Классификация силовых нагрузок. Нагрузки, действующие на конструкции и сооружения: классификация и сочетания. Изгиб. Виды изгибов. Примеры изгибов

Классификация силовых нагрузок. Нагрузки, действующие на конструкции и сооружения: классификация и сочетания. Изгиб. Виды изгибов. Примеры изгибов
Классификация силовых нагрузок. Нагрузки, действующие на конструкции и сооружения: классификация и сочетания. Изгиб. Виды изгибов. Примеры изгибов

Основные понятия технической механики

Современное производство, определяющееся высокой механизацией и автоматизацией, предлагает использование большого количества разнообразных машин, механизмов, приборов и других устройств. Конструирование, изготовление, эксплуатация машин невозможна без знаний в области механики.

Техническая механика – дисциплина, вмещающая в себя основные механические дисциплины: теоретическую механику, сопротивление материалов, теорию машин и механизмов, детали машин и основы конструирования.

Основными задачами в технике являются обеспечения прочности, жесткости , устойчивости инженерных конструкций, деталей машин и приборов.

Сопротивлением материалов – это наука, в которой изучаются принципы и методы расчетов на прочность, жесткость и устойчивость.

Прочность – это способность конструкции в определенных пределах выдерживать внешние нагрузки без разрушения.

Жесткость – это способность конструкции в определенных пределах воспринимать действие внешних нагрузок без изменения геометрических размеров (не деформируясь).

Устойчивость – это способность конструкции сохранять свою форму и равновесие в нагруженном состоянии, а так же самостоятельно восстанавливать первоначальное состояние после того, как ей было дано некоторое отклонение от состояния равновесия.

Кроме указанных требований конструкция должна быть экономичной, ее масса и габариты должны быть минимальными. Для этого она должна иметь рациональную форму и размеры.

Классификация нагрузок

Различают внешние и внутренние силы и моменты сил.

Внешними силами (P ) называются силы, действующие на точки (тела) данной системы со стороны материальных точек (тел), не принадлежащих этой системе. Внешние силы (нагрузка) – это активные силы и реакции связи.

Внутренними силами (Q ) называют силы взаимодействия между точками (телами) данной системы. Они действуют и в отсутствии внешних нагрузок. При действии на тело внешних сил возникают дополнительные внутренние силы , сопровождающие деформацию. Эти силы сопротивляются стремлению внешних сил изменить форму тела или отделить одну часть от другой. Мы будем изучать только дополнительные внутренние силы.

По способу приложения нагрузки делятся на:

1) объемные – распределенные по объему тела и приложенные к каждой его частице (собственный вес конструкции, силы магнитного взаимодействия);

2) поверхностные – приложенные к участкам поверхности и характеризующие непосредственное контактное взаимодействие объекта с окружающими телами:

а) сосредоточенные (P 1 ) – нагрузки, действующие по площадке, размеры которой малы по сравнению с размерами самого элемента конструкции (давление обода колеса на рельс);



б)распределенные (P 2 )нагрузки, действующие по площадке (или длине), размеры которой не малы по сравнению с размерами самого элемента конструкции (гусеницы трактора давят на балку моста).

Распределенные нагрузки характеризуются интенсивностью q [Н/м ] или [Н/м 2 ]. Если q интенсивность нагрузки, распределенной вдоль элемента длиной a , то

Если q const, ее можно вынести за знак интеграла, тогда получим:

P 2 = q a .

Нагрузки могут быть постоянными и временными. Постоянные действуют всегда или в течение достаточно длительного времени (например, собственный вес конструкции). Временные действуют эпизодически (например, давление ветра).

По характеру действия нагрузки делятся на:

1.статические – прикладывается медленно, возрастая от нуля до конечного значения, и не изменяются;

2.динамические – изменяют величину или направление за короткий промежуток времени и сопровождаются появлением ускорений элементов конструкций. К ним относятся:

а) внезапные нагрузки– действуют сразу на полную силу (колесо локомотива, заезжающего на мост),

б) ударные нагрузки – действуют на протяжении короткого времени (дизель-молот),

в) циклические нагрузки – действуют периодически(нагрузка на зубья зубчатого колеса).

Грамотно дозированные физические нагрузки оказывают благотворное воздействие на организм. Они позволяют добиться идеальной фигуры, повысить тонус мышц и даже укрепить иммунитет человека. Однако чтобы получить желаемый результат, нужно правильно составить комплекс упражнений и выбрать их оптимальную интенсивность. Какие виды физических нагрузок существуют и для каких целей они наиболее подходят, мы расскажем в нашей статье.

Классификация нагрузок

Занятия спортом выполняются с какой-то определенной целью. Это может быть поддержка мышечного тонуса, похудение, восстановление после травмы либо подготовка к спортивным состязаниям. В каждом случае виды физических нагрузок и их интенсивность будут отличаться, поэтому их принято разделять в соответствии со следующей классификацией:

  • аэробные;
  • анаэробные;
  • интервальные;
  • гипоксические.

Некоторым из этих нагрузок наш организм подвергается ежедневно, а другие могут быть совершенно не под силу начинающему спортсмену. Давайте разберем, в чем же отличия каждого вида и для каких задач следует выбирать тот или иной вариант.

Группа аэробных нагрузок

Аэробные физические нагрузки (или же кардионагрузки) представляют собой комплекс простейших упражнений, которые направлены на обогащение клеток необходимым количеством кислорода, повышение защитных сил организма и тренировку его устойчивости.

Этим нагрузкам наш организм подвергается ежедневно: во время похода в магазин, в процессе уборки квартиры, в дороге на работу и во время пешей прогулки. Также сюда можно отнести:

  • езду на велосипеде;
  • занятия водным спортом;
  • катание на лыжах, коньках, роликах;
  • ежедневную гимнастику;
  • ходьбу по лестнице;
  • занятия танцами и т. п.

В эту группу входят практически все варианты активного времяпрепровождения. Для поддержки организма в хорошей форме это идеальный вид физической нагрузки.

Упражнения аэробного типа считаются самыми безопасными. Их могут выполнять люди разного возраста вне зависимости от уровня подготовки. Пациентам, перенесшим тяжелые травмы и имеющим хронические заболевания, рекомендуются именно такие нагрузки. Однако в данном случае интенсивность занятий и реакцию организма должен строго контролировать лечащий врач.

Анаэробные упражнения и способы их выполнения

Анаэробная группа упражнений включает в себя виды физических нагрузок, отличающихся повышенной тяжестью и интенсивностью. Сюда входят которые выполняются спортсменами с целью увеличения мышечной массы, и тренировки выносливости организма.

Упражнения выполняются при помощи тяжелых гантелей, штанги и различных тренажеров. Их основная суть - кратковременное перемещение тяжести без движения тела. Итоговым результатом считается значительное увеличение объема мышечной ткани и высокие силовые показатели. Однако следует знать, что в процессе быстрого наращивания объема мышц их эластичность существенно снижается.

Анаэробные нагрузки имеют противопоказания и не рекомендуются людям старше 40 лет. Тем не менее можно выполнять упражнения с умеренным отягощением, позволяющие поддерживать тело в хорошей физической форме: поднимать гантели до 5 кг, использовать резиновые либо пружинные эспандеры.

Группа интервальных упражнений: в чем их особенности?

Во время тренировки спортсменов могут чередоваться и сочетаться различные виды физических нагрузок (и их интенсивность). В таком случае говорят об интервальной нагрузке, когда занятия включают в себя элементы первого и второго вида.

Например, молодым и здоровым мужчинам, занимающимся тяжелым видом спорта, в обязательном порядке рекомендуется выполнять аэробные упражнения. То есть во время их тренировок чередуются тяжелые упражнения и легкий бег. В то же время легкоатлеты могут дополнительно использовать большие нагрузки, воздействующие на определенную группу мышц. В спорте виды физических нагрузок чередуются постоянно, особенно если речь идет о профессиональных тренировках.

Гипоксические нагрузки

Они применяются для тренировки выносливости профессиональных спортсменов. Гипоксические нагрузки относятся к тяжелым упражнениям, так как их выполняют в условиях недостатка кислорода, когда человек находится на пределе своих возможностей.

Основная цель этого вида тренировок - минимизация процесса акклиматизации организма в непривычной ему обстановке. применяются для тренировки дыхательной системы альпинистов, которые часто пребывают в условиях высокогорья, где преобладает

Принцип выбора видов физической нагрузки (по характеру воздействия)

Правильный выбор оптимальных упражнений - залог получения нужного результата. Именно поэтому перед началом тренировок нужно четко обозначить итоговую цель. Это может быть:

  • реабилитация после перенесенных травм, операций и хронических заболеваний;
  • оздоровление и восстановление сил, снятие напряжения после трудового дня;
  • поддержание организма в имеющейся физической форме;
  • повышение выносливости и увеличение сил организма.

Выбор нагрузки во втором и третьем варианте обычно не вызывает сложностей. А вот упражнения с лечебной целью самостоятельно выбрать гораздо сложнее. Задумываясь о том, какие виды физических нагрузок наиболее эффективно восстанавливают, следует брать во внимание нынешнее состояние и возможности человека.

Одно и то же упражнение может быть очень эффективным для спортсмена в умеренной физической форме и абсолютно бесполезно для начинающего легкоатлета. Поэтому выбор программы тренировок должен осуществляться по принципу пороговых нагрузок, и лучше, если тренер хорошо осведомлен о состоянии и возможностях спортсмена.

Виды нагрузок

Помимо основной классификации тренировок, существует разделение упражнений на несколько видов. Каждый из них направлен на развитие конкретного качества.

По характеру воздействия на организм различают несколько основных видов физических нагрузок:

  • силовые;
  • скоростные;
  • на гибкость;
  • на развитие ловкости и координационных способностей.

Чтобы от тренировок была получена максимальная польза, их следует выполнять в соответствии с определенными правилами, о которых мы поговорим ниже.

Силовые упражнения

Занятия силовыми упражнениями помогают держать организм в тонусе, замедляют процессы старения тканей, предупреждают развитие различных сердечно-сосудистых заболеваний. Важно, чтобы нагрузку получали все поскольку бездействующие ткани лишаются необходимых веществ, что приводит к их старению.

Положительное воздействие от силовых упражнений достигается в том случае, если нагрузка постепенно увеличивается, но при этом она соответствует состоянию здоровья человека. Отягощение нагрузок и их повторение также должно возрастать постепенно. Упражнения с бесконтрольным количеством повторений абсолютно безрезультатны для тренировки выносливости и силы.

В оздоровительных упражнениях физическая нагрузка (классификацию и виды которой назначает врач) основывается на непредельном отягощении и четко установленном числе повторений. Такой метод выбора нагрузок позволяет добиться результата и избежать травматизма.

На начальных этапах тренировок следует использовать отягощение не более 40% от максимально возможного по состоянию организма. Далее нагрузку можно подбирать так, чтобы максимальное количество повторений упражнения составляло порядка 8-12 раз. А для мышц предплечья, шеи, голени и живота достигало бы 15-20 раз (с паузами между подходами по 1-3 минуты).

Нагрузки скоростного типа

Подобные тренировки не требуют от человека большой выносливости и сильного напряжения. Они оказывают положительное влияние как на молодой, так и на стареющий организм. В последнем случае скоростные упражнения считаются особо актуальными. Ведь основным признаком увядания организма является не только угасание его двигательных функций, но и замедление движений.

Скоростные нагрузки не следует проводить дольше 10-15 секунд. Длительные упражнения (от 30 до 90 секунд) должны выполняться с понижением мощности. Именно такие упражнения, чередуемые с небольшими временными интервалами для отдыха, в максимальной степени способствуют замедлению процессов старения клеток. С целью поддержки организма в оптимальной форме скоростные упражнения рекомендуется выполнять во время каждого занятия спортом.

Польза эластичности мышц, связок, суставов

Упражнения на гибкость - самые популярные виды нагрузок в Их включают в школьные занятия детей самых младших классов. Такие нагрузки способствуют сохранению гибкости и подвижности суставов и позвоночника. Кроме того, к положительным воздействиям таких нагрузок можно отнести:

  • профилактику чрезмерного износа суставов;
  • предотвращение развития артрита;
  • улучшение состояния суставной сумки;
  • профилактику остеохондроза.

Эластичность мышц, суставов и связок значительно уменьшает вероятность получения травм, способствует скорейшему восстановлению мышечных тканей после физических нагрузок. Упражнения на гибкость отлично расслабляют мышцы, улучшают их тонус.

Отсутствие таких нагрузок приводит к закрепощению тканей. Энергия, которая могла бы использоваться для восстановления, растрачивается впустую, а сама мышца страдает от нехватки кислорода.

Какие еще необходимы тренировки

Ловкость и координационные способности - не менее важные качества, требуемые человеку в течение всей его жизни. При отсутствии систематических тренировок эти навыки постепенно уменьшаются. Какие виды физических нагрузок следует включать в тренировки для развития данных способностей? Тут все проще простого. Самым лучшим вариантом будут различные спортивные игры: большой теннис, настольный, бадминтон и пр.

Легкие виды спорта отлично тренируют ловкость и являются хорошей профилактикой сердечно-сосудистых заболеваний. Возрастных ограничений такие нагрузки не имеют, однако дозировать их очень сложно. По этой причине в процессе тренировки нужно контролировать собственное дыхание и следить за частотой сердечного ритма.

Тренировки ловкости при помощи спортивных игр значительно увеличивают адаптационные способности организма, а упражнения, требующие постоянного внимания, хорошо тренируют мыслительную реакцию. Человек начинает быстрее принимать сложные решения и быстрее действует в непредвиденных ситуациях.

Как мы увидели, любой вид физической нагрузки способен положительно влиять на человека. Однако чтобы добиться максимального результата, тренировки должны иметь систематический характер и включать в себя одновременно несколько видов упражнений. Таким образом можно обеспечить высокую степень устойчивости организма к неблагоприятным факторам, а также постоянно развивать и совершенствовать новые навыки. Главное - помните, какой бы вид нагрузок вы ни выбрали, важно всегда знать меру!

Классификация Внешних Сил (Нагрузок) Сопромат

Внешние силы в сопромате делятся на активные и реактивные (реакции связей).Нагрузки – это активные внешние силы.

Нагрузки по способу приложения

По способу приложения нагрузки бывают объемными (собственный вес, силы инерции), действующими на каждый бесконечно малый элемент объема, и поверхностными. Поверхностные нагрузки делятся на сосредоточенные нагрузки и распределенные нагрузки .

Распределенные нагрузки характеризуются давлением - отношением силы, действующей на элемент поверхности по нормали к ней, к площади данного элемента и выражаются в Международной системе единиц (СИ) в паскалях, мегапаскалях (1 ПА = 1 Н/м2; 1 МПа = 106 Па) и т.д., а в технической системе – в килограммах силы на квадратный миллиметр и т.д. (кгс/мм2, кгс/см2).

В сопромате часто рассматриваются поверхностные нагрузки , распределенные по длине элемента конструкции. Такие нагрузки характеризуются интенсивностью, обозначаемой обычно q и выражаемой в ньютонах на метр (Н/м, кН/м) или в килограммах силы на метр (кгс/м, кгс/см) и т.д.

Нагрузки по характеру изменения во времени

По характеру изменения во времени выделяют статические нагрузки - нарастающие медленно от нуля до своего конечного значения и в дальнейшем не изменяющиеся; и динамические нагрузки вызывающие большие силы инерции.

Допущения сопромата

Допущения Сопромата Сопромат

При построении теории расчета на прочность, жесткость и устойчивостьпринимаются допущения, связанные со свойствами материалов и с деформацией тела.

Допущения, связанные со свойствами материалов

Сначала рассмотрим допущения, связанные со свойствами материалов :

допущение 1 : материал считается однородным (его физико-механические свойства считаются одинаковыми во всех точках;

допущение 2 : материал полностью заполняет весь объем тела, без каких-либо пустот (тело рассматривается как сплошная среда). Это допущение дает возможность применять при исследовании напряженно-деформированного состояния тела методы дифференциального и интегрального исчислений, которые требуют непрерывности функции в каждой точке объема тела;

допущение 3 : материал изотропный, то есть его физико-механические свойства в каждой точке одинаковы во всех направлениях. Анизотропные материалы – физико-механические свойства которых изменяются в зависимости от направления (например, дерево);

допущение 4 : материал является идеально упругим (после снятия нагрузки все деформации полностью исчезают).

Допущения, связанные с деформацией

Теперь рассмотрим основные допущения, связанные с деформацией тела .

допущение 1 : деформации считаются малыми. Из этого допущения следует, что при составлении уравнений равновесия, а также при определении внутренних сил можно не учитывать деформацию тела. Это допущение иногда называют принципом начальных размеров. Например, рассмотрим стержень, заделанный одним концом в стену и нагруженный на свободном конце сосредоточенной силой (рис. 1.1).

Момент в заделке, определенный из соответствующего уравнения равновесия методом теоретической механики, равен: . Однако прямолинейное положение стержня не является его положением равновесия. Под действием силы (P) стержень изогнется, и точка приложения нагрузки сместится и по вертикали, и по горизонтали. Если записать уравнение равновесия стержня для деформированного (изогнутого) состояния, то истинный момент, возникающий в заделке, окажется равным: . Принимая допущение о малости деформаций, мы полагаем, что перемещением (w) можно пренебречь по сравнению с длиной стержня (l), то есть , тогда . Допущение возможно не для всех материалов.

допущение 2 : перемещения точек тела пропорциональны нагрузкам, вызывающим эти перемещения (тело является линейно деформируемым). Для линейно деформируемых конструкций справедлив принцип независимости действия сил (принцип суперпозиции ): результат действия группы сил не зависит от последовательности нагружения ими конструкции и равен сумме результатов действия каждой из этих сил в отдельности. В основе этого принципа лежит также предположение об обратимости процессов нагрузки и разгрузки.

Классификация внешних нагрузок, действующих на элементы конструкций.

Общая классификация элементов конструкций.

Технические объекты и сооружения состоят из отдельных частей и элементов, которые отличаются большим разнообразием по форме, размерам, другим параметрам и характеристикам. С позиций инженерных расчетов принято различать четыре основных группы элементов конструкций: стержни, пластины, оболочки, массивы.

Стержни – это прямые или криволинейные элементы конструкций, у которых один размер (длина) значительно превышает два другие размера (в пространственной ортогональной системе координат), см. рисунок 20. Примеры элементов конструкций типа стержней: ножки стула или стола, колонна строительной конструкции, канат грузоподъемной машины, рычаг переключения коробки перемены передач автомобиля и др.

Z Кривой стержень

Прямой стержень

Рисунок 20. Схемы элементов конструкций типа стержней

t (толщина пластины)

Рисунок 21. Схема элемента конструкции типа пластины

Рисунок 22. Схема элемента конструкции типа оболочки (цилиндрической)

Рис. 23. Схема элемента конструкции типа массива

Пластины – это плоские элементы конструкций, у которых один размер (толщина) значительно меньше двух других. Примеры пластин: крышка стола; стены и потолочные перекрытия зданий и др., см. рисунок 21, из которого видно что толщина пластины значительно меньше двух размеров ее в плане.

Оболочки – это неплоские тонкостенные элементы конструкций, у которых один размер (толщина стенок) значительно меньше других размеров. Примеры оболочек: трубопроводы для транспортировки жидких и газообразных продуктов (цилиндрические оболочки); цилиндрические, сферические или комбинированные емкости для жидкостей; конические бункеры для сыпучих материалов; неплоские покрытия различных сооружений и др., см. рисунок 22, где показана цилиндрическая оболочка (тонкостенная цилиндрическая труба), у которой толщина стенки значительно меньше ее диаметра и длины.

Массивы – это элементы конструкций, у которых все три размера соизмеримы. Примеры массивов: фундаментные блоки станков, машин и строительных конструкций; массивные опоры мостов и др., см. рисунок 23.

В курсах «Инженерная механика» и «Сопротивление материалов» наибольшее внимание уделяется основополагающему изучению элементов конструкций типа стержней. Пластины, оболочки и массивы изучаются в расширенных курсах «Сопротивление материалов» и в специальных курсах.

Сосредоточенные силы – это силы, приложенные к элементу конструкции на площадке его поверхности, размерами которой по сравнению с размерами всей поверхности элемента конструкции можно пренебречь. Как правило, сосредоточенные силы – это результат воздействия на данное тело (элемент конструкции) другого тела (в частности, другого элемента конструкции). Во многих практически важных случаях сосредоточенные



силы можно без заметного ущерба для точности инженерных расчетов считать приложенными к элементу конструкции в точке. Единицы измерения сосредоточенных сил Н (Ньютон), кН (килоньютон) и др.

Объемные силы – это силы, приложенные по всему объему элемента конструкции, например распределенные силы тяжести. Единицы измерения распределенных объемных сил Н/м 3 , кН/м 3 и т. п. Полная сила тяжести (Н, кН) какого-либо элемента конструкции нередко в расчетах условно учитывается как сосредоточенная сила, приложенная в точке, называемой его центром тяжести.

Распределенные силы (нагрузки) – это силы, приложенные на части площади (или длины) деформируемого тела, соизмеримой с размерами всего тела. Различают поверхностно распределенные силы (нагрузки), единицы измерения которых Н/м 2 , кН/м 2 и т.п. (например, распределенные снеговые нагрузки на покрытия зданий), а также линейно распределенные нагрузки (по длине элементов конструкций), единицы измерения которых Н/м, кН/м и т.п. (например, распределенные силы давления плит, опираемых на балки строительных конструкций).

Статические силы (нагрузки) – это силы (нагрузки), не изменяющие (или несущественно изменяющие) свое значение, положение и направление действия в процессе эксплуатации конструкции.

Динамические силы (нагрузки) – это силы (нагрузки), существенно изменяющие свое значение, положение и/или направление в короткие промежутки времени и вызывающие колебания конструкции.

Номинальные нагрузки – это нормально максимальные нагрузки, возникающие при эксплуатации конструкции.

Контрольные вопросы:

1) Что изучается в курсе «Сопротивление материалов»? Каково его значение для высококвалифицированных технических специалистов?

2) Что такое внешние нагрузки и внутренние усилия?

3) Объясните понятия деформации, прочности, жесткости и устойчивости.

4) Объясните понятия однородности, сплошности, изотропности и анизотропии.

5) Дайте классификацию элементов конструкций.

6) Дайте классификацию внешних нагрузок, действующих на элементы конструкций.


1. Александров А.В. и др. Сопротивление материалов. Учебник для вузов – М.: Высш. шк., 2001. – 560 с. (с. 5…20).

2. Степин П.А. Сопротивление материалов. – М.: Высш. школа, 1983. – 303 с. (с. 5…20).

3. Справочник по сопротивлению материалов/Писаренко Г.С. и др. – Киев: Наукова думка, 1988. – 737с. (с. 5…9).

Контрольные задания для СРС – с помощью учебной литературырасширить сведения по следующим вопросам:

1) что такое силы упругости?

2) какова сущность принципа отсутствия в теле начальных внутренних усилий (, с. 9-10)?

3) каковы принципы схематизации внешних нагрузок, действующих на элементы конструкций, применяемые в инженерных расчетах (, с. 8-11)?

4) пояснить принцип независимости действия сил (, с. 18-20; , с. 10)?

5) пояснить принцип Сен-Венана (, с. 10-11);

6) в чем отличие деформации от перемещения (, с. 17-18; , с. 13-14)?;

7) общее понятие о методе сечений (, с. 13-16; , с. 14-17);

8) общее понятие о напряжениях в деформируемом теле, обозначениях нормальных и касательных напряжений (, с. 13-15; , с. 17-20).

9) классификация внешних нагрузок, действующих на элементы конструкций (см. п. 5.3).


Лекция 6. Тема 6. «Центральное растяжение-сжатие прямых жестких стержней»

Цель лекции – изложить вводные положения по теме, сущность и применение метода сечений для определения внутренних усилий в стержнях при центральном растяжении-сжатии; дать начальные понятия об эпюрах внутренних усилий.

Внешние силы в сопромате делятся на активные и реактивные (реакции связей).Нагрузки – это активные внешние силы.

Нагрузки по способу приложения

По способу приложения нагрузки бывают объемными (собственный вес, силы инерции), действующими на каждый бесконечно малый элемент объема, и поверхностными. Поверхностные нагрузки делятся на сосредоточенные нагрузки ираспределенные нагрузки .

Распределенные нагрузки характеризуются давлением - отношением силы, действующей на элемент поверхности по нормали к ней, к площади данного элемента и выражаются в Международной системе единиц (СИ) в паскалях, мегапаскалях (1 ПА = 1 Н/м2; 1 МПа = 106 Па) и т.д., а в технической системе – в килограммах силы на квадратный миллиметр и т.д. (кгс/мм2, кгс/см2).

В сопромате часто рассматриваются поверхностные нагрузки , распределенные по длине элемента конструкции. Такие нагрузки характеризуются интенсивностью, обозначаемой обычно q и выражаемой в ньютонах на метр (Н/м, кН/м) или в килограммах силы на метр (кгс/м, кгс/см) и т.д.

Нагрузки по характеру изменения во времени

По характеру изменения во времени выделяют статические нагрузки - нарастающие медленно от нуля до своего конечного значения и в дальнейшем не изменяющиеся; идинамические нагрузки вызывающие большие силы инерции.

28.Динамическое, циклическое нагружение, понятие предела выносливости.

Динамическая нагрузка – нагрузка, которая со- провождается ускорением частиц рассматри- ваемого тела или соприкасающихся с ним де- талей. Динамическое нагружение возникает при приложении быстро возрастающих усилий или в случае ускоренно- го движения исследуемого тела. Во всех этих случаях необходимо учитывать силы инерции и возникающее движение масс системы. Кроме того, динамические нагрузки можно подразделить на ударные и повторно-перемен- ные.

Ударная нагрузка (удар) – нагружение, при ко- тором ускорения частиц тела резко изменяют свою величину за очень малый промежуток времени (внезапное приложение нагрузки). Заметим, что, хотя удар и относится к динамическим видам нагружения, в ряде случаев при расчете на удар силами инерции пренебрегают.

Повторно-переменное (циклическое) нагруже- ние – нагрузки, меняющиеся во времени по ве- личине (а возможно и по знаку).

Циклическое нагружение-изменение механических и физических свойств материала под длительным действием циклически изменяющихся во времени напряжений и деформаций.

Преде́л выно́сливости (также преде́л уста́лости) - в науках о прочности: одна из прочностных характеристик материала, характеризующих его выносливость , то есть способность воспринимать нагрузки, вызывающие циклические напряжения в материале.

29.Понятие усталости материалов, факторы, влияющие на устойчивость к усталостному разрушению.

Усталость материала - в материаловедении - процесс постепенного накопления повреждений под действием переменных (часто циклических) напряжений, приводящий к изменению его свойств, образованию трещин, их развитию и разрушению материала за указанное время.

Влияние концентрации напряжений

В местах резкого изменения поперечных размеров детали, отверстий, проточек, пазов, резьбы и т.д., как показано в п. 2.7.1, возникает местное повышение напряжений, значительно снижающее предел выносливости по сравнению с таковым для гладких цилиндрических образцов. Это снижение учитывается введением в расчеты эффективного коэффициента концентрации напряжений , представляющего отношение предела выносливости гладкого образца при симметричном цикле к пределу выносливостиобразца тех же размеров, но имеющего тот или иной концентратор напряжения:

.

2.8.3.2. Влияние размеров детали

Экспериментально установлено, что с увеличением размеров испытуемого образца предел его выносливости понижается (масштабный эффект) . Это объясняется тем, что с увеличением размеров возрастает вероятность неоднородности структуры материалов и его внутренних дефектов (раковины, газовые включения), а также тем, что при изготовлении образцов малого размера имеет место упрочнение (наклеп) поверхностного слоя на относительно большую глубину, чем у образцов больших размеров.

Влияние размеров деталей на значение предела выносливости учитывается коэффициентом (масштабный фактор) , представляющим собой отношение предела выносливости детали заданных размеров к пределу выносливостилабораторного образца подобной конфигурации, имеющего малые размеры:

.

2.8.3.3. Влияние состояния поверхности

Следы режущего инструмента, острые риски, царапины являются очагом возникновения усталостных микротрещин, что приводит к снижению предела выносливости материала.

Влияние состояния поверхности на предел выносливости при симметричном цикле характеризуется коэффициентом качества поверхности , который представляет собой отношение предела выносливости детали с данной обработкой поверхности к пределу выносливоститщательно полированного образца:

.

2.8.3.4. Влияние поверхностного упрочнения

Различные способы поверхностного упрочнения (механическое упрочнение, химикотермическая и термическая обработка) могут существенно повысить значение коэффициента качества поверхности (до 1,5 … 2,0 и более раз вместо 0,6 … 0,8 раз для деталей без упрочнения). Это учитывается при расчетах введением коэффициента .

2.8.3.5. Влияние асимметрии цикла

Причиной усталостного разрушения детали являются длительно действующие переменные напряжения. Но, как показали эксперименты, с увеличением прочностных свойств материала увеличивается их чувствительность к асимметрии цикла, т.е. постоянная составляющая цикла «вносит свой вклад» в снижение усталостной прочности. Этот фактор учитывается коэффициентом.