Максимальное количество ядер в компьютере. Что лучше больше ядер или частота процессора? Мощность аккумулятора и длительность автономной работы

Максимальное количество ядер в компьютере. Что лучше больше ядер или частота процессора? Мощность аккумулятора и длительность автономной работы
Максимальное количество ядер в компьютере. Что лучше больше ядер или частота процессора? Мощность аккумулятора и длительность автономной работы

Привет всем! Иногда игра или программа не работает на полную мощность, т.к. за производительность отвечают не все ядра. В этой статье посмотрим как задействовать все ядра вашего процессора.

Но не ждите волшебной палочки, т.к. если игра или программа не поддерживает многоядерность, то ничего не поделать, если только не переписать заново приложение.

Как запустить все ядра процессора?

Итак, способов будет несколько. По этому показываю первый .

Заходим в пуск - выполнить или клавиши win+r

Выбираем ваше максимальное число процессоров.

Так кстати можно узнать количество ядер процессора. Но это виртуальные ядра, а не физически. Физических может быть меньше.

  • Заходим в диспетчер задач — ctrl+shift+esc.
  • Или ctrl+alt+del и диспетчер задач.
  • Или нажимаем правой кнопкой по панели управления и выбираем диспетчер задач.

Переходим во вкладку процессы. Находим игру и нажимаем правой кнопкой мыши по процессу. Да кстати, игра должна быть запущена. Свернуть её можно или Win+D или alt+tab.

Выбираем задать соответствие.

Выбираем все и нажимаем ок.

Чтобы посмотреть, работают все ядра или нет, то в диспетчере задач заходим во вкладку быстродействие.

Во всех вкладках будет идти диаграмма.

Если нет, то нажимаем опять задать соответствие, оставляем только ЦП 0, нажимаем ок. Закрываем диспетчер задач, открываем опять повторяем все, то же самое, выбираем все процессоры и нажимаем ок.

В ноутбуках, бывает настроено энергосбережение таким образом, что настройки не дают использовать все ядра.

  • Win7 — Заходим в панель управления, идем в электропитание - Изменить параметры плана - изменить дополнительные параметры питания - управление питанием процессора - минимальное состояние процессора.
  • Win8, 10 — Или: параметры - система - питание и спящий режим - дополнительные параметры питания - настройка схемы электропитания - изменить дополнительные параметры питания - управление питанием процессора - минимальное состояние процессора

Для полного использования, должно стоять 100%.

Как проверить сколько работает ядер?

Запускаем и видим число активных ядер.

Не путайте этот параметр с количеством виртуальных процессоров, который отображены правее.

На что влияет количество ядер процессора?

Многие путают понятие количества ядер и частоту процессора. Если это сравнивать с человеком, то мозг это процессор, нейроны - это ядра. Ядра работают не во всех играх и приложениях. Если в игре например выполняется 2 процесса, один вырисовывает лес, а другой город и в игре заложено многоядерность, то понадобиться всего 2 ядра, чтобы загрузить эту картинку. А если в игре заложено больше процессов, то задействуют все ядра.

И может быть наоборот, игра или приложение может быть написана так, одно действие может выполнять только одно ядро и в этой ситуации выиграет процессор, у которого выше частота и наиболее хорошо сложена архитектура (по этому обычно ).

По этому грубо говоря, количество ядер процессора, влияет на производительность и быстродействие.

Инструкция

Если у вас установлена операционная система Windows, узнать, какое количество ядер в вашем процессоре, можно через свойства . Для этого выберите на рабочем столе значок «Компьютер», нажмите Alt+Enter или правую кнопку мыши и в контекстном меню «Свойства».

Откроется окно с информацией об операционной системе, процессоре, оперативной памяти и имени компьютера. Справа будут ссылки, среди которых нужно найти «Диспетчер устройств».

В диспетчере будет указано оборудование, которое у вас установлено. В списке найдите пункт «Процессор» и нажмите на стрелочку рядом с ним. Развернется столбик, в котором будет указано количество ваших процессоров.

Можно запустить диспетчер задач с помощью комбинации Ctrl+Shift+Esc. Откройте вкладку под названием «Быстродействие». Количество окон в разделе «Хронология загрузки ЦП» соответствует количеству ядер вашего процессора.

Если на компьютере включена имитация работы многоядерного процессора, тогда диспетчер задач будет показывать число сымитированных ядер. Это можно определить, если все ядра показывают совершенно одинаковую нагрузку. Тогда вам может пригодиться бесплатная утилита CPU-Z. На вкладке CPU показана вся информация о процессоре. Внизу есть окно Core, где указано количество ядер.

Можно воспользоваться еще одной бесплатной программой PC Wizard. Ее можно скачать с сайта разработчика. Установите программу на компьютер. Запустите файл PC Wizard.exe, нажмите вкладку «Железо», затем «Процессор». Справа найдите раздел «Элемент», а в нем пункт Number of core. В разделе «Описание» отображено количество ядер.

Порой перед пользователем, особенно желающим повысить производительность своего компьютера, встает вопрос о типе, частоте и количестве ядер в его процессоре. Получить эту информацию может любой желающий, потратив всего лишь несколько минут.

Инструкция

Если нужна более подробная информация о процессоре и о каждом его ядре, потребуется установка дополнительных программ. Скачайте и установите TuneUp Utilities. Запустите программу. Дождитесь, пока программа просканирует ваш компьютер. В верхнем меню программы выберите вкладку «Исправление проблем». Затем пройдите на вкладку «Показать системную информацию». Появится окно с названием «Общий обзор». Тут также есть информация о количестве ядер вашего процессора, но она лишь поверхностная.

Для того, чтобы узнать более детальную информацию, нажмите на вкладку «Системные устройства». В окне появится информация о типе процессора, количестве кэш памяти, версии БИОС. Обратите внимание на окно «Процессор». Помимо его характеристик тут есть вкладка «Подробности процессора». Нажмите по этой вкладке, после чего откроется окно с максимально детальной информацией по каждому ядру процессора. В возникшем окне также есть вкладка «Особенности». Нажав по этой вкладке, вы увидите, какие технологии поддерживаются процессором, а какие недоступны. Если процессор поддерживает определенную технологию, напротив ее названия будет галочка зеленого цвета.

Видео по теме

От того, сколько ядер содержит процессор компьютера, напрямую зависит его производительность. Современные мощные модели от ведущих производителей имеют по 3 или 4 ядра, а потому функциональны и быстры. Однако и простенькие 1-ядерные экземпляры, в силу своей цены, еще не до конца ушли с рынка компьютерной техники.

Инструкция

Чтобы , сколько ядер в процессоре вашего ПК, зайдите в меню «Пуск», располагающееся на панели инструментов на рабочем столе. Найдите «Мой компьютер» и щелкните по нему правой кнопкой мыши. Выберите в открывшемся списке «Диспетчер задач». Появится новое окно со списком установленной на компьютере технической начинки. Найдите в списке «Процессор» и просмотрите информацию о нем. Заодно можно будет увидеть, насколько корректно работает оборудование – если что-то в системе не так, возле соответствующего элемента списка будет обозначен восклицательный знак или крестик.

Если вы хотите получить более развернутую информацию о работе каждого ядра, то скачайте на свой компьютер любую специальную программу, которая сканирует систему и после выдает результаты анализа. В качестве примера может послужить TuneUp Utilities.

После того как программа скачана, запустите ее, подождите, пока она проверит все нужные файлы. В верхней части окна утилиты найдите опцию «Исправление проблем», а в ней – вкладку «Показать системную информацию». Откроется окно «Общий обзор», где будет кратко указана основная информация относительно работы процессора.

Чтобы получить развернутый отчет о типе процессора, количестве кэш-памяти и версии БИОС воспользуйтесь вкладкой программы «Системные устройства». Кроме этого, в окне «Процессор» есть вкладка «Подробности». Зайдите в нее и, благодаря имеющимся в ней опциям, вы узнаете, какие технологии поддерживаются процессором, а какие для него недоступны, а также получите исчерпывающую информацию относительно работы каждого отдельно ядра (если их в компьютере несколько).

В случае если программы покажут наличие каких-то неисправностей или неточностей в работе ядер и всего процессора, незамедлительно обратитесь за помощью к специалисту – вполне возможно, дело ограничится переустановкой драйверов, но зато так вы наверняка обезопасите себя от возможной поломки.

Источники:

  • Скачать TuneUp Utilities

Процессор, или ЦПУ (центральное процессорное устройство) – устройство, обрабатывающее программный код. Производительность компьютера, в основном, зависит от характеристик процессора. Многоядерные чипы способны выполнять параллельно несколько потоков команд.

Инструкция

Определить количество ядер в процессоре можно средствами Windows. Запустите «Диспетчер задач» с помощью горячих клавиш Alt+Ctrl+Delete или щелкните правой клавишей мыши по свободному месту на «Панели задач» и выберите опцию «Диспетчер задач». Можно также использовать сочетание горячих клавиш Shift+Ctrl+Esc.

Перейдите во вкладку «Быстродействие». Количество ядер процессора обычно соответствовует количеству окон, отображающих график загрузки, в разделе «Хронология загрузки ЦП». Однако полагаться на эти данные нужно осмотрительно. Возможно, у вас на компьютере включена ядер, т.е. имитация работы многоядерного процессора на одноядерном.

Можно найти сведения о процессоре на сайте производителя. Вызовите выпадающее меню щелчком правой клавиши мыши по пиктограмме «Мой компьютер» и выберите опцию «Свойства». На вкладке «Общие» будет выведена основная информация о системе. Перепишите данные, которые относятся к процессору, зайдите на сайт фирмы-производителя и найдите интересующие вас подробности.

Есть еще один способ: в «Панели управления» щелкните дважды «Администрирование», затем «Управление компьютером» и выберите оснастку «Диспетчер устройств». Раскройте узел «Процессоры» и перепишите данные.

Узнать технические характеристики процессора, в том числе и количество ядер, можно с помощью сторонних программ. Скачайте и запустите бесплатную утилиту CPU-Z. На вкладке CPU выводится информация об этом устройстве. В самом нижнем разделе, в окошке Core сообщается количество ядер процессора.

Еще одна удобная бесплатная программа – PC Wizard. Скачайте ее с сайта разработчика и установите на своем компьютере. Запустите, щелкнув дважды по запускающему файлу PC Wizard.exe, и нажмите на кнопку «Железо». Затем щелкните мышкой по иконке «Процессор». В правой части окна в разделе «Элемент» найдите строку Number of core, а в разделе «Описание» – число ядер.

Сейчас уже никого не удивляет наличие у ПК более одного ядра. И скорее всего, скоро придет то время, когда производство одноядерных компьютеров прекратится за ненадобностью. И потому сегодня немаловажно знать, сколько ядер имеет ваш компьютер. Это знание позволит вам понять, не обманул ли продавец в магазине техники, или можно просто прихвастнуть перед друзьями мощностью своего ПК. И есть несколько способов, как узнать сколько ядер в компьютере.

Двухъядерный компьютер – это компьютер, центральный процессор которого имеет два ядра. Такая технология позволяет повысить производительность его работы в достаточно большой степени.

Что собой представляет двухъядерный процессор

Двухъядерный процессор - это процессор, на одном кристалле которого находится два ядра. Каждое из ядер имеет, как правило, архитектуру Net Burst. Некоторые из двухъядерных процессоров поддерживают также технологию Hyper-Threading. Данная технология позволяет осуществлять обработку процессов в четырех независимых потоках. Это означает, что один такой двухъядерный процессор с данной технологией (физический) заменяет или эквивалентен четырем логическим процессорам, с точки зрения операционной системы.

Итак, каждое ядро двухъядерного процессора имеет свой собственный кэш второго уровня определенного объема памяти, а также общий кэш с в два раза большей памятью. Как правило, кристаллы, на которых изготавливаются двухъядерные процессоры, имеют размер порядка двухсот квадратных миллиметров с количеством транзисторов, превышающим двести миллионов единиц. Стоит заметить, что при таком огромном количестве элементов данный процессор, казалось бы, должен выделять большое количество тепла и, следовательно, соответствующим образом охлаждаться. Однако это не так.

Наибольшая температура поверхности кристалла составляет около 70оС. Это обусловлено тем, что напряжение, питающее процессор, не превосходит полутора Вольт, а наибольшее значение силы тока составляет сто двадцать пять Ампер. Таким образом, увеличение количества ядер не приводит к существенному увеличению энергопотребления, что очень важно.

Преимущества компьютеров с двухъядерными процессорами

Необходимость в увеличении количества ядер процессора возникла, когда стало понятно, что дальнейшее увеличение его тактовой частоты не приводит к значительным улучшениям в производительности. Компьютеры с двухъядерными процессорами направлены на использование приложений, использующих многопоточную обработку информации. Поэтому польза от такого компьютера возможна не для всех программ. К числу программ, использующих возможности двух ядер, можно отнести такие, как, например, программы рендеринга трёхмерных сцен, программы обработки видеоизображений или аудиоданных. Также двухъядерный процессор принесет пользу при одновременной работе сразу нескольких программ на ПК. В связи с этим, такие процессоры обычно используют в компьютерах, предназначенных для работы с графикой, а также для работы с офисными программами. Таким образом, для игровых нужд данная технология второго ядра почти бесполезна.

Видео по теме

Но с покорением новых вершин показателей частоты, наращивать её стало тяжелее, так как это сказывалось на увеличении TDP процессоров. Поэтому разработчики стали растить процессоры в ширину, а именно добавлять ядра, так и возникло понятие многоядерности.

Ещё буквально 6-7 лет назад, о многоядерности процессоров практически не было слышно. Нет, многоядерные процессоры от той же компании IBM существовали и ранее, но появление первого двухъядерного процессора для настольных компьютеров , состоялось лишь в 2005 году, и назывался данный процессор Pentium D. Также, в 2005 году был выпущен двухъядерник Opteron от AMD, но для серверных систем.

В данной статье, мы не будем подробно вникать в исторические факты, а будем обсуждать современные многоядерные процессоры как одну из характеристик CPU. А главное – нам нужно разобраться с тем, что же даёт эта многоядерность в плане производительности для процессора и для нас с вами.

Увеличение производительности за счёт многоядерности

Принцип увеличения производительности процессора за счёт нескольких ядер, заключается в разбиении выполнения потоков (различных задач) на несколько ядер. Обобщая, можно сказать, что практически каждый процесс, запущенный у вас в системе, имеет несколько потоков.

Сразу оговорюсь, что операционная система может виртуально создать для себя множество потоков и выполнять это все как бы одновременно, пусть даже физически процессор и одноядерный. Этот принцип реализует ту самую многозадачность Windows (к примеру, одновременное прослушивание музыки и набор текста).


Возьмём для примера антивирусную программу. Один поток у нас будет сканирование компьютера, другой – обновление антивирусной базы (мы всё очень упростили, дабы понять общую концепцию).

И рассмотрим, что же будет в двух разных случаях:

а) Процессор одноядерный. Так как два потока выполняются у нас одновременно, то нужно создать для пользователя (визуально) эту самую одновременность выполнения. Операционная система, делает хитро: происходит переключение между выполнением этих двух потоков (эти переключения мгновенны и время идет в миллисекундах). То есть, система немного «повыполняла» обновление, потом резко переключилась на сканирование, потом назад на обновление. Таким образом, для нас с вами создается впечатление одновременного выполнения этих двух задач. Но что же теряется? Конечно же, производительность. Поэтому давайте рассмотрим второй вариант.

б) Процессор многоядерный. В данном случае этого переключения не будет. Система четко будет посылать каждый поток на отдельное ядро, что в результате позволит нам избавиться от губительного для производительности переключения с потока на поток (идеализируем ситуацию). Два потока выполняются одновременно, в этом и заключается принцип многоядерности и многопоточности. В конечном итоге, мы намного быстрее выполним сканирование и обновление на многоядерном процессоре, нежели на одноядерном. Но тут есть загвоздочка – не все программы поддерживают многоядерность. Не каждая программа может быть оптимизирована таким образом. И все происходит далеко не так идеально, насколько мы описали. Но с каждым днём разработчики создают всё больше и больше программ, у которых прекрасно оптимизирован код, под выполнение на многоядерных процессорах.

Нужны ли многоядерные процессоры? Повседневная резонность

При выборе процессора для компьютера (а именно при размышлении о количестве ядер), следует определить основные виды задач, которые он будет выполнять.

Для улучшения знаний в сфере компьютерного железа, можете ознакомится с материалом про сокеты процессоров .

Точкой старта можно назвать двухъядерные процессоры, так как нет смысла возвращаться к одноядерным решениям. Но и двухъядерные процессоры бывают разные. Это может быть не «самый» свежий Celeron, а может быть Core i3 на Ivy Bridge, точно так же и у АМД – Sempron или Phenom II. Естественно, за счёт других показателей производительность у них будет очень отличаться, поэтому нужно смотреть на всё комплексно и сопоставлять многоядерность с другими характеристиками процессоров .

К примеру, у Core i3 на Ivy Bridge, в наличии имеется технология Hyper-Treading, что позволяет обрабатывать 4 потока одновременно (операционная система видит 4 логических ядра, вместо 2-ух физических). А тот же Celeron таким не похвастается.

Но вернемся непосредственно к размышлениям относительно требуемых задач. Если компьютер необходим для офисной работы и серфинга в интернете, то ему с головой хватит двухъядерного процессора.

Когда речь заходит об игровой производительности, то здесь, чтобы комфортно чувствовать себя в большинстве игр необходимо 4 ядра и более. Но тут всплывает та самая загвоздочка: далеко не все игры обладают оптимизированным кодом под 4-ех ядерные процессоры, а если и оптимизированы, то не так эффективно, как бы этого хотелось. Но, в принципе, для игр сейчас оптимальным решением является именно 4-ых ядерный процессор.


На сегодняшний день, те же 8-ми ядерные процессоры AMD , для игр избыточны, избыточно именно количество ядер, а вот производительность не дотягивает, но у них есть другие преимущества. Эти самые 8 ядер, очень сильно помогут в задачах, где необходима мощная работа с качественной многопоточной нагрузкой. К таковой можно отнести, например рендеринг (просчёт) видео, или же серверные вычисления. Поэтому для таких задач необходимы 6, 8 и более ядер. Да и в скором времени игры смогут качественно грузить 8 и больше ядер, так что в перспективе, всё очень радужно.

Не стоит забывать о том, что остается масса задач, создающих однопоточную нагрузку. И стоит задать себе вопрос: нужен мне этот 8-ми ядерник или нет?

Подводя небольшие итоги, еще раз отмечу, что преимущества многоядерности проявляются при «увесистой» вычислительной многопоточной работе. И если вы не играете в игры с заоблачными требованиями и не занимаетесь специфическими видами работ требующих хорошей вычислительной мощи, то тратиться на дорогие многоядерные процессоры, просто нет смысла (

  • Tutorial

В этой статье я попытаюсь описать терминологию, используемую для описания систем, способных исполнять несколько программ параллельно, то есть многоядерных, многопроцессорных, многопоточных. Разные виды параллелизма в ЦПУ IA-32 появлялись в разное время и в несколько непоследовательном порядке. Во всём этом довольно легко запутаться, особенно учитывая, что операционные системы заботливо прячут детали от не слишком искушённых прикладных программ.

Цель статьи - показать, что при всём многообразии возможных конфигураций многопроцессорных, многоядерных и многопоточных систем для программ, исполняющихся на них, создаются возможности как для абстракции (игнорирования различий), так и для учёта специфики (возможность программно узнать конфигурацию).

Предупреждение о знаках ®, ™, в статье

Мой объясняет, почему сотрудники компаний должны в публичных коммуникациях использовать знаки авторского права. В этой статье их пришлось использовать довольно часто.

Процессор

Конечно же, самый древний, чаще всего используемый и неоднозначный термин - это «процессор».

В современном мире процессор - это то (package), что мы покупаем в красивой Retail коробке или не очень красивом OEM-пакетике. Неделимая сущность, вставляемая в разъём (socket) на материнской плате. Даже если никакого разъёма нет и снять его нельзя, то есть если он намертво припаян, это один чип.

Мобильные системы (телефоны, планшеты, ноутбуки) и большинство десктопов имеют один процессор. Рабочие станции и сервера иногда могут похвастаться двумя или больше процессорами на одной материнской плате.

Поддержка нескольких центральных процессоров в одной системе требует многочисленных изменений в её дизайне. Как минимум, необходимо обеспечить их физическое подключение (предусмотреть несколько сокетов на материнской плате), решить вопросы идентификации процессоров (см. далее в этой статье, а также мою заметку), согласования доступов к памяти и доставки прерываний (контроллер прерываний должен уметь маршрутизировать прерывания на несколько процессоров) и, конечно же, поддержки со стороны операционной системы. Я, к сожалению, не смог найти документального упоминания момента создания первой многопроцессорной системы на процессорах Intel, однако Википедия утверждает , что Sequent Computer Systems поставляла их уже в 1987 году, используя процессоры Intel 80386. Широко распространённой поддержка же нескольких чипов в одной системе становится доступной, начиная с Intel® Pentium.

Если процессоров несколько, то каждый из них имеет собственный разъём на плате. У каждого из них при этом имеются полные независимые копии всех ресурсов, таких как регистры, исполняющие устройства, кэши. Делят они общую память - RAM. Память может подключаться к ним различными и довольно нетривиальными способами, но это отдельная история, выходящая за рамки этой статьи. Важно то, что при любом раскладе для исполняемых программ должна создаваться иллюзия однородной общей памяти, доступной со всех входящих в систему процессоров.


К взлёту готов! Intel® Desktop Board D5400XS

Ядро

Исторически многоядерность в Intel IA-32 появилась позже Intel® HyperThreading, однако в логической иерархии она идёт следующей.

Казалось бы, если в системе больше процессоров, то выше её производительность (на задачах, способных задействовать все ресурсы). Однако, если стоимость коммуникаций между ними слишком велика, то весь выигрыш от параллелизма убивается длительными задержками на передачу общих данных. Именно это наблюдается в многопроцессорных системах - как физически, так и логически они находятся очень далеко друг от друга. Для эффективной коммуникации в таких условиях приходится придумывать специализированные шины, такие как Intel® QuickPath Interconnect. Энергопотребление, размеры и цена конечного решения, конечно, от всего этого не понижаются. На помощь должна прийти высокая интеграция компонент - схемы, исполняющие части параллельной программы, надо подтащить поближе друг к другу, желательно на один кристалл. Другими словами, в одном процессоре следует организовать несколько ядер , во всём идентичных друг другу, но работающих независимо.

Первые многоядерные процессоры IA-32 от Intel были представлены в 2005 году. С тех пор среднее число ядер в серверных, десктопных, а ныне и мобильных платформах неуклонно растёт.

В отличие от двух одноядерных процессоров в одной системе, разделяющих только память, два ядра могут иметь также общие кэши и другие ресурсы, отвечающие за взаимодействие с памятью. Чаще всего кэши первого уровня остаются приватными (у каждого ядра свой), тогда как второй и третий уровень может быть как общим, так и раздельным. Такая организация системы позволяет сократить задержки доставки данных между соседними ядрами, особенно если они работают над общей задачей.


Микроснимок четырёхядерного процессора Intel с кодовым именем Nehalem. Выделены отдельные ядра, общий кэш третьего уровня, а также линки QPI к другим процессорам и общий контроллер памяти.

Гиперпоток

До примерно 2002 года единственный способ получить систему IA-32, способную параллельно исполнять две или более программы, состоял в использовании именно многопроцессорных систем. В Intel® Pentium® 4, а также линейке Xeon с кодовым именем Foster (Netburst) была представлена новая технология - гипертреды или гиперпотоки, - Intel® HyperThreading (далее HT).

Ничто не ново под луной. HT - это частный случай того, что в литературе именуется одновременной многопоточностью (simultaneous multithreading, SMT). В отличие от «настоящих» ядер, являющихся полными и независимыми копиями, в случае HT в одном процессоре дублируется лишь часть внутренних узлов, в первую очередь отвечающих за хранение архитектурного состояния - регистры. Исполнительные же узлы, ответственные за организацию и обработку данных, остаются в единственном числе, и в любой момент времени используются максимум одним из потоков. Как и ядра, гиперпотоки делят между собой кэши, однако начиная с какого уровня - это зависит от конкретной системы.

Я не буду пытаться объяснить все плюсы и минусы дизайнов с SMT вообще и с HT в частности. Интересующийся читатель может найти довольно подробное обсуждение технологии во многих источниках, и, конечно же, в Википедии . Однако отмечу следующий важный момент, объясняющий текущие ограничения на число гиперпотоков в реальной продукции.

Ограничения потоков
В каких случаях наличие «нечестной» многоядерности в виде HT оправдано? Если один поток приложения не в состоянии загрузить все исполняющие узлы внутри ядра, то их можно «одолжить» другому потоку. Это типично для приложений, имеющих «узкое место» не в вычислениях, а при доступе к данным, то есть часто генерирующих промахи кэша и вынужденных ожидать доставку данных из памяти. В это время ядро без HT будет вынуждено простаивать. Наличие же HT позволяет быстро переключить свободные исполняющие узлы к другому архитектурному состоянию (т.к. оно как раз дублируется) и исполнять его инструкции. Это - частный случай приёма под названием latency hiding, когда одна длительная операция, в течение которой полезные ресурсы простаивают, маскируется параллельным выполнением других задач. Если приложение уже имеет высокую степень утилизации ресурсов ядра, наличие гиперпотоков не позволит получить ускорение - здесь нужны «честные» ядра.

Типичные сценарии работы десктопных и серверных приложений, рассчитанных на машинные архитектуры общего назначения, имеют потенциал к параллелизму, реализуемому с помощью HT. Однако этот потенциал быстро «расходуется». Возможно, по этой причине почти на всех процессорах IA-32 число аппаратных гиперпотоков не превышает двух. На типичных сценариях выигрыш от использования трёх и более гиперпотоков был бы невелик, а вот проигрыш в размере кристалла, его энергопотреблении и стоимости значителен.

Другая ситуация наблюдается на типичных задачах, выполняемых на видеоускорителях. Поэтому для этих архитектур характерно использование техники SMT с бóльшим числом потоков. Так как сопроцессоры Intel® Xeon Phi (представленные в 2010 году) идеологически и генеалогически довольно близки к видеокартам, на них может быть четыре гиперпотока на каждом ядре - уникальная для IA-32 конфигурация.

Логический процессор

Из трёх описанных «уровней» параллелизма (процессоры, ядра, гиперпотоки) в конкретной системе могут отсутствовать некоторые или даже все. На это влияют настройки BIOS (многоядерность и многопоточность отключаются независимо), особенности микроархитектуры (например, HT отсутствовал в Intel® Core™ Duo, но был возвращён с выпуском Nehalem) и события при работе системы (многопроцессорные сервера могут выключать отказавшие процессоры в случае обнаружения неисправностей и продолжать «лететь» на оставшихся). Каким образом этот многоуровневый зоопарк параллелизма виден операционной системе и, в конечном счёте, прикладным приложениям?

Далее для удобства обозначим количества процессоров, ядер и потоков в некоторой системе тройкой (x , y , z ), где x - это число процессоров, y - число ядер в каждом процессоре, а z - число гиперпотоков в каждом ядре. Далее я буду называть эту тройку топологией - устоявшийся термин, мало что имеющий с разделом математики. Произведение p = xyz определяет число сущностей, именуемых логическими процессорами системы. Оно определяет полное число независимых контекстов прикладных процессов в системе с общей памятью, исполняющихся параллельно, которые операционная система вынуждена учитывать. Я говорю «вынуждена», потому что она не может управлять порядком исполнения двух процессов, находящихся на различных логических процессорах. Это относится в том числе к гиперпотокам: хотя они и работают «последовательно» на одном ядре, конкретный порядок диктуется аппаратурой и недоступен для наблюдения или управления программам.

Чаще всего операционная система прячет от конечных приложений особенности физической топологии системы, на которой она запущена. Например, три следующие топологии: (2, 1, 1), (1, 2, 1) и (1, 1, 2) - ОС будет представлять в виде двух логических процессоров, хотя первая из них имеет два процессора, вторая - два ядра, а третья - всего лишь два потока.


Windows Task Manager показывает 8 логических процессоров; но сколько это в процессорах, ядрах и гиперпотоках?


Linux top показывает 4 логических процессора.

Это довольно удобно для создателей прикладных приложений - им не приходится иметь дело с зачастую несущественными для них особенностями аппаратуры.

Программное определение топологии

Конечно, абстрагирование топологии в единственное число логических процессоров в ряде случаев создаёт достаточно оснований для путаницы и недоразумений (в жарких Интернет-спорах). Вычислительные приложения, желающие выжать из железа максимум производительности, требуют детального контроля над тем, где будут размещены их потоки: поближе друг к другу на соседних гиперпотоках или же наоборот, подальше на разных процессорах. Скорость коммуникаций между логическими процессорами в составе одного ядра или процессора значительно выше, чем скорость передачи данных между процессорами. Возможность неоднородности в организации оперативной памяти также усложняет картину.

Информация о топологии системы в целом, а также положении каждого логического процессора в IA-32 доступна с помощью инструкции CPUID. С момента появления первых многопроцессорных систем схема идентификации логических процессоров несколько раз расширялась. К настоящему моменту её части содержатся в листах 1, 4 и 11 CPUID. Какой из листов следует смотреть, можно определить из следующей блок-схемы, взятой из статьи :

Я не буду здесь утомлять всеми подробностями отдельных частей этого алгоритма. Если возникнет интерес, то этому можно посвятить следующую часть этой статьи. Отошлю интересующегося читателя к , в которой этот вопрос разбирается максимально подробно. Здесь же я сначала кратко опишу, что такое APIC и как он связан с топологией. Затем рассмотрим работу с листом 0xB (одиннадцать в десятичном счислении), который на настоящий момент является последним словом в «апикостроении».

APIC ID
Local APIC (advanced programmable interrupt controller) - это устройство (ныне входящее в состав процессора), отвечающее за работу с прерываниями, приходящими к конкретному логическому процессору. Свой собственный APIC есть у каждого логического процессора. И каждый из них в системе должен иметь уникальное значение APIC ID. Это число используется контроллерами прерываний для адресации при доставке сообщений, а всеми остальными (например, операционной системой) - для идентификации логических процессоров. Спецификация на этот контроллер прерываний эволюционировала, пройдя от микросхемы Intel 8259 PIC через Dual PIC, APIC и xAPIC к x2APIC .

В настоящий момент ширина числа, хранящегося в APIC ID, достигла полных 32 бит, хотя в прошлом оно было ограничено 16, а ещё раньше - только 8 битами. Нынче остатки старых дней раскиданы по всему CPUID, однако в CPUID.0xB.EDX возвращаются все 32 бита APIC ID. На каждом логическом процессоре, независимо исполняющем инструкцию CPUID, возвращаться будет своё значение.

Выяснение родственных связей
Значение APIC ID само по себе ничего не говорит о топологии. Чтобы узнать, какие два логических процессора находятся внутри одного физического (т.е. являются «братьями» гипертредами), какие два - внутри одного процессора, а какие оказались и вовсе в разных процессорах, надо сравнить их значения APIC ID. В зависимости от степени родства некоторые их биты будут совпадать. Эта информация содержится в подлистьях CPUID.0xB, которые кодируются с помощью операнда в ECX. Каждый из них описывает положение битового поля одного из уровней топологии в EAX (точнее, число бит, которые нужно сдвинуть в APIC ID вправо, чтобы убрать нижние уровни топологии), а также тип этого уровня - гиперпоток, ядро или процессор, - в ECX.

У логических процессоров, находящихся внутри одного ядра, будут совпадать все биты APIC ID, кроме принадлежащих полю SMT. Для логических процессоров, находящихся в одном процессоре, - все биты, кроме полей Core и SMT. Поскольку число подлистов у CPUID.0xB может расти, данная схема позволит поддержать описание топологий и с бóльшим числом уровней, если в будущем возникнет необходимость. Более того, можно будет ввести промежуточные уровни между уже существующими.

Важное следствие из организации данной схемы заключается в том, что в наборе всех APIC ID всех логических процессоров системы могут быть «дыры», т.е. они не будут идти последовательно. Например, во многоядерном процессоре с выключенным HT все APIC ID могут оказаться чётными, так как младший бит, отвечающий за кодирование номера гиперпотока, будет всегда нулевым.

Отмечу, что CPUID.0xB - не единственный источник информации о логических процессорах, доступный операционной системе. Список всех процессоров, доступный ей, вместе с их значениями APIC ID, кодируется в таблице MADT ACPI .

Операционные системы и топология

Операционные системы предоставляют информацию о топологии логических процессоров приложениям с помощью своих собственных интерфейсов.

В Linux информация о топологии содержится в псевдофайле /proc/cpuinfo , а также выводе команды dmidecode . В примере ниже я фильтрую содержимое cpuinfo на некоторой четырёхядерной системе без HT, оставляя только записи, относящиеся к топологии:

Скрытый текст

ggg@shadowbox:~$ cat /proc/cpuinfo |grep "processor\|physical\ id\|siblings\|core\|cores\|apicid" processor: 0 physical id: 0 siblings: 4 core id: 0 cpu cores: 2 apicid: 0 initial apicid: 0 processor: 1 physical id: 0 siblings: 4 core id: 0 cpu cores: 2 apicid: 1 initial apicid: 1 processor: 2 physical id: 0 siblings: 4 core id: 1 cpu cores: 2 apicid: 2 initial apicid: 2 processor: 3 physical id: 0 siblings: 4 core id: 1 cpu cores: 2 apicid: 3 initial apicid: 3

В FreeBSD топология сообщается через механизм sysctl в переменной kern.sched.topology_spec в виде XML:

Скрытый текст

user@host:~$ sysctl kern.sched.topology_spec kern.sched.topology_spec: 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 0, 1 THREAD groupSMT group 2, 3 THREAD groupSMT group 4, 5 THREAD groupSMT group 6, 7 THREAD groupSMT group

В MS Windows 8 сведения о топологии можно увидеть в диспетчере задач Task Manager.

Добрый день, уважаемые читатели нашего техноблога. Сегодня у нас не обзор, а некое подобие сравнения какой процессор лучше 2 ядерный или 4 ядерный? Интересно, кто круче себя показывает в 2018 году? Тогда приступим. Сразу скажем, что пальма первенства в большинстве случаев будет за устройством с большим числом физических модулей, но и чипы с 2 ядрами не так просты, как кажутся на первый взгляд.

Многие, наверное уже догадались, что рассматривать мы будем всех текущих представителей от Intel семейства Pentium Coffee Lake и народный «гиперпень» G4560 (Kaby Lake). Насколько модели актуальны в текущем году и стоит ли задуматься о покупке более производительных AMD Ryzen или тех же Core i3 с 4‐мя ядрами.

Семейство AMD Godavari и Bristol Ridge намеренно не рассматривается по одной простой причине – оно не имеет никакого дальнейшего потенциала, да и сама платформа оказалась не самой удачной, как могло предполагаться.

Зачастую эти решения покупаются либо по незнанию, либо «на сдачу» в качестве какой‐нибудь максимально дешевой сборки для интернета и онлайн‐фильмов. Но нас такое положение вещей особо не устраивает.

Отличия 2‐ядерных чипов от 4‐ядерных

Рассмотрим основные моменты, которые отличают первую категорию чипов от второй. На аппаратном уровне можно заметить, что отличается только количество вычислительных блоков. В остальных случаях, ядра объединены высокоскоростной шиной обмена данными, общим контроллером памяти для плодотворной и оперативной работы с ОЗУ.

Зачастую кэш L1 каждого ядра – величина индивидуальная, а вот L2 может быть либо един для всех, либо также индивидуален для каждого блока. Однако в таком случае дополнительно используется уже кэш‐память L3.

В теории 4‐ядерные решения должны быть быстрее и мощнее в 2 раза, поскольку выполняют на 100% больше операций за такт (возьмем за основу идентичную частоту, кэш, техпроцесс и все прочие параметры). Но на практике ситуация меняется совершенно нелинейно.

Но здесь стоит отдать должное: в многопотоке вся сущность 4 ядер раскрывается в полной мере.

Почему 2‐ядерные процессоры все еще популярны?

Если взглянуть на мобильный сегмент электроники, то можно заметить засилье 6–8 ядерных чипов, которые выглядят максимально органично и нагружаются параллельно при выполнении всех задач. Почему так? ОС Android и iOS – довольно молодые системы с высоким уровнем конкуренции, а потому оптимизация каждого приложения – залог успеха продаж девайсов.

С индустрией ПК ситуация иная и вот почему:

Совместимость. При разработке любого ПО разработчики стремятся угодить как новой, так и старой аудитории со слабым железом. На 2‐ядерных процессорах делается больший акцент в ущерб поддержки 8‐ядерных.

Распараллеливание задач. Несмотря на засилье технологий в 2018 году, заставить программу работать с несколькими ядрами и потоками ЦП параллельно все еще не просто. Если речь заходит за просчет нескольких совершенно разных приложений, то вопросов нет, но когда дело касается вычислений внутри одной программы – тут уже хуже: приходится регулярно просчитывать абсолютно разную информацию, при этом не забывая об успехе задач и отсутствии ошибок при вычислениях.

В играх ситуация еще более интересная, поскольку объемы информации разделить на равные «доли» практически нереально. В итоге получаем следующую картину: один вычислительный блок маслает на 100%, остальные 3 – ждут своей очереди.

Преемственность. Каждое новое решение основывается на предыдущих наработках. Писать код с нуля не только дорого, но и зачастую невыгодно центру разработки, поскольку «людям и этого хватит, а пользователей 2‐ядерных чипов все еще львиная доля».

Взять к примеру многие культовые проекты вроде Lineage 2, AION, World of Tanks. Все они создавались на базе древних движков, которые способны адекватно нагрузить лишь одно физическое ядро, а потому здесь основную роль при вычислениях играет только частота чипа.
Финансирование. Далеко не все могут позволить себе создать совершенно новый продукт, рассчитанный не 4,8, 16 потоков. Это слишком дорого, да и в большинстве случаев неоправданно. Взять к примеру ту же культовую GTA V, которая без проблем «съест» и 12 и 16 потоков, не говоря уже о ядрах.

Стоимость ее разработки перевалила за добрые 200 млн долларов, что само по себе уже очень дорого. Да, игра оказалась успешной, поскольку кредит доверия Rockstar в среде игроков был огромен. А если бы это был молодой стартап? Тут уже сами все понимаете.

Нужны ли многоядерные процессоры?

Давайте рассмотрим ситуацию с точки зрения простого обывателя. Большинству пользователей хватает 2 ядер по следующим причинам:

  • невысокие потребности;
  • большинство приложений работает стабильно;
  • игры – не главный приоритет;
  • низкая стоимость сборок;
  • процессоры сами по себе дешевые;
  • большинство покупает готовые решения;
  • некоторые пользователи понятия не имеют, что им продают в магазинах и чувствуют себя прекрасно.

Можно ли играть на 2 ядрах? Да без проблем, что с успехом несколько лет доказывала линейка Intel Core i3 вплоть до 7‐го поколения. Также огромной популярностью пользовались Pentium Kaby Lake, в которые впервые в истории внедрили поддержку Hyper Threading.
Стоит ли сейчас покупать 2 ядра, пусть и с 4‐мя потоками? Исключительно для офисных задач. Эпоха данных чипов постепенно уходит, да и производители начали массово переключаться на 4 полноценных физических ядра, а потому не стоит рассматривать те же Pentium и Core i3 Kaby Lake в долгосрочной перспективе. AMD так и вовсе отказалась от 2‐ядерников.