Методы и средства защиты атмосферы Основные методы защиты атмосферы от химических примесей. Какие бывают способы защиты атмосферы? Основные методы защиты атмосферы от загрязнения

Методы и средства защиты атмосферы Основные методы защиты атмосферы от химических примесей. Какие бывают способы защиты атмосферы? Основные методы защиты атмосферы от загрязнения

6.5. СРЕДСТВА ЗАЩИТЫ АТМОСФЕРЫ.

Воздух производственных помещений загрязняется выбросами технологического оборудования или при проведении технологических процессов без локализации отходящих веществ. Удаляемый из помещения вентиляционный воздух может стать причиной загрязнения атмосферного воздуха промышленных площадок и населенных мест. Кроме того, воздух

загрязняется технологическими выбросами цехов, таких как кузнечно-прессовые цеха, цеха термической и механической обработки металлов, литейные цеха и другие, на базе которых развивается современное машиностроение. В процессе производства машин и оборудования широко используют сварочные работы, механическую обработку металлов, переработку неметаллических материалов, лакокрасочные операции и т.д. Поэтому атмосфера нуждается в защите.

Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК. Это достигается локализацией вредных веществ в месте их образования, отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортные выпускные системы.

На практике реализуются следующие варианты защиты атмосферного воздуха:

вывод токсичных веществ из помещения общеобменной вентиляцией;


вентиляцией, очистка загрязненного воздуха в специальных аппаратах и
его возврат в производственное или бытовое помещение, если воздух
после очистки в аппарате соответствует нормативным требованиям к
приточному воздуху,

локализация токсичных веществ в зоне их образования местной
вентиляцией, очистка загрязненного воздуха в специальных аппаратах,
выброс и рассеивание в атмосфере,

очистка технологических газовых выбросов в специальных аппаратах,
выброс и рассеивание в атмосфере; в ряде случаев перед выбросом
отходящие газы разбавляют атмосферным воздухом.

Для соблюдения ПДК вредных веществ в атмосферном воздухе населенных мест устанавливают предельно-допустимый выброс (ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок.

В соответствии с требованиями ГОСТ 17.2.02 для каждого проектируемого и действующего промышленного предприятия устанавливается ПДВ вредных веществ в атмосферу при условии, что выбросы вредных веществ от данного источника в совокупности с другими источниками (с учетом перспективы их развития) не создают приземную концентрацию, превышающую ПДК.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на:

пылеуловители (сухие, электрические фильтры, мокрые фильтры);

туманоуловители (низкоскоростные и высокоскоростные);

аппараты для улавливания паров и газов (абсорбционные,
хемосорбционные, адсорбционные и нейтрализаторы);

аппараты многоступенчатой очистки (уловители пыли и газов,
уловители туманов и твердых примесей, многоступенчатые
пылеуловители).

Электрическая очистка (электрофильтры) - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных коронирующих электродах. Для этого применяются электрофильтры.


Схема электрофильтра.

1-коронирующий электрод

2-осадительный электрод

Аэрозольные частицы, поступающие в зону между коронирующим 1 и осадительным 2 электродами, адсорбируют на своей поверхности ионы, приобретая электрический заряд, и получает тем самым ускорение, направленное в сторону электрода с зарядом противоположного знака. Учитывая, что в воздухе и дымовых газах подвижность отрицательных ионов выше, чем положительных, электрофильтры обычно делают с короной отрицательной полярности. Время зарядки аэрозольных частиц невелико и измеряется долями секунд. Движение заряженных частиц к осадительному электроду происходит под действием аэродинамических сил и силы взаимодействия электрического поля и заряда частицы.

Фильтр представляет собой корпус 1, разделенный пористой перегородкой (фильтроэлементом) 2 на две полосы. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэлемента. Частицы примесей оседают на входной части пористой перегородки и задерживаются в порах, образуя на поверхности перегородки слой 3. Для вновь поступающих частиц этот слой становится частью фильтровой перегородки, что увеличивает эффективность очистки

фильтра и перепад давления на фильтроэлементе. Осождение частиц на поверхности пор фильтроэлемента происходит в результате совокупного действия эффекта касания, а также диффузионного, инерционного и гравитационного.

К мокрым пылеуловителям относят барботажно-пенные пылеуловители с провальной и переливной решетками.


Схема барботажно-пенные пылеуловители с провальной(а) и (б)

переливной решетками.

3-решетка

В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, барботируя через слой жидкости и пены 2, очищается от пыли путем осаждения частиц на внутренней поверхности газовых пузырей. Режим работы аппаратов зависит от скорости подачи воздуха под решетку. При скорости до 1 м/с наблюдается барботажный режим работы аппарата. Дальнейший рост скорости газа в корпусе 1 аппарата до 2...2,5 м/с сопровождает возникновением пенного слоя над жидкостью, что приводит к повышению эффективности очистки газа и брызгоуноса из аппарата. Современные барботажно-пенные аппараты обеспечивают эффективность очистки газа от мелкодисперсной пыли -0,95...0,96 при удельном расходе воды 0,4...0,5 л/м. Практика эксплуатации этих аппаратов показывает, что они весьма чувствительны к неравномерности подачи газа под провальные решетки. Неравномерная подача газа приводит к местному сдуву пленки жидкости с решетки. Кроме того, решетки аппаратов склонны к засорению.

Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используют волокнистые фильтры - туманоуловители. Принцип их действия основан на осаждении капель на поверхности пор с последующим стеканием жидкости по волокнам в нижнюю часть туманоуловителя. Осаждение капель жидкости происходит под действием броуновской диффузии или инерционного механизма отделения частиц загрязнителя от газовой фазы на фильтроэлементах в зависимости от скорости фильтрации W. Туманоуловители делят на низкоскоростные (W< 0,15 м/с), в которых преобладает механизм диффузного осаждения капель, и высокоскоростные (W=2...2,5 м/с), где осаждение происходит главным образом под воздействием инерционных сил.

В качестве фильтрующей набивки в таких туманоуловителях используют войлоки из полипропиленовых волокон, которые успешно работают в среде разбавленных и концентрированных кислот и щелочей.

В тех случаях, когда диаметры капель тумана составляют 0,6...0,7 мкм и менее, для достижения приемлемой эффективности очистки приходится увеличивать скорость фильтрации до 4,5...5 м/с, что приводит к заметному брызгоуносу с выходной стороны фильтроэлемента (брызгоунос обычно возникает при скоростях 1,7...2,5 м/с) значительно уменьшить брызгоунос можно применением брызгоуловителей в конструкции туманоуловителя. Для улавливания жидких частиц размером более 5 мкм применяют брызгоуловители из пакетов сеток, где захват частиц жидкости происходит за счет эффектов касания и инерционных сил. Скорость фильтрации в брызгоуловителях не должна превышать 6 м/с.

Схема высокоскоростного туманоуловителя.

1 -брызгоуловитель

3-фильтрующий элемент

Высокоскоростной туманоуловитель с цилиндрическим фильтрующим элементом 3, который представляет собой перфорированный барабан с глухой крышкой. В барабане установлен грубоволокнистый войлок 2 толщиной 3...5 мм. Вокруг барабана по его внешней стороне расположен брызгоуловитель 1, представляющий собой набор перфорированных плоских и гофрированных слоев винипластовых лент. Брызгоуловитель и фильтроэлемент нижней частью установлены в слой жидкости.


Схема фильтрующего элемента низкоскоростного туманоуловителя

3-цилиндры

4-волокнистый фильтроэлемент

5-нижний фланец

6-трубка гидрозатвора

В пространство между цилиндрами 3, изготовленными из сеток,
помещают волокнистый фильтроэлемент 4, который крепится с помощью
фланца 2 к корпусу туманоуловителя 1. Жидкость, осевшая на
фильтроэлементе; стекает на нижний фланец 5 и через трубку
гидрозатвора 6 и стакан 7 сливается из фильтра. Волокнистые
низкоскоростные туманоуловители обеспечивают высокую

эффективность очистки газа (до 0,999) от частиц размером менее 3 мкм и полностью улавливают частицы большого размера. Волокнистые слои формируются из стекловолокна диаметром 7...40 мкм. Толщина слоя составляет 5... 15 см, гидравлическое сопротивление сухих фильтроэлементов - 200... 1000 Па.

Высокоскоростные туманоуловители имеют меньшие размеры и обеспечивают эффективность очистки, равную 0,9... 0,98 при Ар=1500...2000 Па, от тумана с частицами менее 3 мкм.


СПИСОК ЛИТЕРАТУРЫ.

Аршинов В. А., Алексеев Г. А. Резание металлов и режущий
инструмент. Изд. 3-е, перераб. и доп. Учебник для машиностроительных техникумов. М.: Машиностроение, 1976.

Барановский Ю. В., Брахман Л. А., Бродский Ц. 3. и др. Ре­
жимы резания металлов. Справочник. Изд. 3-е, переработанное и дополненное. М.: Машиностроение, 1972.

Барсов А. И. Технология инструментального производства.
Учебник для машиностроительных техникумов. Изд. 4-е, исправленное и дополненное. М.: Машиностроение, 1975.

ГОСТ 2848-75. Конусы инструментов. Допуски. Методы и
средства контроля.

ГОСТ 5735-8IE. Развертки машинные, оснащенные пластинами твердого сплава. Технические условия.

Грановский Г. И., Грановский В. Г. Резание металлов: Учеб­
ник для машиностр. и приборостр. спец. вузов. М.: Высш. шк.,
1985.

Иноземцев Г. Г. Проектирование металлорежущих инструментов: Учеб. пособие для втузов по специальности
«Технология машиностроения, металлорежущие станки и инструменты». М.: Машиностроение, 1984.

Нефедов Н. А., Осипов К. А. Сборник задач и примеров по
резанию металлов и режущему инструменту: Учеб. пособие для
техникумов по предмету «Основы учения о резании металлов и
режущий инструмент». 5-е изд., перераб. и доп. М.: Машино­
строение, 1990.

Основы технологии машиностроения. Под ред. B.C. Корсакова. Изд. 3-е, доп. и перераб. Учебник для вузов. М.: Маши­ностроение, 1977.


Отраслевая методика по определению экономической эффективности использования новой техники, изобретений и рационализаторских предложений.

Сахаров Г. П., Арбузов О. Б., Боровой Ю. Л. и др. Металлорежущие инструменты: Учебник для вузов по специальностям «Технология машиностроения», «Металлорежущие стан­ки и инструменты». М.: Машиностроение, 1989.


Изд. 3-е переработ. Т. 1. Под ред. А. Г. Косиловой и Р. К. Мещерякова. М.: Машиностроение, 1972.

Справочник технолога-машиностроителя. В двух томах.
Изд. 3-е переработ. Т. 2. Под ред. А. Н. Малова. М.: Машино­
строение, 1972.

Таратынов О. В., Земсков Г. Г., Баранчукова И. М. и др.
Металлорежущие системы машиностроительных производств:
Учеб. пособие для студентов технических вузов. М.: Высш.
шк., 1988.

Таратынов О. В., Земсков Г. Г., Тарамыкин Ю. П. и др.
Проектирование и расчет металлорежущего инструмента на
ЭВМ:. Учеб. пособие для втузов. М.: Высш. шк., 1991.

Турчин А. М., Новицкий П. В., Левшина Е. С. и др. Электрические измерения неэлектрических величин. Изд. 5-е, перераб. и доп. Л.: Энергия, 1975.

Худобин Л. В., Гречишников В. А. и др. Руководство к дипломному проектированию по технологи машиностроения, металлорежущим станкам и инструментам: Учеб. пособие для вузов по специальности «Технология машиностроения, метал­лорежущие станки и инструменты». М., Машиностроение, 1986.

Юдин Е. Я., Белов С. В., Баланцев С. К. и др. Охрана труда
в машиностроении: Учебник для машиностроительных вузов.
М.: Машиностроение, 1983.

Методические указания к практическому занятию «Расчет
механической вентиляции производственных помещений»./ Б.
С. Иванов, М.: Ротапринт МАСИ (ВТУЗ-ЗИЛ), 1993.

Методические указания по дипломному проектированию
«Нормативно-техническая документация по охране труда и окружающей среды». Часть 1./ Э. П. Пышкина, Л. И. Леонтьева, М.: Ротапринт МГИУ, 1997.

Методические указания по лабораторной работе «Изучение
устройства и порядка использования средств пожаротушеия»./
Б. С. Иванов, М.: Ротапринт Завода-втуза при ЗИЛе, 1978.

А Дубина. «Машиностроительные расчеты в среде Excel 97/2000.» - СПб.: БХВ – Санкт-Петербург, 2000.

ВВЕДЕНИЕ

Возрождение Российской промышленности первейшая задача укрепления экономики страны. Без сильной, конку­рентоспособной промышленности невозможно обеспечить нормальную жизнь страны и народа. Рыночные отношения, самостоятельность заводов, отход от планового хозяйства диктуют производителям выпускать продукцию пользую­щуюся мировым спросом и с минимальными затратами. На инженерно-технический персонал заводов возложены задачи по выпуску данной продукции с минимальными затратами в кратчайшие сроки, с гарантированным качеством.

Этого можно достичь применяя современные техноло­гии обработки деталей, оборудование, материалы, системы автоматизации производства и контроля качества продук­ции. От принятой технологии производства во многом за­висит надежность работы выпускаемых машин, а также экономика их эксплуатации.

Актуальна задача повышения технологического обес­печения качества производимых машин, и в первую очередь их точности. Точность в машиностроении имеет большое значение для повышения эксплуатационного качества ма­шин и для технологии их производства. Повышение точно­сти изготовления заготовок снижает трудоемкость механи­ческой обработки, а повышение точности механической об­работки сокращает трудоемкость сборки в результате устра­нения пригоночных работ и обеспечения взаимозаменяемо­сти деталей изделия.

По сравнению с другими методами получения дета­лей машин обработка резанием обеспечивает наибольшую их точность и наибольшую гибкость производственного про­цесса, создает возможности быстрейшего перехода от обра­ботки заготовок одного размера к обработке заготовок дру­гого размера.

Качество и стойкость инструмента во многом определя­ют производительность и эффективность процесса обработ­ки, а в некоторых случаях и вообще возможность получения деталей требуемых формы, качества и точности. Повышение качества и надежности режущего инструмента способствуют повышению производительности обработки металлов резани­ем.

Развертка - это режущий инструмент, позволяющий полу­чить высокую точность обрабатываемых деталей. Она являет­ся недорогим инструментом, а производительность труда при работе разверткой высока. Поэтому она широко использу­ется при окончательной обработке различных отверстий деталей машин. При современном развитии машинострои­тельной промышленности номенклатура производимых дета­лей огромна и разнообразие отверстий требующих обра­ботки развертками очень велико. Поэтому перед конструк­торами часто стоит задача разработать новую развертку. По­мочь в этом им может пакет прикладных программ на ЭВМ, рассчитывающий геометрию режущего инструмента и выводящий на плоттере рабочий чертеж развертки.

Последовательность проектирования и методы расче­та режущего инструмента основаны как на общих законо­мерностях процесса проектирования, так и на специфических особенностях, характерных для режущего инструмента. Каж­дый вид инструмента имеет конструктивные особенности, ко­торые необходимо учитывать при проектировании.

Специалисты, которым предстоит работать в металло­обрабатывающих отраслях промышленности, должны уметь грамотно проектировать различные конструкции режущих инструментов для современных металлообрабатывающих систем, эффективно используя вычислительную технику (ЭВМ) и достижения в области инструментального производ­ства.

Для сокращения сроков и повышения эффективности проектирования режущего инструмента используются автома­тизированные расчеты на ЭВМ, основой которых является программно-математическое обеспечение.

Создание пакетов прикладных программ для расчета геометрических параметров сложного и особо сложного ре­жущего инструмента на ЭВМ позволяет резко сократить за­траты конструкторского труда и повысить качество проекти­рования режущего инструмента.

Места, %; Тотд - время на отдых и личные потребности, %; К - коэффициент, учитывающий тип производства; Кз - коэффициент, учитывающий условия сборки. Для общей сборки гидрозамка норма времени: =1,308 мин. Расчет потребного количества сборочных стендов и коэффициентов его загрузки Найдем расчетное количество сборочных стендов, шт. =0,06 шт. Округляем в большую сторону СР=1. ...

Способы защиты атмосферы от загрязняющих веществ?

Атмосфера - это газовая оболочка планеты Земля, которая вращается вместе с ней. Смесь газов атмосферы называют воздухом.

Загрязнение бывает первичным и вторичным. Первичное загрязнение происходит тогда, когда вещества, попадающие в атмосферу, оказывают неблагоприятное влияние на живые организмы. Например, газ фосген является ядом для всего живого. Вторичное загрязнение происходит тогда, когда относительно безопасное вещество в атмосфере превращается во вредное. Так, фреон малоактивное химическое вещество, но под действием ультрафиолета разлагается с выделением вредного хлора.

Загрязняющие вещества, попадающие в атмосферу, бывают в твердом, жидком и газообразном агрегатных состояниях. Существенный вклад в эмиссию вредных веществ вносят бытовые системы отопления, а точнее твердотопливные печи. Также, большое количество загрязнителей поступает в атмосферу с выхлопными газами различных видов транспорта. Все виды промышленности являются виновниками загрязнения воздуха наиболее токсичными веществами. Немалую роль в загрязнении атмосферы играют животноводческие комплексы.

  1. Методы очистки от загрязняющих веществ промышленных выбросов:
    • Гравитация. Применяется для осаждения крупных пылевых частиц.
    • Фильтрование. Подходит для отделения веществ в твердом агрегатном состоянии с различным диаметром частиц, происходит в специальных аппаратах: циклонах, скрубберах, фильтрах, пылеосадителях.
    • Сорбция. Применяется для очистки выбросов от жидких и газообразных веществ. Заключается в поглощении специальными веществами молекул загрязнителей. Проводится в адсорберах или абсорберах.
    • Конденсация. Применяется для отделения жидких или газообразных загрязнителей. Проводится в специальных реакторах или конденсаторах.
    • Окисление-восстановление. Метод подходит для обезвреживания веществ в различных агрегатных состояниях путем их химического превращения в безопасные. Проводится в специальных реакторах под действием катализаторов или в горелках для термического превращения.
  2. Защита атмосферы от выхлопных газов транспорта :
    • Изменение качества или вида топлива, например, перевод автомобилей на сжиженный газ, спирт и т.д.
    • Установка каталитических, пламенных или жидкостных нейтрализаторов на выхлопную систему автомобилей.
    • Переход на электромобили.
  3. Защита атмосферы от загрязняющих веществ животноводческих комплексов :
    • физико-химические методы, улавливание и нейтрализация вредных веществ происходит в различных фильтрах, скрубберах, пылеосадительных камерах;
    • биологические - извлечение из воздуха углекислого газа и сероводорода с помощью специально выращиваемых растений.
  4. Способы снижения загрязнения воздуха от твердотопливных печей :
    • использование современных каталитических и некаталитических печей, устройство которых способствует полному сгоранию топлива и дожиг дымовых газов;
    • использовать для отопления пеллеты или топливные брикеты, при сгорании которых образуется почти вдвое меньше вредных веществ, чем от угля или дров;
    • переход на газовое или электрическое отопление.

Выбросы промышленных предприятий характеризуются большим разнообразием дисперсного состава и других физико-химических свойств. В связи с этим разработаны различные методы их очистки и типы газо- и пылеуловителей - аппаратов, предназначенных для очистки выбросов от загрязняющих веществ.

Методы очистки промышленных выбросов от пыли можно разделить на две группы: методы улавливания пыли «сухим» способом и методы улавливания пыли «мокрым» способом . Аппараты обеспыливания газов включают: пылеосадительные камеры, циклоны, пористые фильтры, электрофильтры, скрубберы и др.

Наиболее распространенными установками сухого пылеулавливания являются циклоны различных типов.

Они используются для улавливания мучной и табачной пыли, золы, образующейся при сжигании топлива в котлоагрегатов. Газовый поток поступает в циклон через патрубок 2 по касательной к внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса. Под действием центробежной силы частицы пыли отбрасываются к стенке циклона и под действием силы тяжести опадают в бункер для сбора пыли 4, а очищенный газ выходит через выходную трубу 3. Для нормальной работы циклона необходима его герметичность, если циклон не герметичен, то из-за подсоса наружного воздуха происходит вынос пыли с потоком через выходную трубу.

Задачи по очистке газов от пыли могут успешно решаться цилиндрическими (ЦН-11, ЦН-15, ЦН-24, ЦП-2) и коническими (СК-ЦН-34, СК-ЦН-34М, СКД-ЦН-33) циклонами, разработанными НИИ по промышленной и санитарной очистке газов (НИИОГАЗ). Для нормального функционирования избыточное давление газов, поступающих в циклоны, не должно превышать 2500 Па. При этом во избежание конденсации паров жидкости t газа выбирается на 30 – 50 о С выше t точки росы, а по условиям прочности конструкции – не выше 400 о С. Производительность циклона зависит от его диаметра, увеличиваясь с ростом последнего. Эффективность очистки циклонов серии ЦН падает с ростом угла входа в циклон. С увеличением размера частиц и уменьшением диаметра циклона эффективность очистки возрастает. Цилиндрические циклоны предназначены для улавливания сухой пыли аспирационных систем и рекомендованы к использованию для предварительной очистки газов на входе фильтров и электрофильтров. Циклоны ЦН-15 изготавливают из углеродистой или низколегированной стали. Канонические циклоны серии СК, предназначенные для очистки газов от сажи, обладают повышенной эффективностью по сравнению с циклонами типа ЦН за счет большего гидравлического сопротивления.



Для очистки больших масс газов применяют батарейные циклоны, состоящие из большего числа параллельно установленных циклонных элементов. Конструктивно они объединяются в один корпус и имеют общий подвод и отвод газа. Опыт эксплуатации батарейных циклонов показал, что эффективность очистки таких циклонов несколько ниже эффективности отдельных элементов из-за перетока газов между циклонными элементами. Отечественная промышленность выпускает батарейные циклоны типа БЦ-2, БЦР-150у и др.

Ротационные пылеуловители относятся к аппаратам центробежного действия, которые одновременно с перемещением воздуха очищают его от фракции пыли крупнее 5 мкм. Они обладают большой компактностью, т.к. вентилятор и пылеуловитель обычно совмещены в одном агрегате. В результате этого при монтаже и эксплуатации таких машин не требуется дополнительных площадей, необходимых для размещения специальных пылеулавливающих устройств при перемещении запыленного потока обыкновенным вентилятором.

Конструктивная схема простейшего пылеуловителя ротационного типа представлена на рисунке. При работе вентиляторного колеса 1 частицы пыли за счет центробежных сил отбрасываются к стенке спиралеобразного кожуха 2 и движутся по ней в направлении выхлопного отверстия 3. Газ, обогащенный пылью, через специальное пылеприемное отверстие 3 отводится в пылевой бункер, а очищенный газ поступает в выхлопную трубу 4.

Для повышения эффективности пылеуловителей такой конструкции необходимо увеличить переносную скорость очищаемого потока в спиральном кожухе, но это ведет к резкому повышению гидравлического сопротивления аппарата, или уменьшить радиус кривизны спирали кожуха, но это снижает его производительность. Такие машины обеспечивают достаточно высокую эффективность очистки воздуха при улавливании сравнительно крупных частиц пыли – свыше 20 – 40 мкм.

Более перспективными пылеотделителями ротационного типа, предназначенными для очистки воздуха от частиц размером > 5 мкм, являются противопоточные ротационные пылеотделители (ПРП). Пылеотделитель состоит из встроенного в кожух 1 полого ротора 2 с перфорированной поверхностью и колеса вентилятора 3. Ротор и колесо вентилятора насажены на общий вал. При работе пылеотделителя запыленный воздух поступает внутрь кожуха, где закручивается вокруг ротора. В результате вращения пылевого потока возникают центробежные силы, под действием которых взвешенные частицы пыли стремятся выделиться из него в радиальном направлении. Однако на эти частицы в противоположном направлении действуют силы аэродинамического сопротивления. Частицы, центробежная сила которых больше силы аэродинамического сопротивления, отбрасываются к стенкам кожуха и поступают в бункер 4. Очищенный воздух через перфорацию ротора с помощью вентилятора выбрасывается наружу.

Эффективность очистки ПРП зависит от выбранного соотношения центробежной и аэродинамической сил и теоретически может достигать 1.

Сравнение ПРП с циклонами свидетельствует о преимуществах ротационных пылеуловителей. Так, габаритные размеры циклона в 3 – 4 раза, а удельные энергозатраты на очистку 1000 м 3 газа на 20 – 40 % больше, чем у ПРП при прочих равных условиях. Однако широкое распространение пылеуловители ротационного действия не получили из-за относительной сложности конструкции и процесса эксплуатации по сравнению с другими аппаратами сухой очистки газов от механических загрязнений.

Для разделения газового потока на очищенный газ и обогащенный пылью газ используют жалюзийный пылеотделитель. На жалюзийной решетке 1 газовый поток расходом Q разделяется на два протока расходом Q 1 и Q 2 . Обычно Q 1 = (0.8-0.9)Q, а Q 2 =(0.1-0.2)Q. Отделение частиц пыли от основного газового потока на жалюзийной решетке происходит под действием инерционных сил, возникающих при повороте газового потока на входе в жалюзийную решетку, а также за счет эффекта отражении частиц от поверхности решетки при соударении. Обогащенный пылью газовый поток после жалюзийной решетки направляется к циклону, где очищается от частиц, и вновь вводится в трубопровод за жалюзийной решеткой. Жалюзийные пылеотделители отличаются простотой конструкции и хорошо компонуются в газоходах, обеспечивая эффективность очистки 0,8 и более для частиц размером более 20 мкм. Они применяются для очистки дымовых газов от крупнодисперсной пыли при t до 450 – 600 о С.

Электрофильтр. Электрическая очистка один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Осадительные электроды 2 присоединяют к положительному полюсу выпрямителя 4 и заземляют, а коронирующее электроды подсоединяют к отрицательному полюсу. Частицы, поступающие в электрофильтр, ок положительному полюсу выпрямителя 4 и заземляют, а коронирующее электроды приедаче заряда ионов примесей ана. бычно уже имеют небольшой заряд, полученный за счет трения о стенки трубопроводов и оборудования. Таким образом, отрицательно заряженные частицы движутся к осадительному электроду, а положительно заряженные частицы оседают на отрицательном коронирующем электроде.

Фильтры широко используют для тонкой очистки газовых выбросов от примесей. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках при движении через них. Фильтр представляет собой корпус 1, разделенный пористой перегородкой (фильтро-

элементом) 2 на две полости. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэлемента. Частицы примесей оседают на входной части пористой перегородки и задерживаются в порах, образуя на поверхности перегородки слой 3.

По типу перегородок фильтры бывают:- с зернистыми слоями (неподвижные свободно насыпанные зернистые материалы) состоящие из зерен различной формы, используют для очистки газов от крупных примесей. Для очистки газов от пылей механического происхождения (от дробилок, сушилок, мельниц и др.) чаще используют фильтры из гравия. Такие фильтры дешевы, просты в эксплуатации и обеспечивают высокую эффективность очистки (до 0,99) газов от крупнодисперсной пыли.

С гибкими пористыми перегородками (ткани, войлоки, губчатая резина, пенополиуретан и др.);

С полужесткими пористыми перегородками (вязанные и тканые сетки, прессованные спирали и стружка и др.);

С жесткими пористыми перегородками (пористая керамика, пористые металлы и др.).

Наибольшее распространение в промышленности для сухой очистки газовых выбросов от примесей имеют рукавные фильтры. В корпусе фильтра 2 устанавливается необходимое число рукавов 1, во внутреннюю полость которых подается запыленный газ от входящего патрубка 5. Частицы загрязнений за счет ситового и других эффектов оседают в ворсе и образуют пылевой слой на внутренней поверхности рукавов. Очищенный воздух выходит из фильтра через патрубок 3.При достижении максимально допустимого перепада давления на фильтре его отключают от системы и производят регенерацию встряхиванием рукавов с обработкой их продувкой сжатым газом. Регенерация осуществляется специальным устройством 4.

Пылеуловители различных типов, в том числе и электрофильтры, применяют при повышенных концентрациях примесей в воздухе. Фильтры используют для тонкой очистки воздуха с концентрациями примесей не более 50 мг/м 3 , если требуемая тонкая очистка воздуха идет при больших начальных концентрациях примесей, то очистку ведут в системе последовательно соединенных пылеуловителей и фильтров.

Аппараты мокрой очистки газов имеют широкое распространение, т.к. характеризуются высокой эффективностью очистки от мелкодисперсных пылей с d ч ≥ (0,3-1,0) мкм, а также возможностью очистки от пылей горячих и взрывоопасных газов.. Однако мокрые пылеуловители обладают рядом недостатков, ограничивающих область их применения: образования в процессе очистки шлама, что требует специальных систем для его переработки; вынос влаги в атмосферу и образование отложений в отводящих газоходах при охлаждении газов до температуры точки росы; необходимость создания оборотных систем подачи воды в пылеуловитель.

Аппараты мокрой очистки работают по принципу осаждения частиц пыли на поверхность либо капель жидкости, либо пленки жидкости. Осаждение частиц пыли на жидкость происходит под действием сил инерции и броуновского движения.

Среди аппаратов мокрой очистки с осаждением частиц пыли на поверхность капель на практике более применимы скрубберы Вентури . Основная часть скруббера – сопло Вентури 2, в конфузорную часть которого подводится запыленный поток газа и через центробежные форсунки 1 жидкость на орошение. В конфузорной части сопла происходит разгон газа от входной скорости 15-20 м/с до скорости в узком сечении сопла 30-200 м/с, а в диффузорной части сопла поток тормозится до скорости 15-20 м/с и подается в каплеуловитель 3. Каплеуловитель обычно выполняют в виде прямоточного циклона. Скрубберы Вентури обеспечивают высокую эффективность очистки аэрозолей со средним размером частиц 1-2 мкм при начальной концентрации примесей до 100 г/м 3 .

К мокрым пылеуловителям относят барботажго-пенные пылеуловители с провальной и переливной решетками. В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, проходя через слой жидкости или пены 2, под давлением, очищается от части пыли за счет осаждения частиц на внутренней поверхности газовых пузырей. Режим работы аппаратов зависит от скорости подачи воздуха под решетку. При скорости до 1 м/с наблюдается барботажный режим работы аппарата. Дальнейший рост скорости газа в корпусе аппарата c 1 до 2-2,5 м/с сопровождается возникновением пенного слоя над жидкостью, что приводит к повышению эффективности очистки газа и брызгоуноса из аппарата. Современные барботажго-пенные аппараты обеспечивают эффективность очистки газа от мелкодисперсной пыли ≈ 0,95-0,96 при удельных расходах воды 0,4-0,5 л/м 3 . Но эти аппараты весьма чувствительны к неравномерности подачи газа под провальные решетки, что приводит к местному сдуву пленки жидкости с решетки. Решетки склонны к засорению.

Методы очистки промышленных выбросов от газообразных загрязнителей по характеру протекания физико-химических процессов делят на пять основных групп: промывка выбросов растворителями примесей (абсорбция); промывка выбросов растворами реагентов, связывающих примеси химически (хемосорбция); поглощение газообразных примесей твердыми активными веществами (адсорбция); термическая нейтрализация отходящих газов и применение каталитического превращения.

Метод абсорбции . В технике очистки газовых выбросов про­цесс абсорбции часто называют скрубберным процессом. Очистка газовых выбросов методом абсорбции заключается в разделении газовоздушной смеси на составные части путем поглощения одно­го или нескольких газовых компонентов (абсорбатов) этой смеси жидким поглотителем (абсорбентом) с образованием раствора.

Движущей силой здесь является градиент концентрации на гра­нице фаз газ - жидкость. Растворенный в жидкости компонент газовоздушной смеси (абсорбат) благодаря диффузии проникает во внутренние слои абсорбента. Процесс протекает тем быстрее, чем больше поверхность раздела фаз, турбулентность потоков и коэффициенты диффузии, т. е. в процессе проектирования абсор­беров особое внимание следует уделять организации контакта га­зового потока с жидким растворителем и выбору поглощающей жидкости (абсорбента).

Решающим условием при выборе абсорбента является раство­римость в нем извлекаемого компонента и ее зависимость от тем­пературы и давления. Если растворимость газов при 0°С и пар­циальном давлении 101,3 кПа составляет сотни граммов на 1 кг растворителя, то такие газы называют хорошо растворимыми.

Организация контакта газового потока с жидким растворите­лем осуществляется либо пропусканием газа через насадочную колонну, либо распылением жидкости, либо барботажем газа че­рез слой абсорбирующей жидкости. В зависимости от реализуе­мого способа контакта газ - жидкость различают: насадочиые башни: форсуночные и центробежные скрубберы, скрубберы Вентури; барботажно-пенные и другие скрубберы.

Общее устройство противопоточной насадочной башни приве­дено на рисунке. Загрязненный газ входит в нижнюю часть башни, а очищенный покидает ее через верхнюю часть, куда при помощи одного или нескольких разбрызгивателей 2 вводят чистый погло­титель, а из нижней отбирают отработанный раствор. Очищенный газ обычно сбрасывают в атмосферу. Жидкость, покидающую абсорбер, подвергают регенерации, десорбируя загрязняющее вещество, и возвра­щают в процесс или выводят в качестве отхода (побочного продукта). Химически инертная на­садка 1, заполняющая внутреннюю полость ко­лонны, предназначена для увеличения поверх­ности жидкости, растекающейся по ней в виде пленки. В качестве насадки используют тела разной геометрической формы, каждая из кото­рых характеризуется собственной удельной по­верхностью и сопротивлением движению газово­го потока.

Выбор метода очистки определяется технико-экономическим расчетом и зависит от: концентрации загрязнителя в очищаемом газе и требуемой степенью очистки, зависящей от фонового за­грязнения атмосферы в данном регионе; объемов очищаемых га­зов и их температуры; наличия сопутствующих газообразных при­месей и пыли; потребности в тех или иных продуктах утилизации и наличии требуемого сорбента; размеров площадей, имеющихся для сооружения газоочистной установки; наличия необходимого катализатора, природного газа и т. д.

При выборе аппаратурного оформления для новых технологи­ческих процессов, а также при реконструкции действующих уста­новок газоочистки необходимо руководствоваться следующими требованиями: максимальная эффективность процесса очистки в широком диапазоне нагрузочных характеристик при малых энер­гетических затратах; простота конструкции и ее обслуживания; компактность и возможность изготовления аппаратов или отдель­ных узлов из полимерных материалов; возможность работы на циркуляционном орошении или на самоорошении. Главный прин­цип, который должен быть положен в основу проектирования очистных сооружений, - это максимально возможное удержание вредных веществ, теплоты и возврат их в технологический про­цесс.

Задача №2 : На зерноперерабатывающем предприятии установлено оборудование, являющиеся источником выделения зерновой пыли. Для её удаления из рабочей зоны, оборудование снабжено аспирационной системой. С целью очистки воздуха перед выбросом его в атмосферу применяется пылеулавливающая установка, состоящая из одиночного или батарейного циклона.

Определить: 1. Предельно допустимый выброс зерновой пыли.

2. Подобрать конструкцию пылеулавливающей установки, состоящей из циклонов НИИ по промышленной и санитарной очистке газов (НИИ ОГАЗ), определить её эффективность по графику и рассчитать концентрацию пыли на входе и выходе из циклона.

Высота источника выброса Н = 15 м,

Скорость выхода газовоздушной смеси из источника w о = 6 м/с,

Диаметр устья источника Д = 0,5 м,

Температура выброса Т г = 25 о С,

Температура окружающего воздуха Т в = _ -14 о С,

Средний размер частиц пыли d ч = 4 мкм,

ПДК зерновой пыли = 0,5 мг/м 3 ,

Фоновая концентрация зерновой пыли С ф = 0,1 мг/м 3 ,

Предприятие находится в Московской области,

Рельеф местности спокойный.

Решение.1.Определяем ПДВ зерновой пыли:

М пдв = , мг/м 3

из определения ПДВ имеем: С м =С пдк – С ф = 0,5-0,1=0,4 мг/м 3 ,

Расход газовоздушной смеси V 1 = ,

DT = Т г – Т в = 25 – (-14) = 39 о С,

определяем параметры выброса: f =1000 , тогда

m = 1/(0,67+0,1 + 0,34 ) = 1/(0,67 + 0,1 +0,34 ) = 0,8 .

V м = 0,65 , тогда

n = 0,532V м 2 – 2,13V м + 3,13= 0,532×0,94 2 – 2,13×0,94 + 3,13 = 1,59, и

М пдв = г/с.

2. Выбор очистной установки и определение её параметров.

а) Выбор пылеулавливающей установки производится по каталогам и таблицам («Вентиляция, кондиционирование и очистка воздуха на предприятиях пищевой промышленности» Е.А.Штокман, В.А.Шилов, Е.Е.Новгородский и др., М.,1997). Критерием выбора является производительность циклона, т.е. величина расхода газовоздушной смеси, при которой циклон обладает max эффективностью. При решении задачи воспользуемся таблицей:

В первой строчке приводятся данные для одиночного циклона, во второй – для батарейного циклона.

Если расчетная производительность находится в интервале между табличными значениями, то выбирают конструкцию пылеулавливающей установки с ближайшей большей производительностью.

Определяем часовую производительность очистной установки:

V ч = V 1 × 3600 = 1.18 × 3600 = 4250 м 3 /ч

Согласно таблице по ближайшей большей величине V ч = 4500 м 3 /ч выбираем пылеулавливающую установку в виде одиночного циклона ЦН-11 с диаметром 800 мм.

б) По графику рис.1 приложения эффективность пылеулавливающей установки при среднем диаметре частиц пыли 4 мкм составляет h оч = 70%.

в) Определяем концентрацию пыли на выходе из циклона(в устье источника):

С вых =

Максимальную концентрацию пыли в очищаемом воздухе С вх определяем:

С вх = .

Если фактическое значение С вх больше 1695 мг/м 3 , то пылеулавливающая установка не даст нужного эффекта. В этом случае необходимо использовать более совершенные методы очистки.

3. Определяем показатель загрязнения

Р = ,

где М – масса выброса загрязняющего вещества, г/с,

Показатель загрязнения показывает, какое количество чистого воздуха необходимо для «растворения» загрязняющего вещества, выделяемого источником за единицу времени, до ПДК с учетом фоновой концентрации.

Р = .

Показатель загрязнения за год – суммарный показатель загрязнения. Для его определения находим массу выброса зерновой пыли за год:

М год = 3,6 × М ПДВ × Т × d ×10 -3 = 3,6 × 0,6 × 8 × 250 × 10 -3 = 4,32 т/год, тогда

åР = .

Показатель загрязнения необходим для сравнительной оценки различных источников выбросов.

Для сравнения посчитаем åР для сернистого ангидрида из предыдущей задачи за такой же период времени:

М год = 3,6 × М ПДВ × Т × d × 10 -3 = 3,6 × 0,71 × 8 × 250 × 10 -3 = 5,11 т/год, тогда

åР =

И в заключении необходимо начертить эскиз выбранного циклона по размерам, приведенным в приложении, в произвольном масштабе.

Контроль над загрязнением окружающей среды. Плата за наносимый ущерб окружающей среды.

При расчете количества загрязняющего вещества, т.е. массы выброса, определяют две величины: валовый выброс (т/год) и максимально разовый выброс (г/с) . Величина валового выброса применяется для общей оценки загрязнения атмосферы данным источником или группой источников, а также является основой для расчета платежей за загрязнение ОПС.

Максимально разовый выброс позволяет оценить состояние загрязнения атмосферного воздуха в данный момент времени и является исходной величиной для расчета максимальной приземной концентрации загрязняющего вещества и его рассеивания в атмосфере.

При разработке мероприятий по снижению выбросов загрязняющих веществ в атмосферу необходимо знать, какой вклад вносит каждый источник в общую картину загрязнения атмосферного воздуха в районе расположения предприятия.

ВСВ – временно согласованный выброс. Если на данном предприятии или группе предприятий, расположенных в одном районе (С Ф большая), значение ПДВ по объективным причинам не могут быть достигнуты в настоящее время, то по согласованию с органом, осуществляемым государственный контроль за охраной атмосферы от загрязнения, природопользователю назначается ВСВ с принятием поэтапного снижения выбросов до величин ПДВ и разработкой конкретных мер для этого.

Взимание платы осуществляется за следующие виды вредного воздействия на окружающую природную среду: - выброс в атмосферу загрязняющих веществ от стационарных и передвижных источников;

Сброс загрязняющих веществ в поверхностные и подземные водные объекты;

Размещение отходов;

Др. виды вредного воздействия (шум, вибрация, электромагнитное и радиационное воздействия и т.п.).

Установлены два вида базовых нормативов платы:

а) за выбросы, сбросы загрязняющих веществ и размещение отходов в пределах допустимых нормативов

б) за выбросы, сбросы загрязняющих веществ и размещение отходов в пределах установленных лимитов (временно согласованных нормативов).

Базовые нормативы платы устанавливаются по каждому ингредиенту ЗВ(отходу) с учетом степени опасности их для ОПС и здоровья населения.

Ставки платы за загрязнение ОПС указаны в Постановлении Правительства РФ от 12 июня 2003г. № 344 «О нормативах платы за выбросы в атмосферный воздух ЗВ стационарными и передвижными источниками, сбросы ЗВ в поверхностные и подземные водные объекты, размещение отходов производства и потребления» за 1 т в рублях:

Плата за выбросы загрязняющих веществ, не превышающих установленные природопользователю нормативы:

П = С Н × М Ф, при М Ф £ М Н,

где М Ф – фактический выброс загрязняющего вещества, т/год;

М Н – предельно допустимый норматив этого загрязняющего вещества;

С Н – ставка платы за выброс 1 т данного загрязняющего вещества в пределах допустимых нормативов выбросов, руб/т.

Плата за выбросы загрязняющих веществ в пределах установленных лимитов выбросов:

П = С Л (М Ф – М Н)+ С Н М Н, при М Н < М Ф < М Л, где

С Л – ставка платы за выброс 1 т загрязняющего вещества в пределах установленных лимитов выбросов, руб/т;

М Л – установленный лимит выброса данного загрязняющего вещества, т/год.

Плата за сверхлимитный выброс загрязняющих веществ:

П = 5× С Л (М Ф – М Л) + С Л (М Л – М Н) + С Н × М Н, при М Ф > М Л.

Плата за выброс загрязняющих веществ, когда природопользователю не установлены нормативы выбросов загрязняющих веществ или штраф:

П = 5 × С Л × М Ф

Платежи за предельно-допустимые выбросы, сбросы ЗВ, размещение отходов осуществляются за счет себестоимости продукции (работ, услуг), а за превышение их – за счет прибыли, оставшейся в распоряжении природопользователя.

Платежи за загрязнение ОПС поступают:

19% в Федеральный бюджет,

81% в бюджет субъекта Федерации.

Задача № 3. «Расчет технологических выбросов и плата за загрязнение окружающей природной среды на примере хлебозавода»

Основная масса загрязняющих веществ, таких как этиловый спирт, уксусная кислота, уксусный альдегид, образуются в пекарных камерах, откуда удаляются по вытяжным каналам за счет естественной тяги или выбрасываются в атмосферу через металлические трубы или шахты высотой не менее 10 – 15 м. Выбросы мучной пыли, в основном, происходят на складах муки. Окислы азота и углерода образуются при сжигании в пекарных камерах природного газа.

Исходные данные:

1. Годовая выработка хлебозавода г.Москвы – 20.000 т/год хлебобулочных изделий, в т.ч. хлебобулочных изделий из пшеничной муки – 8.000 т/год, хлебобулочных изделий из ржаной муки – 5.000 т/год, хлебобулочных изделий из смешанных валок – 7.000 т/год.

2. Рецептура валок: 30% - пшеничная мука и 70% - ржаная мука

3. Условие хранения муки – бестарное.

4. Топливо в печах и котлах– природный газ.

I. Технологические выбросы хлебозавода.

II. Плату за загрязнение атмосферы, если ПДВ по:

Этиловому спирту – 21т/год,

Уксусной кислоте – 1,5 т/год (ВСВ – 2,6 т/год),

Уксусный альдегид – 1 т/год,

Мучная пыль – 0,5 т/год,

Окислы азота – 6,2 т/год,

Окислы углерода – 6 т/год.

1. В соответствии с методикой ВНИИ ХП технологические выбросы при выпечке хлебобулочных изделий определяются методом удельных показателей:

М = В × m , где

М – количество выбросов загрязняющего вещества в кг за единицу времени,

В – выработка продукции в т за этот же промежуток времени,

m – удельный показатель выбросов загрязняющего вещества на единицу выпускаемой продукции, кг/т.

Удельные выбросы ЗВ в кг/т готовой продукции.

1.Этиловый спирт: хлебобулочные изделия из пшеничной муки – 1,1 кг/т,

хлебобулочные изделия из ржаной муки – 0,98 кг/т.

2. Уксусная кислота: хлебобулочные изделия из пшеничной муки – 0,1 кг/т,

хлебобулочные изделия из ржаной муки – 0,2 кг/т.

3. Уксусный альдегид – 0,04 кг/т.

4. Мучная пыль – 0,024 кг/т (для бестарного хранения муки), 0,043 кг/т (для тарного хранения муки).

5. Оксиды азота- 0,31 кг/т.

6. Оксиды углерода – 0,3 кг/т.

I. Расчет технологических выбросов:

1. Этиловый спирт:

М 1 = 8000 × 1,1 = 8800 кг/год;

М 2 = 5000 × 0,98 = 4900 кг/год;

М 3 = 7000(1,1×0,3+0,98×0,7) = 7133 кг/год;

общий выброс М = М 1 +М 2 +М 3 = 8800+4900+7133 = 20913 кг/год.

2. Уксусная кислота:

Хлебобулочные изделия из пшеничной муки

М 1 = 8000 × 0,1 = 800 кг/год;

Хлебобулочные изделия из ржаной муки

М 2 = 5000 × 0,2 =1000 кг/год;

Хлебобулочные изделия из смешанных валок

М 3 = 7000(0,1×0,3+0,2×0,7) = 1190 кг/год,

общий выброс М = М 1 + М 2 + М 3 = 800 + 1000 + 1190 = 2990 кг/год.

3. Уксусный альдегид М = 20000 × 0,04 = 800 кг/год.

4. Мучная пыль М = 20000 × 0,024 = 480 кг/год.

5. Оксиды азота М = 20000 × 0,31 = 6200 кг/год.

6. Оксиды углерода М = 20000 × 0,3 = 6000 кг/год.

II. Расчет платы за загрязнение ОПС.

1. Этиловый спирт: М Н = 21 т/год, М Ф = 20,913 т/год Þ П = С Н × М ф = 0,4 × 20,913 = 8,365 руб.

2. Кислота уксусная: М Н =1,5 т/год, М Л = 2,6 т/год, М Ф =2,99 т/год Þ П=5С Л (М Ф –М Л)+С Л (М Л – М Н)+С Н × М Н =

5×175×(2,99-2,6) + 175 ×(2,6 – 1,5) + 35×1,5= 586,25 руб.

3. Альдегид уксусный: М Н = 1 т/год, М Ф = 0,8 т/год Þ П = С Н × М Ф = 68 × 0,8 = 54,4 руб.

4. Пыль мучная: М Н = 0,5 т/год, М Ф = 0,48 т/год Þ П = С Н × М Ф = 13,7 × 0,48 = 6,576 руб.

5. Азота оксид: М Н = 6,2 т/год, М Ф = 6,2 т/год Þ П = С Н × М Ф = 35 × 6,2 = 217 руб.

6. Углерода оксид: М Н = 6 т/год, М Ф = 6т/год Þ

П = С Н × М Ф = 0,6 × 6 = 3,6 руб.

Коэффициент, учитывающий экологические факторы, для Центрального района РФ = 1,9 для атмосферного воздуха, для города коэффициент равен 1,2.

åП = 876,191 · 1,9 ·1,2 = 1997,72 руб

КОНТРОЛЬНЫЕ ЗАДАНИЯ.

Задание 1

№ варианта Производитель- ность котельной Q об, МДж/час Высота источника Н, м Диаметр устья Д, м Фоновая концентрация SO 2 С ф, мг/м 3
0,59 0,004
0,59 0,005
0,6 0,006
0,61 0,007
0,62 0,008
0,63 0,004
0,64 0,005
0,65 0,006
0,66 0,007
0,67 0,008
0,68 0,004
0,69 0,005
0,7 0,006
0,71 0,007
0,72 0,008
0,73 0,004
0,74 0,005
0,75 0,006
0,76 0,007
0,77 0,008
0,78 0,004
0,79 0,005
0,8 0,006
0,81 0,007
0,82 0,008
0,83 0,004
0,84 0,005
0,85 0,006
0,86 0,007
0,87 0,004
0,88 0,005
0,89 0,006

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

"Донской государственный технический университет" (ДГТУ)

Способы и средства защиты атмосферы и оценка их эффективности

Выполнила:

студентка группы МТS ИС 121

Колемасова А.С.

Ростов-на-Дону

Введение

2. Механическая очистка газов

Используемые источники

Введение

Для атмосферы характерна чрезвычайно высокая динамичность, обусловленная как быстрым перемещением воздушных масс в латеральном и вертикальном направлениях, так и высокими скоростями, разнообразием протекающих в ней физико-химических реакций. Атмосфера рассматривается как огромный "химический котел", который находится под воздействием многочисленных и изменчивых антропогенных и природных факторов. Газы и аэрозоли, выбрасываемые в атмосферу, характеризуются высокой реакционной способностью. Пыль и сажа, возникающие при сгорании топлива, лесных пожарах, сорбируют тяжелые металлы и радионуклиды и при осаждении на поверхность могут загрязнить обширные территории, проникнуть в организм человека через органы дыхания.

Загрязнением атмосферы считается прямое или косвенное введение в нее любого вещества в таком количестве, которое воздействует на качество и состав наружного воздуха, нанося вред людям, живой и неживой природе, экосистемам, строительным материалам, природным ресурсам - всей окружающей среде.

Очистка воздуха от примесей.

Для защиты атмосферы от негативного антропогенного воздействия используют следующие меры:

Экологизацию технологических процессов;

Очистку газовых выбросов от вредных примесей;

Рассеивание газовых выбросов в атмосфере;

Устройство санитарно-защитных зон, архитектурно-планировочные решения.

Безотходная и малоотходная технология.

Экологизация технологических процессов - это создание замкнутых технологических циклов, безотходных и малоотходных технологий, исключающих попадание в атмосферу вредных загрязняющих веществ.

Наиболее надежным и самым экономичным способом охраны биосферы от вредных газовых выбросов является переход к безотходному производству, или к безотходным технологиям. Термин "безотходная технология" впервые предложен академиком Н.Н. Семеновым. Под ним подразумевается создание оптимальных технологических систем с замкнутыми материальными и энергетическими потоками. Такое производство не должно иметь сточных вод, вредных выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов. То есть понимают принцип организации и функционирования производств, при рациональном использовании всех компонентов сырья и энергии в замкнутом цикле: (первичные сырьевые ресурсы - производство - потребление - вторичные сырьевые ресурсы).

Конечно же, понятие "безотходное производство" имеет несколько условный характер; это идеальная модель производства, так как в реальных условиях нельзя полностью ликвидировать отходы и избавиться от влияния производства на окружающую среду. Точнее следует называть такие системы малоотходными, дающими минимальные выбросы, при которых ущерб природным экосистемам будет минимален. Малоотходная технология является промежуточной ступенью при создании безотходного производства.

1. Разработка безотходных технологий

В настоящее время определилось несколько основных направлений охраны биосферы, которые в конечном счете ведут к созданию безотходных технологий:

1) разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов;

2) переработка отходов производства и потребления в качестве вторичного сырья;

3) создание территориально-промышленных комплексов с замкнутой структурой материальных потоков сырья и отходов внутри комплекса.

Важность экономного и рационального использования природных ресурсов не требует обоснований. В мире непрерывно растет потребность в сырье, производство которого обходится всё дороже. Будучи межотраслевой проблемой, разработка малоотходных и безотходных технологий и рациональное использования вторичных ресурсов требует принятия межотраслевых решений.

Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов, является основным направлением технического прогресса.

Очистка газовых выбросов от вредных примесей

Газовые выбросы классифицируются по организации отвода и контроля - на организованные и неорганизованные, по температуре на нагретые и холодные.

Организованный промышленный выброс - это выброс, поступающий в атмосферу через специально сооруженные газоходы, воздуховоды, трубы.

Неорганизованные называют промышленные выбросы, поступающие в атмосферу в виде ненаправленных потоков газа в результате нарушения герметичности оборудования. Отсутствие или неудовлетворительной работы оборудования по отсосу газа в местах загрузки, выгрузки и хранения продукта.

Для снижения загрязнения атмосферы от промышленных выбросов используют системы очистки газов. Под очисткой газов понимают отделение от газа или превращение в безвредное состояние загрязняющего вещества, поступающего от промышленного источника.

2. Механическая очистка газов

Она включает сухие и мокрые методы.

Очистка газов в сухих механических пылеуловителях.

К сухим механическим пылеуловителям относятся аппараты, в которых использованы различные механизмы осаждения: гравитационный (пылеосадительная камера), инерционный (камеры, осаждение пыли в которых происходит в результате изменения направления движения газового потока или установки на его пути препятствия) и центробежный.

Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах (рис. 1). Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40-100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи. Гравитационное осаждение действенно лишь для крупных частиц диаметром более 50-100 мкм, причем степень очистки составляет не выше 40-50%. Метод пригоден лишь для предварительной, грубой очистки газов.

Пылеосадительные камеры (рис. 1). Осаждение взвешенных в газовом потоке частиц в пылеосадительных камерах происходит под действием сил тяжести. Простейшими конструкциями аппаратов этого типа являются отстойные газоходы, снабжаемые иногда вертикальными перегородками для лучшего осаждения твердых частиц. Для очистки горячих печных газов широко применяют многополочные пылеосадительные камеры.

Пылеосадительная камера состоит: 1 - входной патрубок; 2 - выходной патрубок; 3 - корпус; 4 - бункер взвешенных частиц.

Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Газы обеспыливаются, выходя через щели и меняя при этом направление движения, скорость газа на входе в аппарат составляет 10-15 м/с. Гидравлическое сопротивление аппарата 100-400 Па (10-40 мм вод. ст.). Частицы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода - быстрое истирание или забивание щелей.

Данные аппараты отличаются простотой изготовления и эксплуатации, их достаточно широко используют в промышленности. Но эффективность улавливания не всегда достаточна.

Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны (рис.2) различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Циклоны наиболее часто применяют в промышленности для осаждения твердых аэрозолей. Циклоны характеризуются высокой производительностью по газу, простотой устройства, надежностью в работе. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов (производительностью более 20000 м 3 /ч), степень очистки составляет около 90% при диаметре частиц d > 30 мкм. Для частиц с d = 5-30 мкм степень очистки снижается до 80%, а при d == 2-5 мкм она составляет менее 40%.

атмосфера промышленный выброс очистка

На рис. 2 воздух вводится тангенциально во входной патрубок (4) циклона, представляющую собой закручивающий аппарат. Сформировавшийся здесь вращающийся поток опускается по кольцевому пространству, образованному цилиндрической частью циклона (3) и выхлопной трубой (5), в его конусную часть (2), а затем, продолжая вращаться, выходит из циклона через выхлопную трубу. (1) - пылевыпускное устройство.

Аэродинамические силы искривляют траекторию частиц. При вращательно-нисходящем движении запыленного потока пылевые частицы достигают внутренней поверхности цилиндра, отделяются от потока. Под влиянием силы тяжести и увлекающего действия потока отделившиеся частицы опускаются и через пылевыпускное отверстие проходят в бункер.

Более высокая степень очистки воздуха от пыли по сравнению с сухим циклоном может быть получена в пылеуловителях мокрого типа (рис. 3), в которых пыль улавливается в результате контакта частиц со смачивающей жидкостью. Этот контакт может осуществляться на смоченных стенках, обтекаемых воздухом, на каплях или на свободной поверхности воды.

На рис. 3 представлен циклон с водяной пленкой. Запыленный воздух подается через воздуховод (5) в нижнюю часть аппарата тангенциально со скоростью 15-21 м/с. Закрученный воздушный поток, двигаясь вверх, встречает пленку воды, стекающую вниз по поверхности цилиндра (2). Очищенный воздух отводится из верхней части аппарата (4) также тангенциально по направлению вращения воздушного потока. В циклоне с водяной пленкой нет выхлопной трубы, свойственной сухим циклонам, что позволяет уменьшить диаметр его цилиндрической части.

Внутренняя поверхность циклона непрерывно орошается водой из сопл (3), размещенных по окружности. Пленка воды на внутренней поверхности циклона должна быть сплошной, поэтому сопла установлены так, что струи воды направлены по касательной к поверхности цилиндра по ходу вращения воздушного потока. Пыль, захваченная водяной пленкой, стекает вместе с водой в коническую часть циклона и удаляется через патрубок (1), погруженный в воду отстойника. Отстоявшаяся вода вновь подается в циклон. Скорость воздуха на входе циклона 15-20 м/с. Эффективность циклонов с водяной пленкой составляет для пыли размером частиц до 5 мкм - 88-89%, для пыли с более крупными частицами - 95-100%.

Другими типами центробежного пылеуловителя служат ротоклон (рис. 4) и скруббер (рис. 5).

Циклонные аппараты наиболее распространены в промышленности, так как у них отсутствуют движущиеся части в аппарате и высокая надежность работы при температуре газов до 500 0 С, улавливание пыли в сухом виде, почти постоянное гидравлическое сопротивление аппарата, простота изготовления, высокая степень очистки.

Рис. 4 - Газопромывательс центральной опускной трубой:1 - входной патрубок; 2 - резервуар с жидкостью; 3 - сопло

Запыленный газ входит по центральной трубе, с большой скоростью ударяется о поверхность жидкости и, поворачивая на 180°, удаляется из аппарата. Частицы пыли при ударе проникают в жидкость и в виде шлама периодически или непрерывно отводятся из аппарата.

Недостатки: высокое гидравлическое сопротивление 1250-1500 Па, плохое улавливание частиц размером меньше 5 мкм.

Полые форсуночные скрубберы представляют собой колонны круглого или прямоугольного сечения, в которых осуществляется контакт между газами и каплями жидкости, распыливаемой форсунками. По направлению движения газов и жидкости полые скрубберы делятся на противоточные, прямоточные и с поперечным подводом жидкости. При мокром обеспыливании обычно применяют аппараты с противонаправленным движением газов и жидкости, реже - с поперечным подводом жидкости. Прямоточные полые скрубберы широко используются при испарительном охлаждении газов.

В противоточном скруббере (рис. 5.) капли из форсунок падают навстречу запыленному потоку газов. Капли должны быть достаточно крупными, чтобы не быть унесенными газовым потоком, скорость которого обычно составляет vг = 0,61,2 м/с. Поэтому в газопромывателях обычно устанавливают форсунки грубого распыления, работающие при давлении 0,3-0,4 МПа. При скоростях газов более 5 м/с после газопромывателя необходима установка каплеуловителя.

Рис. 5 - Полый форсуночный скруббер: 1 - корпус; 2 - газораспределительная решетка; 3 - форсунки

Высота аппарата обычно в 2,5 раза превышает его диаметр (Н = 2,5D). Форсунки устанавливают в аппарате в одном или нескольких сечениях: иногда рядами (до 14-16 в сечении), иногда только по оси аппарата.Факел распыла форсунок может быть направлен вертикально сверху вниз или под некоторым углом к горизонтальной плоскости. При расположении форсунок в несколько ярусов возможна комбинированная установка распылителей: часть факелов направлена по ходугазов, другая часть - в противоположном направлении. Для лучшего распределения газов по сечению аппарата в нижней части скруббера устанавливают газораспределительную решетку.

Полые форсуночные скрубберы широко используют для улавливания крупной пыли, а также при охлаждении газов и кондиционирования воздуха. Удельный расход жидкости невелик - от 0,5 до 8 л/м 3 очищенного газа.

Для очистки газов используют также фильтры. Фильтрация основана на прохождении очищаемого газа через различные фильтрующие материалы. Фильтрующие перегородки состоят из волокнистых или зернистых элементов и условно подразделяются на следующие типы.

Гибкие пористые перегородки - тканевые материалы из природных, синтетических или минеральных волокон, нетканные волокнистые материалы (войлоки, бумаги, картон) ячеистые листы (губчатая резина, пенополиуретан, мембранные фильтры).

Фильтрация - весьма распространенный прием тонкой очистки газов. Ее преимущества - сравнительная низкая стоимость оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью.

3. Очистка выбросов газообразных веществ, промышленных предприятий

В настоящее время, когда безотходная технология находится в периоде становления и полностью безотходных предприятий еще нет, основной задачей газоочистки служит доведение содержания токсичных примесей в газовых примесях до предельно допустимых концентраций (ПДК), установленных санитарными нормами.

Промышленные способы очистки газовых выбросов от газо- и парообразных токсичных примесей можно разделить на пять основных групп:

1. Метод абсорбции - заключается в поглощении отдельных компонентов газообразной смеси абсорбентом (поглотителем) в качестве которого выступает жидкость.

Абсорбенты, применяемые в промышленности, оцениваются по следующим показателям:

1) абсорбционная емкость, т.е. растворимость извлекаемого компонента в поглотителе в зависимости от температуры и давления;

2) селективность, характеризуемая соотношением растворимостей разделяемых газов и скоростей их абсорбции;

3) минимальное давление паров во избежание загрязнения очищаемого газа парами абсорбента;

4) дешевизна;

5) отсутствие коррозирующего действия на аппаратуру.

В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелочей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, оксидов марганца и магния, сульфат магния и др. Например, для очистки газов от аммиака, хлористого и фтористого водорода в качестве абсорбента используют воду, для улавливания водяных паров - серную кислоту, для улавливания ароматических углеводородов - масла.

Абсорбционная очистка - непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. При физической абсорбции регенерацию абсорбента проводят нагреванием и снижением давления, в результате чего происходит десорбция поглощенной газовой примеси и ее концентрированно.

Для реализации процесса очистки применяют абсорберы различных конструкций (пленочные, насадочные, трубчатые и др.). Наиболее распространен насадочный скруббер, применяемый для очистки газов от диоксида серы, сероводорода, хлороводорода, хлора, оксида и диоксида углерода, фенолов и т.д. В насадочных скрубберах скорость массообменных процессов мала из-за малоинтенсивного гидродинамического режима этих реакторов, работающих при скорости газа 0,02-0,7 м/с. Объемы аппаратов поэтому велики и установки громоздки.

Рис. 6 - Насадочный скруббер с поперечным орошением: 1 - корпус; 2 - форсунки; 3 - оросительное устройство;4 - опорная решетка; 5 - насадка; 6 - шламосборник

Абсорбционные методы характеризуются непрерывностью и универсальностью процесса, экономичностью и возможностью извлечения больших количеств примесей из газов. Недостаток этого метода в том, что насадочные скрубберы, барботажные и даже пенные аппараты обеспечивают достаточно высокую степень извлечения вредных примесей (до ПДК) и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технологические схемы мокрой очистки, как правило, сложны, многоступенчаты и очистные реакторы (особенно скрубберы) имеют большие объемы.

Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличности и безотходности. Но и циклические системы мокрой очистки конкурентоспособны только тогда, когда они совмещены с пылеочисткой и охлаждением газа.

2. Метод хемосорбции - основан на поглощении газов и паров твердыми и жидкими поглотителями, в результате чего образуются мало летучие и малорастворимые соединения. Большинство хемосорбционных процессов газоочистки обратимы, т.е. при повышении температуры поглотительного раствора химические соединения, образовавшиеся при хемосорбции, разлагаются с регенерацией активных компонентов поглотительного раствора и с десорбцией поглощенной из газа примеси. Этот прием положен в основу регенерации хемосорбентов в циклических системах газоочистки. Хемосорбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации примесей.

3. Метод адсорбции - основан на улавливании вредных газовых примесей поверхностью твердых тел, высокопористых материалов, обладающих развитой удельной поверхностью.

Адсорбционные методы применяют для различных технологических целей - разделение парогазовых смесей на компоненты с выделением фракций, осушка газов и для санитарной очистки газовых выхлопов. В последнее время адсорбционные методы выходят на первый план как надежное средство защиты атмосферы от токсичных газообразных веществ, обеспечивающее возможность концентрирования и утилизации этих веществ.

Промышленные адсорбенты, чаще всего применяемые в газоочистке, - это активированный уголь, силикагель, алюмогель, природные и синтетические цеолиты (молекулярные сита). Основные требования к промышленным сорбентам - высокая поглотительная способность, избирательность действия (селективность), термическая устойчивость, длительная служба без изменения структуры и свойств поверхности, возможность легкой регенерации. Чаще всего для санитарной очистки газов применяют активный уголь благодаря его высокой поглотительной способности и легкости регенерации. Известны различные конструкции адсорбентов (вертикальные, используемые при малых расходах, горизонтальные, при больших расходах, кольцевые). Очистку газа осуществляют через неподвижные слои адсорбента и движущиеся слои. Очищаемый газ проходит адсорбер со скоростью 0,05-0,3 м/с. После очистки адсорбер переключается на регенерацию. Адсорбционная установка, состоящая из нескольких реакторов, работает в целом непрерывно, так как одновременно одни реакторы находятся на стадии очистки, а другие - на стадиях регенерации, охлаждения и др. Регенерацию проводят нагреванием, например выжиганием органических веществ, пропусканием острого или перегретого пара, воздуха, инертного газа (азота). Иногда адсорбент, потерявший активность (экранированный пылью, смолой), полностью заменяют.

Наиболее перспективны непрерывные циклические процессы адсорбционной очистки газов в реакторах с движущимся или взвешенным слоем адсорбента, которые характеризуются высокими скоростями газового потока (на порядок выше, чем в периодических реакторах), высокой производительностью по газу и интенсивностью работы.

Общие достоинства адсорбционных методов очистки газов:

1) глубокая очистка газов от токсичных примесей;

2) сравнительная легкость регенерации этих примесей с превращением их в товарный продукт или возвратом в производство; таким образом осуществляется принцип безотходной технологии. Адсорбционный метод особенно рационален для удаления токсических примесей (органических соединений, паров ртути и др.), содержащихся в малых концентрациях, т.е. как завершающий этап санитарной очистки отходящих газов.

Недостатки большинства адсорбционных установок - периодичность.

4. Метод каталитического окисления - основан на удалении примесей из очищаемого газа в присутствии катализаторов.

Действие катализаторов проявляется в промежуточном химическом взаимодействии катализатора с реагирующими веществами, в результате чего образуется промежуточные соединения.

В качестве катализаторов применяют металлы и их соединения (оксиды меди, марганца и др.) Катализаторы имеют вид шаров, колец или другую форму. Особенно широко этот метод используется для очистки выхлопных газов. В результате каталитических реакций примеси, находящиеся в газе, превращаются в другие соединения, т.е. в отличие от рассмотренных методов примеси не извлекаются из газа, а трансформируются в безвредные соединения, присутствие которых допустимо в выхлопном газе, либо в соединения, легко удаляемые из газового потока. Если образовавшиеся вещества подлежат удалению, то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами).

Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоких температурах и обычном давлении, а также при весьма малых начальных концентрациях примесей. Каталитические методы позволяют утилизировать реакционную теплоту, т.е. создавать энерготехнологические системы. Установки каталитической очистки просты в эксплуатации и малогабаритны.

Недостаток многих процессов каталитической очистки - образование новых веществ, которые подлежат удалению из газа другими методами (абсорбция, адсорбция), что усложняет установку и снижает общий экономический эффект.

5. Термический метод заключается в очистке газов перед выбросом в атмосферу путем высокотемпературного дожигания.

Термические методы обезвреживания газовых выбросов применимы при высокой концентрации горючих органических загрязнителей или оксида углерода. Простейший метод - факельное сжигание - возможен, когда концентрация горючих загрязнителей близка к нижнему пределу воспламенения. В этом случае примеси служат топливом, температура процесса 750-900°С и теплоту горения примесей можно утилизировать.

Когда концентрация горючих примесей меньше нижнего предела воспламенения, то необходимо подводить некоторое количество теплоты извне. Чаще всего теплоту подводят добавкой горючего газа и его сжиганием в очищаемом газе. Горючие газы проходят систему утилизации теплоты и выбрасываются в атмосферу.

Такие энерготехнологические схемы применяют при достаточно высоком содержании горючих примесей, иначе возрастает расход добавляемого горючего газа.

Используемые источники

1. Экологическая доктрина Российской Федерации. Официальный сайт государственной службы охраны окружающей природной среды России - eco-net/

2. Внуков А.К., Защита атмосферы от выбросов энергообъектов. Справочник, М.: Энергоатомиздат, 2001

Размещено на Allbest.ru

...

Подобные документы

    Проектирования аппаратурно-технологической схемы защиты атмосферы от промышленных выбросов. Экологическое обоснование принимаемых технологических решений. Защита природной среды от антропогенного воздействия. Количественная характеристика выбросов.

    дипломная работа , добавлен 17.04.2016

    Перегрев нелетучих веществ. Физические обоснования достижимых перегревов. Термодинамическая устойчивость метастабильного состояния вещества. Схема установки контактного термического анализа и регистратора. Недостатки основных способов очистки атмосферы.

    реферат , добавлен 08.11.2011

    Краткое описание технологии очистки воздуха. Применение и характеристика адсорбционного метода защиты атмосферы. Адсорбционные угольные фильтры. Очистка от серосодержащих соединений. Адсорбционная регенерационная система очистки воздуха "АРС – аэро".

    курсовая работа , добавлен 26.10.2010

    Основные понятия и определения процессов пылеулавливания. Гравитационные и инерционные методы сухой очистки газов и воздуха от пыли. Мокрые пылеуловители. Некоторые инженерные разработки. Пылеуловитель на основе центробежной и инерционной сепарации.

    курсовая работа , добавлен 27.12.2009

    Безотходная и малоотходная технология. Очистка газовых выбросов от вредных примесей. Очистка газов в сухих механических пылеуловителях. Промышленные способы очистки газовых выбросов от парообразных токсичных примесей. Метод хемосорбции и адсорбции.

    контрольная работа , добавлен 06.12.2010

    Строение и состав атмосферы. Загрязнение атмосферы. Качество атмосферы и особенности ее загрязнения. Основные химические примеси, загрязняющие атмосферу. Методы и средства защиты атмосферы. Классификация систем очистки воздуха и их параметры.

    реферат , добавлен 09.11.2006

    Двигатель как источник загрязнения атмосферы, характеристика токсичности его отработавших газов. Физико-химические основы очистки отработанных газов от вредных компонентов. Оценка негативного воздействия эксплуатации судна на окружающую природную среду.

    курсовая работа , добавлен 30.04.2012

    Характеристика выбросов в деревообрабатывающем цехе при шлифовании: загрязнение атмосферы, воды и почвы. Виды шлифовальных станков. Выбор метода очистки выбросов. Утилизация твердых отходов. Аппаратно-технологическое оформление системы защиты атмосферы.

    курсовая работа , добавлен 27.02.2015

    Применение технических средств очистки дымовых газов как основное мероприятие по защите атмосферы. Современные методики разработки технических средств и технологических процессов очистки газов в скруббере Вентури. Расчеты конструктивных параметров.

    курсовая работа , добавлен 01.02.2012

    Воздействие на атмосферу. Улавливание твердых веществ из дымовых газов ТЭС. Направления защиты атмосферы. Основные показатели работы золоуловителя. Основной принцип работы электрофильтра. Расчет батарейного циклона. Выбросы золы и очистка от них.

Загрязнение атмосферы - это привнесение в воздух не характерных для него химических, физических и биологических веществ или изменение их естественной концентрации. В условиях активного техногенеза эта проблема приобрела чрезвычайную остроту и вызвала необходимость разработки комплекса мероприятий по снижению ее разностороннего негативного влияния.

В настоящее время можно выделить следующие группы мероприятий, направленных на предупреждение загрязнения атмосферного воздуха: технологические, планировочные и санитарно-технические. В качестве особой группы следует отметить меры правового и экономического характера, которые будут рассмотрены в гл. 10.

Технологические мероприятия, направленные прежде всего на реализацию одного из принципов рационального природопользования, состоящего в экологизации производства. Это означает уподобление производственных процессов, т.е. ресурсных циклов, естественным замкнутым круговоротам веществ в биосфере. Основу экологизации составляют разработка и внедрение малоотходных, энерго- и ресурсосберегающих технологий. Собственно безотходная технология в принципе невозможна в силу закона сохранения вещества. Разумеется, в природных биогеохимических циклах часть вещества также постоянно исключается из кругооборота, однако между этими процессами и ресурсными циклами есть принципиальная разница: в природе вещество не загрязняет среду и уходит не в отходы, а в запас.

К этой группе можно отнести также замену вредных веществ на производстве менее вредными или безвредными, очистку сырья от вредных примесей (десульфиризация топлива перед его сжиганием), замену сухих способов переработки пылящих материалов мокрыми, замену пламенного нагрева электрическим, герметизацию процессов, использование гидро- и пневмотранспорта при транспортировке пылящих материалов, замена прерывистых процессов непрерывными.

В группу планировочных мероприятий входит комплекс приемов, включающих учет розы ветров, зонирование территории города, организацию санитарно-защитных зон, озеленение населенных мест, планировку жилых районов.

Обычно промышленные зоны размещают на хорошо проветриваемых территориях города подветренно по отношению к жилым районам. Учитывают не только среднегодовую розу ветров, но и сезонные, а также скорости ветров отдельных румбов.

Известна экранирующая функция здания, в связи с чем получает развитие зонирование застройки кварталов, граничащих с магистральными улицами. Ближайшую к магистрали зону рекомендуется застраивать зданиями коммунально-бытового назначения, следующую - малоэтажными постройками, третью зону - зданиями повышенной этажности, а четвертую - детскими, лечебными учреждениями, т.е. застройкой с повышенными требованиями к качеству воздуха. Для борьбы с загрязнением воздуха жилых кварталов отработавшими газами автотранспорта имеет значение и тип застройки. Замкнутые приемы застройки целесообразно применять только в городах, где преобладают ветры больших скоростей (выше 5 м/с). Также большое значение в снижении загрязнения воздуха населенных мест имеют внутриквартальные зеленые насаждения и озеленение магистральных улиц.

В случаях, когда экологические и гигиенические показатели превышают нормативы, появляется необходимость в санитарно-технических мероприятиях :, состоящих во включении в систему удаления технологических и вентиляционных выбросов аппаратов для их очистки от примесей .

Аппараты очистки выбросов в атмосферу делятся: на пылеуловители (сухие, мокрые, фильтры и т.д.); туманоуловители (низкоскоростные и высокоскоростные); аппараты для улавливания паров и газов (абсорбционные, хемосорбционные, адсорбционные и нейтрализаторы); аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твердых примесей, многоступенчатые пылеуловители). Работа таких аппаратов характеризуется рядом параметров, основными из которых являются эффективность очистки, гидравлическое сопротивление и потребляемая мощность.

Эффективность очистки

где с вх и с вых - массовые концентрации примесей в газе соответственно до и после аппарата.

В ряде случаев для пылей используется понятие фракционной эффективности очистки:

где с вх j и с вых, - массовые концентрации i-Pi фракции пыли соответственно до и после пылеуловителя.

Для оценки эффективности процесса очистки также используют коэффициент проскока веществ К через аппарат очистки:

Как следует из формул (5.2) и (5.3), коэффициент проскока и эффективность очистки связаны соотношением К = 1 - г.

Гидравлическое сопротивление аппаратов очистки Ар определяют как разность давлений воздушного потока на входе аппарата р вх и выходе /; вых из него. Значение Ар находят экспериментально или рассчитывают по формуле

где?, - коэффициент гидравлического сопротивления аппарата; р и W - плотность и скорость воздуха соответственно в расчетном сечении аппарата.

В процессе очистки гидравлическое сопротивление аппарата увеличивается, поэтому по достижении некоторого регламентированного его значения процесс очистки нужно прекратить и провести регенерацию или замену аппарата.

Мощность N побудителя движения воздуха определяется гидравлическим сопротивлением и объемным расходом Q очищаемого газа:

где k - коэффициент запаса мощности, обычно k = 1,1 -2- 1,15; г|м - КПД передачи мощности от электродвигателя к вентилятору, обычно ц м = = 0,92 0,95; г| в - КПД вентилятора, обычно г| в = 0,65 -2- 0,8.

Номенклатура аппаратов для очистки воздуха от примесей весьма обширна, что объясняется многообразием и сложностью современных технологий. Заслуженное признание среди устройств очистки воздуха от твердых частиц получили сухие пылеуловители - циклоны (рис. 5.2) различных типов (цилиндрические и конические). Загрязненный воздух вводится в циклон через патрубок 2 по касательной к внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса к бункеру 4. Под действием центробежной силы частицы пыли образуют на стенке циклона слой, который вместе с частью воздуха попадает в бункер. Освободившись от пыли, образовавшийся вихрь воздуха выходит из бункера и покидает циклон через выходную трубу 3.

Рис. 5.2.

Для очистки больших масс применяют батарейные циклоны , состоящие из большого числа параллельно установленных циклонных элементов. Конструктивно они объединяются в один корпус и имеют общий подвод и отвод газа. Опыт эксплуатации батарейных циклонов показал, что эффективность очистки у таких циклонов несколько ниже эффективности отдельных элементов из-за перетока газов между циклонными элементами.

Для тонкой очистки воздуха от частиц и капельной жидкости применяют различные фильтры. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках при движении через них дисперсных сред (рис. 5.3).


Рис . 53.

Фильтр представляет собой корпус 1 , разделенный пористой перегородкой (фильтроэлементом) 2 на две полости. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэле- мента. Частицы примесей оседают па входной части пористой перегородки, образуя на поверхности перегородки слой 3> и задерживаются в порах. Для вновь поступающих частиц этот слой становится частью фильтровой перегородки, что увеличивает эффективность очистки фильтра и перепад давления на фильтроэлементе. Осаждение частиц на поверхности пор фильтроэлемента происходит в результате совокупного действия эффекта касания, а также диффузного, инерционного и гравитационного эффектов.

Классификация фильтров производится по различным признакам: типу фильтроэлемента, конструкции фильтра и его назначению, очистке и др.

По типу фильтроэлемента они бывают: с зернистыми слоями (неподвижные, свободно насыпанными, псевдоожиженными); с гибкими пористыми перегородками (ткани, войлоки, волокнистые маты, губчатая резина, пенополиуретан и др.); с полужесткими пористыми перегородками (вязаные и тканые сетки, прессованные спирали и др.); с жесткими пористыми перегородками (пористая керамика, пористые металлы и др.).

Электрическая очистка (электрофильтры) - один из наиболее совершенных видов очистки воздуха от взвешенных в нем частиц пыли и тумана. Этот процесс основан на ионизации воздуха, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах.

Аппараты мокрой очистки газов - мокрые пылеуловители - имеют широкое распространение, так как характеризуются высокой эффективностью очистки от мелкодисперсных пылей с d 4 > 0,3 мкм, а также возможностью очистки от пыли нагретого воздуха. Область их применения ограничивается рядом недостатков: образование в процессе очистки шлама, что требует специальных систем для его переработки; вынос влаги в атмосферу и образование отложений в отводящих газоходах при охлаждении воздуха до температуры точки росы; необходимость создания оборотных систем подачи воды в пылеуловитель.

Аппараты мокрой очистки работают по принципу осаждения частиц пыли на поверхность либо капель, либо пленки жидкости под действием сил инерции и броуновского движения.

Среди аппаратов мокрой очистки с осаждением частиц пыли на поверхность капель на практике наиболее применимы скрубберы Вентури (рис. 5.4). Основная часть скруббера - сопло Вентури 2. В его конфузор- ную часть подводится запыленный поток воздуха и через центробежные форсунки 1 - жидкость на орошение. В копфузориой части сопла происходит разгон воздуха от входной скорости (W r = 15 -s- 20 м/с) до скорости в узком сечении сопла 80-200 м/с и более. Процесс осаждения пыли на капли жидкости обусловлен массой жидкости, развитой поверхностью капель и высокой относительной скоростью частиц жидкости и пыли в кон- фузорной части сопла. Эффективность очистки в значительной степени зависит от равномерности распределения жидкости но сечению конфузор- ной части сопла. В диффузорной части сопла поток тормозится до скорости 15-20 м/с и подается в каплеуловитель 3, выполняемый обычно в виде прямоточного циклона.


Рис. 5.4.

Скрубберы Вентури обеспечивают высокую эффективность очистки от аэрозолей при начальной концентрации примесей до 100 г/м 3 . Они также широко используются в системах очистки воздуха от туманов, где их эффективность достигает 0,999, что вполне сравнимо с высокоэффективными фильтрами.

Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используют волокнистые фильтры - туманоуловители , принцип действия которых основан на осаждении капель на поверхности пор с последующим стеканием жидкости но волокнам в нижнюю часть тумано- уловителя. Осаждение капель жидкости происходит под действием броуновского движения или инерционного механизма отделения частиц загрязнителя от газовой фазы на фильтроэлементах.

Абсорбция - очистка выбросов от газов и паров, основанная на поглощении последних жидкостью в специальных аппаратах - абсорберах. Важнейшим условием применимости метода является растворимость паров или газов в абсорбенте, оцениваемая его абсорбционной способностью. В большинстве случаев в качестве абсорбента применяют воду, однако в некоторых случаях приходится прибегать к специальным жидкостям достаточно сложного состава. Поглощение газов и парообразных примесей происходит в процессе встречного движения загрязненного воздуха снизу и абсорбента, поступающего сверху через разбрызгиватель 2 на насадки 1 (рис. 5.5). Конструктивно абсорберы реализуются в виде насадочных башен, барботажно-пенных, распыливающих и других аппаратов.


Рис. 5.5. Схема насадочной башни:

1 - насадка; 2 - разбрызгиватель

Хемосорбция основана на поглощении газов и паров жидкими или твердыми поглотителями с образованием малорастворимых или малолетучих химических соединений. Протекающие при этом реакции в основном являются экзотермическими и обратимыми, поэтому при повышении температуры раствора образующееся химическое соединение разлагается с выделением исходных элементов.

Поглотительная способность хемосорбента почти не зависит от давления, поэтому хемосорбция более выгодна при небольшой концентрации вредностей в отходящих газах.

Основными аппаратами для реализации процесса являются насадочные башни, барботажно-пенные аппараты, скрубберы Вентури и т.п. Хемосорбция - один из распространенных методов очистки загрязненного воздуха от оксидов азота (эффективность очистки от оксидов азота 0,17-0,86) и паров кислот (эффективность очистки 0,95).

Адсорбция основана на способности некоторых тонкодисперсных твердых тел (адсорбентов ) селективно извлекать и концентрировать на своей поверхности отдельные компоненты газовой смеси. В качестве адсорбентов, или поглотителей, применяют вещества, имеющие большую площадь поверхности на единицу массы (активированные угли, а также простые и комплексные оксиды - активированный глинозем, силикагель, активированный оксид алюминия, синтетические цеолиты или молекулярные сита).

Адсорберы применяют для очистки воздуха от органических паров, удаления неприятных запахов и газообразных примесей, содержащихся в незначительных количествах в промышленных выбросах, а также летучих растворителей и целого ряда других газов.

Конструктивно адсорберы выполняют в виде емкостей, заполненных пористым адсорбентом, через который фильтруется поток очищаемого газа. Патроны с адсорбентом нашли широкое применение в респираторах и противогазах.

Термическая нейтрализация основана на способности горючих газов и паров в составе вентиляционных или технологических выбросов сгорать с образованием менее токсичных веществ. Для этого метода используют нейтрализаторы, использующие различные схемы термической нейтрализации: прямое сжигание; термическое окисление; каталитическое дожигание.

Прямое сжигание используют в тех случаях, когда очищаемые газы обладают значительной энергией, достаточной для поддержания горения (факельное сжигание горючих отходов в нефтехимии).

Термическое окисление находит применение в тех случаях, когда очищаемые газы имеют высокую температуру, но не содержат достаточно кислорода или когда концентрация горючих веществ незначительна и недостаточна для поддержания пламени.

В первом случае процесс термического окисления проводят в камере с подачей свежего воздуха (дожигание оксида углерода и углеводородов), а во втором - при подаче дополнительно природного газа.

Каталитическое дожигание используют для превращения токсичных компонентов, содержащихся в отходящих газах, в нетоксичные или менее токсичные путем их контакта с катализаторами. Для реализации процесса необходимо, кроме применения катализаторов, поддержание таких параметров газового потока, как температура и скорость газов. В качестве катализаторов используют платину, палладий, медь и др.

Каталитические нейтрализаторы применяют для обезвреживания оксида углерода, летучих углеводородов, растворителей, отработавших газов и т.п.

Для высокоэффективной очистки многокомпонентных выбросов (при одновременной очистке от твердых и газообразных примесей, при очистке от твердых примесей и капельной жидкости и т.п.) необходимо применять аппараты многоступенчатой очистки. В этом случае очищаемые газы последовательно проходят несколько автономных аппаратов очистки или один агрегат, включающий несколько ступеней очистки.

В системе последовательно соединенных аппаратов общая эффективность очистки г) определяется выражением

где гр, г| 2 ,Г| п - эффективность очистки 1, 2 и п -го аппаратов.