходом и перепадом давлений в сечениях.

Нужно заметить, что потеря давления в канале Вентури меньше, чем на измерительных водосливах, поэтому канал Вентури может быть использован более широко. Кроме того, через канал Вентури поток проходит всем сечением, что позволяет измерять о ход загрязненной воды.

Рассмотренные способы измерения расхода требуют специальных, порой дорогостоящих сооружений, что не всегда возможно, особенно при больших сечениях каналов и рек. В этом случае широко применяется способ измерения расхода по средней скорости потока в определенном сечении. Для этой цели широко применяются гидрометрические вертушки (рисунок 1.4).


Рис.1.4 Гидрометрические вертушки


При погружении в поток воды вертушка вращается со скоростью, пропорциональной скорости потока в месте измерения.

1.2 Судовой автоматизированный комплекс «Створ»


Предназначен для оперативного определения расхода воды средних и больших рек. Принцип его работы заключается в определении расхода воды по скорости течения, измеренной в поверхностном слое воды во время движения судна по гидроствору, углу между направлением вектора скорости и линией створа и глубине русла. Обработка результатов измерения и вычисление расхода воды с учетом коэффициента перехода от поверхностной к средней скорости течения осуществляется автоматически в процессе движения судна. Значения расхода (м3/с) регистрируются на цифровом табло.

Комплекс «Створ» можно использовать на маломерных судах (катерах, мотолодках) с немагнитным корпусом. Он состоит из выносной опоры 1 для опускания приборов в поток, гидрофона эхолота 3 для измерения глубины русла, измерителя скорости 4 с гидрофлюгером 2, индукционного датчика 5 для измерения угла между направлением течения и линией створа, аппаратуры, включающей блок регистрации глубин 6, блок вычисления расхода 7 и цифровой индикатор расхода 8, комплекта соединительных кабелей.


Рис. 1.5 Основные узлы комплекса «Створ»

Питание аппаратуры производится от источников постоянного тока напряжением 27 В.

Диапазон измерений глубины 0,5-20 м, скорости 0,5-3,0 м/с; погрешность измерения расхода 5%.

Этот способ отличается высокой степенью автоматизации измерительного процесса, быстротой производства гидрометрических работ, что придает ему особую практическую ценность при резких повышениях и понижениях уровней воды.


1.3 Гидрометрические вертушки


Существует много конструктивных разновидностей вертушек. Основным отличительным признаком вертушек является расположение оси вращения лопастей: с горизонтальной или вертикальной осью вращения. Наибольшее применение получили вертушки с горизонтальной осью ГР-21М, ГР-55 и др.

Гидрометрическая вертушка ГР-21М (pис.1.6) состоит из следующих основных частей: корпуса 14, хвостового оперения (стабилизатора) 13, ходовой части с контактным механизмом и лопастным винтом 3, а также сигнального устройства.


Рис.1.6 Устройство гидрометрической вертушки ГР-21М


Корпус 14 служит для сочленения частей вертушки, крепления ее на штанге или вертлюге 10 и для подключения сигнальной цепи. Корпус в передней части имеет полость, в которую вставляется ось собранной ходовой части 5 и крепится в ней стопорным винтом 6. Две клеммы 8 (изолированная) и 9 (соединенная с корпусом) служат для подключения проводов сигнальной цепи. В тыльной части корпуса есть втулка для крепления вертушки на штанге или подвеске-вертлюге (в случае работы с троса) зажимными винтами 11. К тыльной части корпуса винтом 12 крепится стабилизатор 13, служащий для установления оси вертушки по течению. Сбоку втулка имеет фигурную прорезь с указателем для снятия отсчета положения оси вертушки на штанге.

Ходовая часть вертушки состоит из неподвижной оси 5 с контактным механизмом (червячная шестерня, контактный штифт, пружина, винт и электропроводный стержень, соединяющий контактную пружину с гнездом штепселя 7), двух радиально-упорных подшипников 2, внутренней распорной втулки 16, наружной втулки 15 и осевой гайки 1. Ходовая часть входит в цилиндрическую полость лопасти 3 и крепится в ней зажимной муфтой 4.

Сигнальное устройство, состоящее из клеммной панели, звонка (лампочки), переключателя и сигнальных проводов, служит для преобразования электрического импульса в звуковой (световой) сигнал. Питание электрической цепи осуществляется от источника постоянного тока напряжением 3 В.

Принцип действия гидрометрических вертушек основан на закономерной связи между скоростью вращения лопастного винта вертушки и скоростью набегающего потока. Вместе с лопастью вращается втулка, которая передает вращение лопасти на червячную шестерню. Контактный механизм вертушки замыкает электрическую сигнальную цепь через каждый полный оборот червячной шестерни, что соответствует 20 оборотам лопасти вертушки. В момент замыкания цепи вспыхивает лампочка или звенит звонок, что дает возможность фиксировать число оборотов лопастного винта вертушки. С помощью секундомера определяют время с начала работы вертушки (сигнал) до каждого последующего сигнала. Подсчитав общее число оборотов лопасти вертушки и разделив их на время ее работы, определяют скорость вращения лопастного винта (число оборотов в секунду).

Для перехода от скорости вращения лопасти вертушки n к скорости течения воды ui используют тарировочную кривую - график зависимости между скоростью течения и числом оборотов лопастного винта в секунду: u = f(n), официальный документ каждой гидрометрической вертушки, прошедшей тарировку в специальном тарировочном бассейне.

Вертушка ГР-21М снабжается двумя лопастными винтами: винт № 1 (основной) компонентный, диаметром 120 мм с геометрическим шагом 200 мм, применяется при работе со штанги, при скоростях течения до 2 м/с, и винт № 2 некомпонентный, диаметром 120 мм с геометрическим шагом 500 мм, применяется во время работы с троса при скоростях течения более 2 м/с.

Малые скорости течения не приводят лопастный винт во вращение. Наименьшая скорость u0, при которой силовое воздействие потока на лопастный винт равно величине сопротивлений, а лопастный винт вращается неравномерно, называется начальной скоростью вертушки. Для вертушки ГР-21М начальная скорость составляет 0,04 м/с, а верхняя - 5 м/с.

Гидрометрическая вертушка ГР-55 - малогабаритная, отличается от ГР-21М размерами лопастного винта. Винт № 1 диаметром 70 мм с геометрическим шагом 110 мм применяется при скоростях течения 0,1-2,5 м/с, погрешность измерения при этом не превышает ± 1,5%; винт № 2 диаметром 70 мм с геометрическим шагом 250 мм применяется при скоростях течения 2-5 м/с (погрешность ± 1,5%). При скоростях менее 0,2 м/с погрешность измерения возрастает до 10%.

Микровертушки. К недостаткам описанных выше гидрометрических вертушек можно отнести: винт сравнительно большого диаметра обладает определенной инерционностью, что снижает его чувствительность; наличие червячной передачи и обычных шарикоподшипников увеличивает механические сопротивления вращению винта, что приводит к неустойчивой работе его и к увеличению погрешности измерений при малых скоростях течений.

Ввиду этого в микровертушках применяются винты малых диаметров (4-40 мм), изготовленные из материалов, близких по плотности к воде; для уменьшения сопротивлений они вращаются в агатовых или рубиновых подшипниках; корпуса микровертушек имеют значительно меньшие размеры и массу; в электрической цепи применяется бесконтактная схема.

Одной из таких конструкций является гидрометрическая микровертушка цифровая модернизированная ГМЦМ-1, разработанная в ЦНИИКИВР и изготавливаемая НТК «Комплекс» (г. Минск). Она состоит из датчика скорости и блока обработки измерительной информации.

Датчик (рис. 1.7) предназначен для формирования электрических импульсов, частота которых характеризует измеренную скорость потока. Он состоит из лопастного винта 4, держателя его (корпуса) 1, электрода 3, регулировочного винта 2, муфты 7 для крепления на штанге с помощью винта 5. Лопастный винт 4 является первичным преобразователем скорости течения воды в электрической сигнал.


Рис. 1.7 Датчик скорости микровертушки ГМЦМ-1.


При прохождении лопасти винта 4 перед оголенным торцом элетрода 3 изменяется проводимость в электрической цепи «электрод 3 - корпус держателя 1», что приводит к прерыванию тока в цепи. Амплитуда формируемых импульсов зависит от величины зазора между полюсом электрода и торцом лопасти винта. Оптимальная величина зазора 0,2-0,3 мм устанавливается с помощью регулировочного винта 2. Импульсы по кабелю 6 поступают на вход блока обработки измерительной информации (на рис. 1.7 не показан). Последний включает следующие электронные блоки: 1) формирования импульсов; 2) задания коэффициентов градуировочного уравнения лопастного винта (например, u = 0,0391 n + 0,0024); тактового генератора; 4) управления и вычисления; 5) счета и дешифрации; 6) индикации. Результат измерения выводится на табло в численном виде в м/с.

Пределы измерения 0,05-4,0 м/с; погрешность ± 2,0%. Время одного измерения скорости при использовании лопастного винта диаметром 15 мм составляет 35-45 с, винта 25 мм - 50-80 с. Питание микровертушки постоянным током напряжением 1,5-9 В, потребляемый ток не более 6 мА.

Вертушка хранится в ящике вместе с батареей питания, сигнальным устройством, проводниками и принадлежностями для ухода за ней.

Для погружения вертушек в воду и установки их в нужных точках живого сечения потока применяют различное установочное оборудование, к которому относятся: штанги, тросы, лебедки, уравновешивающие грузы и др.

При глубинах до 3 м вертушки погружают в воду при помощи упорных или подвесных штанг, которые представляют собой металлический трубы, размеченные по высоте через каждые 5-10 см. Первые упирают нижним концом в грунт, вторые укрепляют на неподвижной опоре, например на мостике.

При глубинах более 3 м, когда работать со штангой трудно, вертушки опускают в воду при помощи тонких тросиков диаметром 2-4 мм. Глубину погружения вертушки определяют по меткам на тросике или при помощи специального счетчика глубины. К вертушкам прикрепляют чугунный или свинцовый груз весом от 10 до 80 кг, в зависимости от скорости течения.

Трос соединяют с вертушкой и грузом специальным устройством, называемым вертлюгом. Опускают и поднимают вертушки ручной лебедкой.

При каждой вертушке должно всегда храниться тарировочное свидетельство, в котором указывают: тип и номер вертушки; дату последней тарировки; организацию, проводившую тарировку; график тарировки или уравнение тарировочной кривой.

Вертушки являются точными приборами, требующими бережного отношения и внимательного ухода. Перед сборкой вертушки необходимо тщательно проверить состояние ее частей, обращая особое внимание на состояние винта, оси прибора, подшипников, контактного устройства и электропроводки. После работы вертушку разбирают на основные части, которые очищают, промывают бензином и протирают сначала насухо, а затем тряпкой, слегка смоченной в масле.

При работе зимой вертушка может покрыться льдом, который нельзя удалять ударами или соскабливанием. Для удаления льда вертушку следует опустить в теплую воду. При перевозке вертушку необходимо оберегать от сотрясений.


ГЛАВА 2. ХАРАКТЕРИСТИКА ОСНОВНЫХ МЕТОДОВ ИЗМЕРЕНИЯ РАСХОДОВ ВОДЫ


2.1 Измерение расхода воды гидрометрической вертушкой


Многоточечный (детальный) способ предусматривает измерение расхода воды по увеличенному против обычного числу скоростных вертикалей 10-15 с измерением скорости в 5-10 точках (пов.;0,2;0,6;0,8;дно-при свободном русле; пов.;0,2;0,4;0,6;0,8;дно-при несвободном русле) на каждой вертикали. Многоточечный способ даёт наиболее точное значение расхода. На вновь открытых гидростворах в первый год их действия расходы воды измеряют многоточечным способом (не менее 10 расходов воды при разных фазах режима).

Основной способ, когда число скоростных вертикалей уменьшается в 1.5-2 раза по сравнению с детальным, а скорости течения измеряются в 2-3 точках на каждой вертикали.

Интеграционный способ по вертикалям применяется при глубинах более 1 м и скоростях течения более 0.2 м/с. Измерение производится с помощью интегральной установки ГР-101.

Ускоренный способ применяется при быстрых изменениях уровня за время измерения расхода воды при интенсивной деформации русла, при наличии переменного подпора и в других неблагоприятных условиях.

Сокращенные способы предусматривают измерение расхода воды по средней скорости на 1-2 репрезентативных вертикалях или единичной скорости в точке 0.2 её рабочей глубины.


2.2 Измерение расхода воды поплавками


Измерения поверхностными поплавками. Точность поплавочных измерений существенно ниже, чем вертушечных, поэтому поверхностные поплавки применяются при рекогносцировочных обследованиях рек, выходе вертушек из строя. При интенсивном ледоходе, когда вертушечные измерения становятся невозможными, а в качестве поплавков служат отдельные льдины.

Поплавочные измерения проводят при штиле или небольшом ветре 2-3 м/с. По берегу параллельно основному направлению течения прокладывается магистраль и перпендикулярно к ней разбиваются три створа: верхний, средний и нижний. Расстояние между створами назначается такое, чтобы продолжительность хода поплавков между ними составляла не менее 20 секунд.

Измерение скорости течения поверхностными поплавками состоит в определении времени прохождения ими расстояния от верхнего до нижнего створа и мест прохождения через средний створ.

В пусковом створе забрасывается с берега или пускается с лодки первый поплавок, и в момент прохождения им верхнего створа по сигналу наблюдателя, стоящего в этом створе, техник пускает секундомер. В момент пересечения поплавком среднего створа отмечается место прохождения от постоянного начала по размеченному канату или засечками с берега угломерным инструментом. При прохождении поплавком нижнего створа по сигналу наблюдателя, стоящего у этого створа, техник останавливает секундомер.

Следующий поплавок пускается на некотором расстоянии от первого, и вся работа по измерению скорости течения повторяется в том же порядке. Всего пускается 15-20 поплавков, равномерно распределенных по ширине реки.

Если невозможно пустить поплавки по всей ширине реки, например на реках, с быстрым течением, где поплавки сносятся к середине потока, расходы воды определяются по наибольшей поверхностной скорости. В этом случае на стрежневую часть потока пускается 5-10 поплавков. Из всех пущенных поплавков выбираются три с наибольшей продолжительностью хода, отличающиеся друг от друга по времени не более чем на 10%; при большем отклонении продолжительности хода пускается ещё 5-6 поплавков.

Запись результатов измерений расходов воды поплавками ведётся в книжке КГ-7М(н).Для определении скорости течения строится график продолжительности хода поплавков, на котором по горизонтальной оси откладываются расстояния от постоянного начала до места прохождения поплавками среднего створа, а по вертикальной оси - продолжительность хода поплавков между верхним и нижними створами. По нанесённым точкам проводится осредненная эпюра распределения продолжительности хода поплавка по ширине реки. В местах перегибов эпюры, а при плавной её форме через равные расстояния назначается не менее 5-6 скоростных вертикалей, которые для удобства обработки совмещаются с промерными вертикалями. Для каждой скоростной вертикали вычисляется поверхностная скорость течения путем деления расстояния между верхним и нижним створами на продолжительность хода поплавка, снятую с эпюры.

Умножая площади отсеков между скоростными вертикалями на полусумму поверхностных скоростей на них, получают частичные фиктивные расходы воды qфз. Их сумма, с учетом краевых коэффициентов дает общий фиктивный расход воды Qф. Действительный расход вычисляется по формуле



К - переходный коэффициент, который вычисляется по формуле Д.Е. Скородумова


К=с2/5/с2/3+1,6


Если с помощью поплавков измерена наибольшая поверхностная скорость, то она используется для вычисления расхода воды Q=KнаибVнаибF, где Vнаиб- среднее значение скоростей трех наиболее быстрых поплавков; Kнаиб=1-5,6ghI/Vнаиб (h-средняя глубина потока; g-ускорение свободного падения)F-площадь водного сечения.


2.3 Измерение расхода воды глубинными поплавками и поплавками-интеграторами


Поплавки этого вида используются для измерения сравнительно малых скоростей течения (до 0,15-0,20 м/с), когда вертушечные измерения мало надежны. И для определения границ мертвого пространства. Скорости течения измеряются с лодки, на которой устроены из трех горизонтальных реек створы: верхний, средний и нижний на расстоянии друг от друга через 1 м. при помощи шеста пускается глубинный поплавок. По секундомеру определяется время прохождения поплавком расстояния от верхнего до нижнего створа. В каждой точке поплавок пускается не менее трех раз. Скорость в точке вычисляется делением длины базиса- расстояния между створами на среднюю продолжительность хода поплавка. Расход воды вычисляется аналитическим способом аналогично расходу воды, измеренному вертушкой, записи ведутся в КГ-3М (н) .

Измерение расхода воды гидравлическим способом

Используется когда измерить расход воды другими способами не представляется возможным. Расход воды вычисляется по формуле Q=VсрF, Vср=C RJ,где R-гидравлический радиус; J-продольный уклон; C-скоростной коэффициент или коэффициент Шези C=1/nR x-1,5 n при R<1 м;x-1,3 n при R>1 м.


2.4 Анализ расходов воды, измеренных детальным способом, с целью выяснения возможности перехода на основной способ измерения


Анализ заключается в отборе части скоростных вертикалей, по значениям средней скорости течения которых можно построить эпюру распределения скорости по ширине реки, близкую к эпюре, построенной по всем вертикалям.

Отбор скоростных вертикалей выполняется следующим образом. Для каждой скоростной вертикали дополнительно к графической обработке расхода вычисляется аналитическим способом значение средней скорости течения по сокращенному числу точек: 0,2 и 0,8 рабочей глубины при свободном русле; 0,15; 0,50 и 0,85 рабочей глубины для расходов, измеренных при ледоставе и заросшем русле. Значение средней скорости наносятся на чертеж графической обработки расхода воды, измеренного детальным способом, и по ним вычерчивается эпюра распределения средней скорости течения по ширине реки. Для основного способа измерения расхода воды отбирают те скоростные вертикали, на которых значения средней средней скорости, вычисленные по сокращенному и полному числу точек, совпадают или разнятся незначительно. При сокращении числа скоростных вертикалей одну из них следует назначать в стрежневой части потока, а остальные - в местах основных переломов эпюры.

По отобранному числу вертикалей все расходы воды вычисляются вторично уже обычным аналитическим способом. Обычный аналитический способ дает возможность уменьшить число скоростных вертикалей до 7-8, а в некоторых случаях до 5.

Значение каждого расхода, вычисленного аналитическим способом, сравнивается с расходом, обработанным графически и принятым за эталон.

Переход на основной способ измерения возможен при условии:

1.систематическая ошибка расходов, вычисленных аналитическим способом, не превышает 2%;

2.средняя суммарная ошибка не превышает 3%;

.наибольшая ошибка отдельного расхода за вычетом систематической ошибки не превышает 5%.


2.5 Анализ измерения расхода воды с целью перехода на сокращенный способ


Анализ заключается в отборе одной скоростной вертикали в стрежневой части потока, значение скорости на которой (средней, в точке 0,6 или 0,2), умноженное на постоянный коэффициент, отличается от средней скорости водного сечения не более чем на 10%.


2.5.1 Градуирование вертушек в полевых условиях

Производится в том случае, если невозможно отправить вертушку в тарировочный бассейн. Тарирование в текущей воде производится путём сравнения показаний испытуемой вертушки. Для этого в живом сечении реки намечают несколько точек с различными скоростями и в каждой из них сначала измеряется скорость исправной вертушкой, а за тем испытуемой и снова исправной. Вертушка в точке выдерживается не менее 250 сек. Скорость в точке принимается как среднее арифметическое из двух измерений исправной вертушкой. По числу оборотов испытуемой вертушки и по значению скорости исправной вертушки строится тарировочная кривая для тарируемой вертушки.

Полевое тарирование в стоячем водоёме может быть произведено способом непосредственного тарирования и путём сравнения с образцовой вертушкой.

Для полевого тарирования любым способом необходим водоём со стоячей водой (пруд, озеро) длиной 100-150м, глубиной не менее 10м, свободной от водной растительности. Для тарирования может быть использована вёсельная или моторная лодка. При непосредственном тарировании на носу лодки на особом выносе укрепляется штанга с испытуемой вертушкой, опускаемой на глубину не менее 0,5м от поверхности. Длинна выноса должна быть такой, чтобы расстояние от носа лодки до вертушки было не менее 1,5м.

При тарировании лодка движется с равномерной скоростью по линии ходового створа. Всего производится 20-30 заездов с разными скоростями. Тарирование производится с двумя секундомерами: по первому определяется время прохождения лодкой рабочего пути, а по второму - время между моментами начала и окончания поступления сигналов вертушки на пути тарирования. При обработке результатов тарирования для каждого заезда вычисляется скорость v и число оборотов лопастного винта в одну секунду n.


2.6 Ускоренные методы измерений расходов воды


6.1 Общая характеристика ускоренных методы измерений расходов воды

Многоточечные измерения расходов воды вертушками требуют значительных затрат времени. Конечно, в условиях изменчивости расходов воды при этом достигается наименьшая погрешность измерений, чем и окупается их большая продолжительность. Иначе обстоит дело, когда наблюдается явно выраженное неустановившееся движение воды, которое свойственно как естественным паводкам, так и попускам из водохранилищ. В таком случае большая продолжительность измерений порождает дополнительные погрешности, связанные с изменчивостью расходов воды. В этих условиях ускорение измерений обеспечивает не только экономию времени, но и повышение точности получаемых данных. Способы ускоренных измерений весьма многообразны: наряду с точечными наблюдениями они включают такие сложные, как f - интеграционные, акустические и аэрогидрометрические. Рассмотрим основные виды ускоренных измерений, как широко распространенные в настоящее время, так и предназначенные для внедрения в ближайшей перспективе.

При сокращенных способах измерения уменьшается количество скоростных вертикалей до одной - трех при условии, что среднее квадратическое отклонение получаемых при этом расходов от результатов измерения основным способом не превышает 5 %. Существует два варианта сокращенных измерений:

) применение интерполяционно-гидравлической модели

) использование его репрезентативных элементов

Интерполяционно-гидравлическая модель расхода воды основывается на представлении измеренной средней скорости на вертикали в виде суммы двух составляющих



где vi - это компонент, измеренной скорости, гидравлически обусловлена глубиной на вертикали. Если считать уклон свободной поверхности и коэффициент шероховатости неизменным по ширине потока, то



Вторая в общем случае знакопеременная компонента w зависит от особенностей кинематической структуры потока и поэтому названа структурной составляющей средней скорости на вертикали (она включает также средние случайные погрешности измерения).

Значения wi не следует за изменением глубин. Поэтому для среднего по ширине отсека допустима их линейная интерполяция. На основе чего можем представить себе вид следующей формулы



На основе приведенных предпосылок И.Ф. Карасевым и В.А. Реминюком синтезирована следующая модель расхода воды, названная интерполяционно-гидравлической:



где hs - средняя глубина в отсеке между скоростными вертикалями; Ps весовой коэффициент: Ps = 0,5 для прибрежных отсеков (s = 1; s = N) ; Ps - 0,5 для всех остальных отсеков (1

Значения а0 устанавливаются по характерным фазам режима на основе специальных многоточечных (детальных) измерений. Вместе с тем а0 вполне допустимо вычислять непосредственно по данным каждого конкретного измерения элементов расхода воды.



где Nb - количество скоростных вертикалей.

Достоинство интерполяционно-гидравлической модели расхода воды по сравнению с моделью состоит в том, что она практически исключает систематическую погрешность - занижение расхода воды при сокращении числа скоростных вертикалей. Такой эффект достигается тем, что интерполяция средних скоростей на вертикалях vi(j) по ширине отсека между ними ведется с учетом распределения глубин. Отметим, что этим интерполяционно-гидравлическая модель превосходит и графический способ обработки расхода воды, в котором средние скорости на вертикалях интерполируются линейно.

При использовании интерполяционно-гидравлической модели достаточно измерять скорости всего на трех-четырех вертикалях, размещенных на равных расстояниях.

При устойчивом русле, когда площадь живого сечения F становится однозначной функцией уровня, все измерения расхода воды сводятся к определению средней скорости потока v. Но давно замечено, что её значение тесно связано со скоростями течения в какой-либо точке или со средней скоростью на вертикали, которые и носят название репрезентативных.

В качестве репрезентативной скорости принимается максимальная скорость в поперечном сечении потока или в точке стержневой вертикали на глубине 0,2h. При этом по данным предшествующих многоточечных измерений строится зависимость vcp=f(uмакс) или vcp=f(u0,2h), которая может аналитически быть представлена в виде уравнений регрессии:



Координата точки с максимальной скоростью течения не остается постоянной, а теснота связи нередко оказывается недостаточной (рассеяние достигает 15%). Такая неопределенность не дает основания рассматривать uмакс как заведомо репрезентативный элемент для определения средней скорости потока. В связи с этим, заслуживает внимания предложение Е.П. Буравлева использовать в качестве репрезентативных средние скорости на вертикалях в прибрежных частях потока, расположенных на расстояниях 0,2В и 0,8В (считая от одного из урезов воды) .

Расчетное уравнение регрессии в таком случае приобретает вид


Точность определения расхода воды по репрезентативным элементам неодинакова для различных фаз гидрологического режима. Если рассматривать отдельно взятый створ, то анализ показывает, что использование репрезентативных элементов приводит к достаточно надежным результатам лишь при относительно небольших расходах Q/Qмакс>0.25, где Qмакс - средний многолетний максимальный расход воды. Этим критериальным соотношением можно руководствоваться при организации измерений.

В каналах, где сохраняется призматичность и устойчивость формы русла, для определения vcp достаточно использовать одну репрезентативную вертикаль. По исследованиям А.А. Осиповича и В.П. Рагуновича (ЦНИИКИВР), эта вертикаль расположена на расстоянии 0,2b от уреза воды в канале (b - полуширина канала по дну - см.рис. 1). Отклонение местных скоростей течения на этой вертикали от средней для всего потока находится в пределах 2-3%.

Для ускорения измерений средних скоростей на вертикалях служат установки - интегратор ГР-101 и полуавтоматическая штанга с батареей микровертушек, разработанная М.И. Бирицким (ЦНИИКИВР) .


2.6.2 Интеграционные измерения с движущегося судна

Интеграция скоростей течения с движущегося судна может производится:

а) вертушкой (или другим преобразователем скорости), закрепленной на определенном (постоянном) горизонте (горизонтальная интеграция);

б) Вертушкой, перемещаемой зигзагообразно от поверхности до дна потока и обратно в течение всего времени движения судна по створу.

Зигзагообразная интеграция в связи с техническими трудностями не получила распространения, поэтому ниже рассматривается только горизонтальная.


Рис.2.1 Принципиальная схема интеграционного измерения расхода воды с движущегося судна: а - геометрические элементы схемы, б - сложение векторов скоростей


Горизонтальная интеграция скоростей обычно производится в поверхностном слое, так как коэффициенты перехода от поверхностей к средней скорости течения потока наиболее изучены. Принципиальная схема интеграционного измерения показана на рис.2.1, а один из вариантов приборного комплекса, разработанного в ГГИ. Непосредственно измеряются:

а) глубина h по створу (их регистрирует эхолот),

б) результирующая скорость up - векторная сумма поверхностоной скорости течения uп и скорости движения судна uc,

в) угол? между осью вертушки и линией гидроствора. Если все эти элементы отнести к элементарному отсеку потока s шириной, равной расстоянию, которое судно проходит по створу за достаточно короткий интервал времени?t:

то можно получить фиктивный частичный расход в этом отсеке


Затем значения qфs умножаются на коэффициент К, обеспечивающий переход от фиктивного расхода к действительному. Этот коэффициент должен быть заранее известен для данного створа по результатам специальных наблюдений. Действительные значения qs в специальном вычислительном блоке последовательно суммируются (интегрируются) по мере движения судна вдоль гидроствора от одного берега к другому за время Т, что позволяет получить полный расход воды



При косоструйном течении растет uп и us становится более сложным и требует учета угла косоструйности ?к, который заранее не известен. Однако если угол косоструйности не слишком велик (менее 200), можно использовать ту же формулу (8). Для компенсации возникающих при этом погрешностей интеграцию скоростей рекомендуется производить дважды (от одного берега к другому и обратно), а в качестве результата измерений принимать полусумму полученных значений.

Одно из главных метрологических преимуществ горизонтальной интеграции скоростей течения состоит в том, что она устраняет погрешность интерполяции средних скоростей на вертикалях, а при вертикальной дискретизации модели расхода воды эта погрешность является основной.

Выражение (8) относится к случаю, когда интеграция скоростей течения производится в поверхностном слое при незаглубленном измерителе скорости (z=0). Если же на реке наблюдается заметное волнение, появляется плывущий мусор или ледяные образования, приходится опускать измеритель ниже поверхности воды на глубину z. Измеряемый при этом расход Qz окажется не равным фиктивному расходу Qп. Соответствующий поправочный коэффициент определяется по зависимости, полученной И. Ф. Карасевым:

где? = (bл+bп)/B - непрозондированная часть ширины русла (см. рис.1); ? = hмакс /hcp - коэффициент полноты сечения; m = 24,0 м0,5/с - эмпирический коэффициент Базена.

Переход к действительному расходу совершается по соотношению

Точность интеграционного измерения скорости течения существенно зависит от скорости перемещения судна по створу uc: при ее увеличении возникают погрешности измерения не только из-за малости времени интеграции Т, но и из-за уменьшения uп/uc. Чтобы не допустить чрезмерного возрастания рассматриваемой погрешности, скорость перемещения судна uc должна быть ограничена некоторым достаточно малым значением, при котором еще сохраняется устойчивость судна на курсе. Опыт показывает, что эта скорость близка к поверхностной скорости потока uп.


2.6.3 Измерение расходов воды с использованием физических эффектов

Для измерения скоростей течения (а значит, и расходов воды) могут быть использованы различные физические эффекты: Доплера, ультразвуковые и электромагнитная индукция.

Доплеровский метод измерения скоростей течения реализуется в двух вариантах: с использованием оптических квантовых генераторов и радиолокатора.

При лазерных измерениях источником информации о скорости потока служат спектральные характеристики света. Если поток, движущийся со скоростью v, просвечивается когерентным монохроматическим излучением с частотой?0 и волновым вектором Ао, а рассеянное излучение при частоте?i наблюдается в направлении волнового вектора As, то значение v устанавливается непосредственно по разности частот и векторов

= (?i - ?0)/(As - A0)


Рассеяние света создается частицами взвесей, которые содержатся в потоке или вводятся в него. Лазерные установки пока нашли применение в трубопроводах и лабораторных лотках (

Радиолокационный вариант эффекта Доплера положен в основу измерителя поверхностных скоростей течения ГР-117, разработанного в ГГИ Г. А. Юфитом. Прибор состоит из блока радиоаппаратуры, рупорной антенны, блоков анализа характеристик радиоволн, прямых и отраженных от неоднородностей на поверхности потока - турбулентных возмущений и ветровых волн (рис. 2 б).

Для определения скорости течения в установке использована зависимость

где?- длина радиоволны, составляющая 3,2 см.

Измерения производятся с гидрометрического мостика, люльки или с берега. Минимальное значение измеряемой скорости составляет 0,4 м/с, максимальное 15 м/с, индикация результата измерения - цифровая. Радиолокационный измеритель испытан в полевых условиях. В ближайшей перспективе первые партии прибора будут выпущены для производственного использования.

Ультразвуковой (акустический) метод заключается в посылке импульсов ультразвука по косому галсу в направлении течения и против него с регистрацией двух временных интервалов - соответственно Т1 и Т2. Ультразвуковое зондирование может производиться в различных направлениях в плане и поперечном сечении потока, но для определенности принимается горизонтальное положение ультразвукового луча, а угол, который он должен составлять с динамической осью, равным 30-60°.


Рис.2.2 Варианты измерения скоростей потока с использованием эффекта Доплера: а - лазерная установка: 1 - фотоприемник, 2 - трубопровод, 3 - разделительная пластина, 4 - источник света, 5 - зеркало, б радиолокационный измеритель скоростей течения: 1 - радиоблок, 2 - рупорная антенна, 3 - установочная тренога, 4 - настил моста


Для выполнения измерений необходимо выбирать прямолинейный участок с устойчивым и свободным от растительности руслом. В потоке не должно содержаться пузырьков воздуха, рассеивающих ультразвук.

Преобразователи-приемники акустических (ультразвуковых) сигналов устанавливаются на свайных опорах или непосредственно на береговых откосах (рис. 2.3а). Опорные конструкции должны допускать возможность перемещения преобразователей при колебаниях уровня без нарушения их взаимной ориентировки.

Для определения скорости потока принимаются расчетные формулы, не содержащие в явном виде скорость звука в воде, что исключает необходимость в аппаратуре для ее измерения (как известно, скорость звука не остается постоянной и зависит от температуры и минерализации воды) .

Ультразвуковые системы для измерения скорости течения делятся на кабельные или бескабельные соответственно тому, имеется или отсутствует кабель, связывающий приемно-передающие устройства на противоположных берегах.

Кабельный вариант (рис. 2.3 б) функционирует следующим образом. В начальный момент времени производится одновременное излучение ультразвуковых импульсов в точках I и II. Ультразвуковые импульсы распространяются в потоке по траектории, составляющей угол а с направлением течения. Одновременно с запуском передающих устройств 2 запускается измеритель временных интервалов 3, который останавливается после приема импульсов на противоположных берегах.

Специальный электронный блок автоматически вычисляет осредненную по измерительному галсу скорость потока

В бескабельном варианте используется акустический канал связи с блоком переизлучения ультразвуковых импульсов. Принцип измерения остается тем же, хотя общая его схема становится более сложной.

Методика и принципиальные схемы ультразвуковых измерений расходов воды на реках разработаны А.И. Затыльниковым (ГГИ). На этой основе в ЦКБ ГМП создан комплекс АИР, выпускаемый малыми сериями.

Существуют две разновидности моделей расхода воды, измеренного ультразвуковым методом.

Послойная интеграция скоростей, при которой осуществляется горизонтальная дискретизация модели расхода воды

где? - коэффициент, учитывающий полноту зондирования и особенности скоростной структуры во фрагменте, к которому относится осредненная скорость vs; fs - площадь фрагмента по направлению ультразвукового луча.


Рис.2.3.а Принципиальная схема измерения расходов воды гидроакустической установкой: а - установка измерительных преобразователей на свайных опорах, б - блок-схема кабельного варианта


Из-за технических трудностей послойное измерение скоростей течения ультразвуком не получило распространения. В большинстве действующих установок зондирование потока производится на одном уровне. В этом случае для определенности должен зондироваться поверхностный слой и математическая модель приобретает вид



где F3 - площадь водного сечения в плоскости ультразвукового зондирования; kB - коэффициент перехода от осредненной по ширине потока поверхностной скорости течения к средней.

Величина kB, не идентичная коэффициенту перехода от осредненной по сечению поверхностной скорости к средней, изучена мало и должна определяться в каждом створе по данным специальных методических исследований. Вместе с тем физически ясно, что kB зависит от тех же факторов, что и К, который достаточно исследован и может быть оценен. Связь коэффициентов К и kB получена И.Ф. Карасёвым

Из формулы следует, что:

СечениепрямоугольныепараболическиеТреугольное?1.01.52.0kB/K1.01.101.25

Косоструйность потока создает систематические погрешности ультразвуковой интеграции скоростей, но, в отличие от вертушечных измерений, эти погрешности получают разные знаки, и скорость течения оказывается завышенной, если фактическое направление струй отклоняется на угол ? внутрь острого угла ?, и заниженной - в обратном случае. Для компенсации этих погрешностей международный стандарт ИСО 748-73 рекомендует вводить поправочные коэффициенты у < 1 в первом случае и у > 1 во втором. Значения этих коэффициентов определяются из простых тригонометрических соотношений и составляют у = 1 ± (0,04 + 0,08) для ? до 4° при ? = 300 - 50°.

Комплекс организованных ГГИ сравнительных измерений расходов воды р. Луги показал, что ультразвуковой метод дает ту же точность, что и при непрерывной интеграции скоростей потока вертушкой с движущегося судна.

Метод электромагнитной индукции основан на эффекте возникновения электродвижущей силы в потоке воды, протекающей в магнитном поле, которое создается искусственно посредством уложенных на дно витков кабеля (рис.2.4). Средняя скорость течения пропорциональна разности потенциалов на концах измерительной цепи

где ? - константа, зависящая от проводимости воды, грунтов дна и характеристик электромагнитного контура (определяется посредством градуировочных экспериментов); В - ширина реки; H - напряженность поля. Для определения расхода воды служит формула

где h - средняя глубина потока.


Рис.2.4 Комплекс для измерения расхода воды методом электромагнитной индукции(Англия): 1 - ячейка для измерения проводимости воды, 2 - измеритель проводимости дна, 3 - сигнальные зонды, 4 - кабель для передачи сигналов, 5 - павильон для хранения оборудования, 6 - катушка, создающая магнитное поле


2.6.4 Аэрогидрометрический метод

Впервые в Советском Союзе комплекс аэрометодов определения расходов воды был применен при речных изысканиях для проектирования мостовых переходов (Б.К. Малявский и др.). В 1965-1966 гг. в ГГИ под руководством В.А. Урываева разработаны методические основы и необходимые технические средства для поплавочных измерений скоростей течения на реках, положившие начало широкому применению аэрометодов определения расходов воды на гидрологической сети.

Аэрогидрометрический метод представляет собой вариант поплавочных измерений. Если применение поплавков в наземных условиях ограничивается реками шириной до 300-400 м, то аэрогидрометрический способ таких ограничений не имеет.

Авиаизмерения поверхностных скоростей включают операции по маркировке водной поверхности (сбросу поплавков) и аэрофотосъемке двух последовательных положений поплавков через заданные (фиксируемые) промежутки времени.

Аэрофотосъемка осуществляется топографическими аэрофотоаппаратами, имеющими автоматическое управление, объективы большой светосилы и высокой разрешающей способности.

При аэрогидрометрических работах в основном применяются аэрофотоаппараты АФА-ТЭ (топографический, электрофицированный) с фокусным расстоянием до 100 мм. Преимущественное использование короткофокусных аэрофотоаппаратов связано с возможностью выполнения с их помощью аэрофотосъемки заданного масштаба с меньших высот, что существенно расширяет диапазон метеорологических условий производства работ.

Кассета аэрофотоаппарата заряжается пленкой длиной до 60 м, что обеспечивает съемку 300 кадров размером 18X18 см каждый.

Аэрофотоаппарат крепится над люком самолета на специальной установке, изолирующей его от вибрации и позволяющей придавать аппарату различные углы наклона и ориентировать соответствующим образом относительно направления полета. На корпусе аэрофотоаппарата размещаются уровень, часы с секундной стрелкой и нумератор кадров, которые при съемке изображаются на каждом кадре.

Управление работой аэрофотоаппарата осуществляется с помощью командного прибора, который через заданные интервалы времени автоматически открывает затвор аэрофотоаппарата, сигнализирует о моментах фотографирования, фиксирует число отснятых кадров. Минимальный интервал времени между моментами аэрофотосъемки двух последующих аэронегативов составляет в современных аэрофотоаппаратах 2,0-2,5 с.

Наиболее высокая точность определения высоты полета в момент фотографирования достигается с помощью радиовысотомеров. Средняя квадратическая погрешность этих приборов составляет 1,5-2,0 м и практически не зависит от высоты полета.

Для маркировки водной поверхности применяются специальные ураниновые поплавки, представляющие собой деревянные цилиндрики диаметром 4 см и высотой 11 см, утяжеленные у основания металлической шайбой. Вес балласта подобран таким, чтобы, приняв в воде вертикальное положение, поплавок выступал над ее поверхностью не более чем на 1,5-2,0 см. Его боковая поверхность покрыта ураниновоклеевой пастой. В воде паста растворяется и вокруг поплавка образуется ярко-зеленое пятно, которое и изображается на аэроснимках. При хорошем качестве последних по оттенкам и тональности изображения пятна обычно удается непосредственно отдешифрировать местоположение поплавка. В других случаях прибегают к косвенным методам дешифрирования. Время эффективного действия поплавка (растворения ураниновой пасты) около 15 мин.

Сбрасывание поплавков производится с самолета с помощью специального устройства - механического сбрасывателя. Поплавки размещаются по периметру сбрасывателя в специальных ячейках.

Аэрофотосъемка поплавков выполняется в два захода самолета по линии гидроствора (рис. 2.5). Если позволяет ширина реки и метеорологические условия (облачность, видимость), съемка производится с захватом всей ширины реки одним аэроснимком. При этом, однако, масштаб аэрофотосъемки не должен быть менее 1:15000, так как в противном случае дешифрирование изображения ураниновых поплавков становится ненадежным.


Рис.2.5 Схема заходов самолета на сброс и аэрофотосъемку поплавков: 1 - маршрут полета самолета, 2 - линия положения поплавков в момент сброса, 3 - линия положения поплавков в моменты аэрофотосъемок, 4 - траектории поплавков, 5 - направление течения


Высота аэрофотосъемки рассчитывается в этом случае по формуле


где В - ширина реки;k - фокусное расстояние аэрофотоаппарата;

lк - размер кадра.

Съемка как первого, так и второго положения поплавков выполняется маршрутом максимально перекрывающихся аэроснимков (с минимальным интервалом tмин между съемками).

Фактическое время аэрофотосъемок фиксируется путем фотосъемки вмонтированных в фотоаппарат часов. Авиаизмерения скоростей сопровождаются наблюдениями за скоростью и направлением ветра на наземных пунктах или сбросом специальных ветровых поплавков.

Обработка данных авиаизмерения начинается с дешифрирования изображения поплавков на негативах, и переноса их на планшет, на котором строится план участка гидроствора в заданном масштабе.

Рассмотрим порядок обработки траектории поплавков (рис. 2.6 а).


Рис 2.6 К определению скорости перемещения поплавка: а - векторная схема на фотоплане, б - составляющие результирующей скорости перемещения поплавка


Соединив точки, соответствующие изображению первого и второго положения поплавка, получают его траекторию в масштабе планшета Si и намечают ее центр Сi.

Измеряют проекцию - траектории Si- на перпендикуляр к гидроствору.

Проектируют центр траектории Сi на линию гидроствора и измеряют расстояние между точкой Сi - и постоянным началом (берегом) bi. Точке приписывается скорость течения, измеренная г-м поплавком (скоростная вертикаль) .

Вычисляют натурные значения проекции траектории поплавка и расстояния bi. Для этого значения и bi, измеренные на планшете, умножают на знаменатель численного масштаба планшета Мп.

Разделив длину проекции траектории поплавка 5, на время между аэрофотосъемками (t2 - t1), получают проекцию скорости движения i-го поплавка uni.

Наконец, осуществляется переход к проекции поверхностной скорости течения и с учетом поправки на торможение поплавка от обтекания воздушным потоком (это торможение наблюдается даже при штиле)

где ? - скорость потока воздуха на высоте 1 м от поверхности воды;

? - угол, составленный вектором ? и направлением движения поплавка ох (рис. 6 б).

Величина ? называется коэффициентом ветрового дрейфа поплавка и характеризуется постоянством значения для поплавков одного типа. Так, для речного уранинового поплавка ? = 0,013; для льдин размером до 2x2 м и толщиной 0,2 м ? = 0,017; для льдин такого же размера, но толщиной 0,6 м ? = 0,009.

Данные о проекциях поверхностных скоростей течения и расстояниях от постоянного начала до центров траекторий поплавков переносятся в соответствующие графы «Книжки для записи измерения расхода воды» КГ-7М(н), где и подсчитывается фиктивный расход воды.

Переход от фиктивного расхода к действительному осуществляется по формуле Q = КОф с определением коэффициента К на основе зависимости (4.12) или по результатам предварительных наземных определений.

Если наблюдения производились при скорости ветра до 6 м/с, необходимо рассчитать поправки к коэффициенту К. В первом приближении они устанавливаются по данным специальных наблюдений, выполненных Г. А. Любимовым и Т. И. Соколовой (ГГИ):



где - проекция относительной скорости ветра на динамическую ось потока; определяется по соотношениям:

для составляющей скорости ветра, направленной против течения:

соответственно по течению

где ? - острый угол, составленный направлением ветра и динамической осью потока. Все значения осредняются по ширине потока, что отмечено чертой сверху. Таким образом, при верховом ветре поправки имеют знак минус, для противоположного направления получают положительное значение.

Формула (10) предназначена к применению на больших и средних равнинных реках.

Нельзя не отметить существенный недостаток аэрофотометода определения расходов воды - невозможность его вычисления в процессе измерения, так как требуется длительная лабораторная обработка пленки для получения фотоплана.

В последнее время в Советском Союзе успешно испытан аэровидеометод, при котором изображение траекторий поплавков фиксируются (с необходимой задержкой) на экране монитора, установленного вместо фотоаппарата, что позволяет получить расход воды немедленно после измерения скоростей течения.


ЗАКЛЮЧЕНИЕ


Вычислив расход на основе его интерполяционно-гидравлической модели, получим незначительные отклонения от расхода, вычисленного детальным методом. Интерполяционно-гидравлическая модель расхода воды практически исключает систематическую погрешность-занижение расхода воды при сокращении числа скоростных вертикалей. Такой эффект достигается тем, что интерполяция средних скоростей на вертикалях по ширине отсека между ними ведется с учетом распределения глубины. Интерполяционно-гидравлическая модель превосходит графический способ обработки расходов воды, в которой средние скорости на вертикалях интерполируются линейно.

При использовании интерполяционно-гидравлической модели достаточно изменять скорости всего на двух скоростных вертикалях, размещенных на одинаковом расстоянии расхода воды при двух скоростных вертикалях в створе равнинной реки.

Использование ускоренных методов расчета расходов воды доказывает, что данные методы очень эффективны и требуют незначительных затрат времени на вычисления, что имеет немаловажную роль в наше время.

Т.к. отклонение не превышает 5 %, это еще раз доказывает эффективность и практичность применения интерполяционно-гидравлической модели.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


1. Бочкарев Я.В., Овчаров Е.Е. Основы автоматики и автоматизация производственных процессов в гидромелиорации М.: Колос, 1981. - 336 с.

Быков В.Д., Васильев А.В. Гидрометрия. - Л.: Гидрометеоиздат, 1977 - 447 с.

Водохранилища мира. Институт водных проблем АН СССР.- М.: Наука. 1979.-282 с.

Гуральиик И.И., Дубинский Г.П., Ларин В.В., Маликонова С.В. Метеорология.--Л.: Гидрометеоиздат, 1982.- 440 с.

Железняков Г.В., Неговская Т.А., Овчаров Е.Е. Гидрология, гидрометрия и регулирование стока.- М.: Колос, 1984.- 431 с.

Гидрологические расчеты при осушении болот и заболоченных земель / Под ред. К.Е. Иванова.- Л.: Гидрометеоиздат, 1963.- 447 с.

Карасев И.Ф. Речная гидрометрия и учет водных ресурсов.- Л.: Гидрометеоиздат, 1980.- 312 с.

Лучшева А.А. Практическая гидрометрия. - Л.: Гидрометеоиздат. 1983,-423 с.

Лучшева А.А. Практическая гидрология.- Л.: Гидрометеоиздат, 1976,- 440 с.

Орлова В.В. Гидрометрия. Учебник для гидрометеорологических техникумов. Л. Гидрометеоиздат 1966г. 459 с

Рождественский А.В., Чеботарев А.И. Статистические методы в гидрологии.- Л.: Гидрометеоиздат, 1974. - 422 с.

Строительные нормы и правила. Определение расчетных гидрологических характеристик. СНиП 2.01.14-83. М.: Государственный комитет по делам строительства, 1985. - 97 с.

Хамадов И.Б., Бутырип М.В. Эксплуатационная гидрометрия в ирригации.- М.: Колос, 1975. - 208 с.

Шумков И.Г. Речная аэрогидрометрия. - Л.: Гидрометеоиздат, 1982. - 29S с.

16.Карасев И.Ф., Васильев А.В., Субботина Е.С. Гидрометрия.-Л.: Гидрометеоиздат, 1991.-376с.

17.Быков В.Д., Васильев А.В. Гидрометрия.- Л.: Гидрометеоиздат, 1977.-448 с.