Какие газы выделяются при горении. Продукты горения древесины. Сернистый газ, сероводород

Какие газы выделяются при горении. Продукты горения древесины. Сернистый газ, сероводород
Какие газы выделяются при горении. Продукты горения древесины. Сернистый газ, сероводород

В процессе горения древесины образуется дым - смесь газообразных продуктов сгорания с твердыми частицами.

Состав продуктов горения зависит от состава древесины и условий ее горения. Древесина состоит, главным образом, из соединений углерода, водорода, кислорода и азота. Следовательно, обычными продуктами горения древесины являются: углекислый газ, азот, пары воды, окись углерода, сернистый газ. При сгорании 1 кг древесины выделяется 7,5-8,0 м 3 газообразных продуктов сгорания. Продукты горения, за исключением окиси углерода, в дальнейшем гореть больше не способны. При горении древесины твердыми частицами в дыме является сажа (углерод). На состав продуктов сгорания влияют условия, при которых происходит процесс горения. Горение может быть неполное и полное.

При недостаточном доступе воздуха получаются продукты неполного сгорания, образующие едкий дым, который часто выделяется вовремя пожара. Продукты неполного сгорания могут быть чрезвычайно разнообразными и зависят, прежде всего, от состава и свойства горящей древесины, а также от условий ее сгорания. При недостаточном доступе воздуха образуются продукты сухой перегонки, которые не успевают сгореть. Эти продукты чрезвычайно разнообразны и относятся к различным классам органических соединений. В состав их, кроме продуктов полного горения, входят: окись углерода, спирты, кетоны, альдегиды, кислоты и другие сложные органические соединения. При пожаре пары этих соединений могут присутствовать в дыме, увеличивая его ядовитые свойства. Продукты неполного горения способны гореть и образовывать с воздухом взрывчатые смеси. Взрывы таких смесей переходили при тушении пожаров в сушилках, подвалах и закрытых помещениях с большим количеством горючего материала. Неполное горение наблюдается при пожарах в сушильных камерах, где сосредоточено большое количество древесины. В результате сгорания древесины выделяются окись углерода и другие углеводороды, раздражающе действующие на слизистые оболочки глаз, носа и затрудняющие действия пожарных подразделений по тушению пожара.

Вдыхание дыма, содержащего 0,4% окиси углерода, смертельно. Противогазы БН от окиси углерода не защищают. На пожарах применяются специальные кислородные изолирующие приборы (КИП-5, КИП-7 и др.).

Итак, неполным называется горение, в результате которого получаются продукты, еще способные гореть (окись углерода, сажа и различные углеводороды).

Полным называется такое горение, в результате которого получаются продукты, не способные больше гореть (углекислый газ, пары воды, сернистый газ).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Сгорание

Горение - это сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Приближенно можно описать природу горения как бурно идущее окисление.

Горение подразделяется на тепловое и цепное . В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях .

Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации .
Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме , когда основные характеристики процесса - скорость реакции , мощность тепловыделения, температура и состав продуктов - не изменяются во времени, либо в периодическом режиме , когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).

Теория горения

Описание процессов горения

Важность процесса горения в технических устройствах способствовала созданию различных моделей, позволяющих с необходимой точностью его описывать. Так называемое нулевое приближение включает описание химических реакций, изменение температуры, давления и состава реагентов во времени без изменения их массы. Оно соответствует процессам происходящим в закрытом объёме, в который была помещена горючая смесь и нагрета выше температуры воспламенения. Одно-, двух- и трёхмерные модели уже включает в себя перемещение реагентов в пространстве. Количество измерений соответствует количеству пространственных координат в модели. Режим горения бывает как и газодинамическое течение: ламинарным или турбулентным. Одномерное описанное ламинарного горения позволяет получить аналитически важные выводы о фронте горения, которые затем используются в более сложных турбулентных моделях.

Объёмное горение

Объемное горение происходит, например, в теплоизолированном реакторе идеального перемешивания, в который поступает при температуре Т 0 исходная смесь с относительным содержанием горючего а 0 ; при другой температуре горения реактор покидает смесь с иным относительным содержанием горючего а . При полном расходе G через реактор условия баланса энтальпии смеси и содержания горючего при стационарном режиме горения могут быть записаны уравнениями:

  1. G(Qa 0 + CT 0) = G(Qa + CT)
  2. Ga 0 - Ga = w(a, T)V

где w(а, Т) - скорость реакции горения, V - объём реактора. Используя выражение для термодинамической температуры Т Г , можно из (1) получить:

а = а 0 (Т Г - Т)/(Т Г - Т 0)

и записать (2) в виде:

q - T = q + T

где q - T = GC(T - Т 0) - скорость отвода тепла из реактора с продуктами сгорания, q + T = Qw(a, Т)V - скорость выделения тепла при реакции. Для реакции n -ного порядка с энергией активации:

Диффузионное горение

Характеризуется раздельным подачей в зону горения горючего и окислителя. Перемешивани комонентов происходит в зоне горения. Пример: горение водорода и кислорода в ракетном двигателе .

Горение предварительно смешанной среды

Как следует из названия, горения происходит в смеси, в которой одновременно присутсвуют горючее и окислитель. Пример: горение в цилиндре двигателя внутреннего сгорания бензиново-воздушной смеси после инициализации процесса свечой зажигания.

Особенности горения в различных средах

Беспламенное горение

В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени , возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора , например, окисление этанола на платиновой черни .

Тление

Вид горения, при котором пламя не образуется, а зона горения медленно распространяется по материалу. Тление обычно наблюдается у пористых или волокнистых материалов с высоким содержанием воздуха или пропитанных окислителями .

Автогенное горение

Самоподдерживающиеся горение. Термин используется в технологиях сжигания отходов . Возможность автогенного (самоподдерживающегося) горения отходов определяется предельным содержанием балластирующих компонент: влаги и золы. На основе многолетних исследований шведский ученый Таннер предложил для определения границ автогенного горения использовать треугольник-схему с предельными значениями: горючих более 25%, влаги менее 50%, золы менее 60%.

Тестовые очаги горения

Тестовый очаг пожара - устройство, предназначенное для горения строго определенных материалов, обеспечивающих заданные параметры среды в стандартном испытательном помещении.

Обозначение ТП Тип горения Интенсивность тепловыделения Восходящий поток Дым Описание время срабатывания извещателя, не более, с.
ТП-1 Открытое горение древесины Высокая Сильный Есть При испытаниях используют 70 деревянных брусков (бук, сосна, ель, осина) размерами 10×20×250 мм каждый, уложенных в 7 слоев на основании размерами 500×500 мм. Перед испытаниями деревянные бруски высушивают. Источником воспламенения горючего материала является (5 ± 1) мл спирта или иного вида легковоспламеняющейся жидкости, налитой в емкость диаметром (50 ± 5) мм, установленную в центре основания тестового очага. Поджог осуществляют открытым пламенем или высоковольтным искровым разрядом. 370
ТП-2 Пиролизное тление древесины Очень незначительная Слабый Есть При проведении испытаний в качестве горючего материала используется 10 высушенных деревянных (бук , сосна , ель , осина) брусков размерами 75×25×20 мм, расположенных на поверхности электрической плиты мощностью не менее 1 кВт. При проведении испытаний напряжение, подаваемое на электроплиту, должно обеспечивать подъем температуры на поверхности плиты до 600 °С за не более 660 с. Контроль температуры на поверхности плиты осуществляют термопарой. 840
ТП-3 Тление со свечением хлопка Очень незначительная Очень слабый Есть При проведении испытаний используют хлопковые фитили длиной (800 ± 10) мм и массой примерно 3 г каждый, прикрепленные к проволочному кольцу диаметром (100 ± 5) мм, подвешенному на штативе таким образом, чтобы расстояние от нижнего края фитилей до основания штатива не превышало 50 мм. Количество фитилей - не менее 80. Тление фитилей достигается следующим образом: собранные в пучок концы фитилей поджигают открытым пламенем, затем пламя задувают до появления тления, сопровождающегося свечением. 750
ТП-4 Горение полимерных материалов Высокая Сильный Есть При испытаниях используют три мата из пенополиуретана плотностью 20 кг/м3 и размерами 500×500×20 мм каждый, уложенные один на другой на поддоне из алюминиевой фольги размерами 540×540×20 мм (допуск на размеры и плотность - 5 %). Перед испытаниями пенополиуретановые маты должны быть выдержаны в течение 48 ч при влажности не более 50 %. Источником воспламенения горючего материала является (5 ± 1) мл спирта или иного вида легковоспламеняющейся жидкости, налитой в емкость диаметром (50 ± 5) мм, установленную в центре основания тестового очага. Поджог осуществляют открытым пламенем или высоковольтным искровым разрядом. 180
ТП-5 Горение легковоспла-
меняющейся жидкости с выделением дыма
Высокая Сильный Есть При испытаниях используют (650 ± 20) г смеси Н-гептана, налитого в поддон из листовой стали толщиной 2 мм размерами 330×330×50 мм (допуск на размеры - 5 %). 240
ТП-6 Горение легковоспла-
меняющейся жидкости
Высокая Сильный Нет При испытаниях используют (2000 ± 100) г этилового

Чем проклинать тьму,
лучше зажечь хотя бы
одну маленькую свечу.
Конфуций

В начале

Первые попытки понять механизм горения связаны с именами англичанина Роберта Бойля, француза Антуана Лорана Лавуазье и русского Михаила Васильевича Ломоносова. Оказалось, что при горении вещество никуда не «исчезает», как наивно полагали когда-то, а превращается в другие вещества, в основном газообразные и потому невидимые. Лавуазье в 1774 году впервые показал, что при горении из воздуха уходит примерно пятая его часть. В течение XIX века ученые подробно исследовали физические и химические процессы, сопровождающие горение. Необходимость таких работ была вызвана прежде всего пожарами и взрывами в шахтах.

Но только в последней четверти ХХ века были выявлены основные химические реакции, сопровождающие горение, и по сей день в химии пламени осталось немало темных пятен. Их исследуют самыми современными методами во многих лабораториях. У этих исследований несколько целей. С одной стороны, надо оптимизировать процессы горения в топках ТЭЦ и в цилиндрах двигателей внутреннего сгорания, предотвратить взрывное горение (детонацию) при сжатии в цилиндре автомобиля воздушно-бензиновой смеси. С другой стороны, необходимо уменьшить количество вредных веществ, образующихся в процессе горения, и одновременно - искать более эффективные средства тушения огня.

Существуют два вида пламени. Топливо и окислитель (чаще всего кислород) могут принудительно или самопроизвольно подводиться к зоне горения порознь и смешиваться уже в пламени. А могут смешиваться заранее - такие смеси способны гореть или даже взрываться в отсутствие воздуха, как, например, пороха, пиротехнические смеси для фейерверков, ракетные топлива. Горение может происходить как с участием кислорода, поступающего в зону горения с воздухом, так и при помощи кислорода, заключенного в веществе-окислителе. Одно из таких веществ - бертолетова соль (хлорат калия KClO 3); это вещество легко отдает кислород. Сильный окислитель - азотная кислота HNO 3: в чистом виде она воспламеняет многие органические вещества. Нитраты, соли азотной кислоты (например, в виде удобрения - калийной или аммиачной селитры), легко воспламеняются, если смешаны с горючими веществами. Еще один мощный окислитель, тетраоксид азота N 2 O 4 - компонент ракетных топлив. Кислород могут заменить и такие сильные окислители, как, например, хлор, в котором горят многие вещества, или фтор. Чистый фтор - один из самых сильных окислителей, в его струе горит вода.

Цепные реакции

Основы теории горения и распространения пламени были заложены в конце 20-х годов прошлого столетия. В результате этих исследований были открыты разветвленные цепные реакции. За это открытие отечественный физикохимик Николай Николаевич Семенов и английский исследователь Сирил Хиншельвуд были в 1956 году удостоены Нобелевской премии по химии. Более простые неразветвленные цепные реакции открыл еще в 1913 году немецкий химик Макс Боденштейн на примере реакции водорода с хлором. Суммарно реакция выражается простым уравнением H 2 + Cl 2 = 2HCl. На самом деле она идет с участием очень активных осколков молекул - так называемых свободных радикалов. Под действием света в ультрафиолетовой и синей областях спектра или при высокой температуре молекулы хлора распадаются на атомы, которые и начинают длинную (иногда до миллиона звеньев) цепочку превращений; каждое из этих превращений называется элементарной реакцией:

Cl + H 2 → HCl + H,
H + Cl 2 → HCl + Cl и т. д.

На каждой стадии (звене реакции) происходит исчезновение одного активного центра (атома водорода или хлора) и одновременно появляется новый активный центр, продолжающий цепь. Цепи обрываются, когда встречаются две активные частицы, например Cl + Cl → Cl 2 . Каждая цепь распространяется очень быстро, поэтому, если генерировать «первоначальные» активные частицы с высокой скоростью, реакция пойдет так быстро, что может привести к взрыву.

Н. Н. Семенов и Хиншельвуд обнаружили, что реакции горения паров фосфора и водорода идут иначе: малейшая искра или открытое пламя могут вызвать взрыв даже при комнатной температуре. Эти реакции - разветвленно-цепные: активные частицы в ходе реакции «размножаются», то есть при исчезновении одной активной частицы появляются две или три. Например, в смеси водорода и кислорода, которая может спокойно храниться сотни лет, если нет внешних воздействий, появление по той или иной причине активных атомов водорода запускает такой процесс:

H + O 2 → OH + O,
O + H 2 → OH + H.

Таким образом, за ничтожный промежуток времени одна активная частица (атом H) превращается в три (атом водорода и два гидроксильных радикала OH), которые запускают уже три цепи вместо одной. В результате число цепей лавинообразно растет, что моментально приводит к взрыву смеси водорода и кислорода, поскольку в этой реакции выделяется много тепловой энергии. Атомы кислорода присутствуют в пламени и при горении других веществ. Их можно обнаружить, если направить струю сжатого воздуха поперек верхней части пламени горелки. При этом в воздухе обнаружится характерный запах озона - это атомы кислорода «прилипли» к молекулам кислорода с образованием молекул озона: О + О 2 = О 3 , которые и были вынесены из пламени холодным воздухом.

Возможность взрыва смеси кислорода (или воздуха) со многими горючими газами - водородом, угарным газом, метаном, ацетиленом - зависит от условий, в основном от температуры, состава и давления смеси. Так, если в результате утечки бытового газа на кухне (он состоит в основном из метана) его содержание в воздухе превысит 5%, то смесь взорвется от пламени спички или зажигалки и даже от маленькой искры, проскочившей в выключателе при зажигании света. Взрыва не будет, если цепи обрываются быстрее, чем успевают разветвляться. Именно поэтому была безопасной лампа для шахтеров, которую английский химик Хэмфри Дэви разработал в 1816 году, ничего не зная о химии пламени. В этой лампе открытый огонь был отгорожен от внешней атмосферы (которая могла оказаться взрывоопасной) частой металлической сеткой. На поверхности металла активные частицы эффективно исчезают, превращаясь в стабильные молекулы, и потому не могут проникнуть во внешнюю среду.

Полный механизм разветвленно-цепных реакций очень сложен и может включать более сотни элементарных реакций. К разветвленно-цепным относятся многие реакции окисления и горения неорганических и органических соединений. Таковой же будет и реакция деления ядер тяжелых элементов, например плутония или урана, под воздействием нейтронов, которые выступают аналогами активных частиц в химических реакциях. Проникая в ядро тяжелого элемента, нейтроны вызывают его деление, что сопровождается выделением очень большой энергии; одновременно из ядра вылетают новые нейтроны, которые вызывают деление соседних ядер. Химические и ядерные разветвленно-цепные процессы описываются сходными математическими моделями.

Что надо для начала

Чтобы началось горение, нужно выполнить ряд условий. Прежде всего, температура горючего вещества должна превышать некое предельное значение, которое называется температурой воспламенения. Знаменитый роман Рэя Брэдбери «451 градус по Фаренгейту» назван так потому, что примерно при этой температуре (233°C) загорается бумага. Это «температура воспламенения», выше которой твердое топливо выделяет горючие пары или газообразные продукты разложения в количестве, достаточном для их устойчивого горения. Примерно такая же температура воспламенения и у сухой сосновой древесины.

Температура пламени зависит от природы горючего вещества и от условий горения. Так, температура в пламени метана на воздухе достигает 1900°C, а при горении в кислороде - 2700°C. Еще более горячее пламя дают при сгорании в чистом кислороде водород (2800°C) и ацетилен (3000°C). Недаром пламя ацетиленовой горелки легко режет почти любой металл. Самую же высокую температуру, около 5000°C (она зафиксирована в Книге рекордов Гиннесса), дает при сгорании в кислороде легкокипящая жидкость - субнитрид углерода С 4 N 2 (это вещество имеет строение дицианоацетилена NC–C=C–CN). А по некоторым сведениям, при горении его в атмосфере озона температура может доходить до 5700°C. Если же эту жидкость поджечь на воздухе, она сгорит красным коптящим пламенем с зелено-фиолетовой каймой. С другой стороны, известны и холодные пламена. Так, например, горят при низких давлениях пары фосфора. Сравнительно холодное пламя получается и при окислении в определенных условиях сероуглерода и легких углеводородов; например, пропан дает холодное пламя при пониженном давлении и температуре от 260–320°C.

Только в последней четверти ХХ века стал проясняться механизм процессов, происходящих в пламени многих горючих веществ. Механизм этот очень сложен. Исходные молекулы обычно слишком велики, чтобы, реагируя с кислородом, непосредственно превратиться в продукты реакции. Так, например, горение октана, одного из компонентов бензина, выражается уравнением 2С 8 Н 18 + 25О 2 = 16СО 2 + 18Н 2 О. Однако все 8 атомов углерода и 18 атомов водорода в молекуле октана никак не могут одновременно соединиться с 50 атомами кислорода: для этого должно разорваться множество химических связей и образоваться множество новых. Реакция горения происходит многостадийно - так, чтобы на каждой стадии разрывалось и образовывалось лишь небольшое число химических связей, и процесс состоит из множества последовательно протекающих элементарных реакций, совокупность которых и представляется наблюдателю как пламя. Изучать элементарные реакции сложно прежде всего потому, что концентрации реакционно-способных промежуточных частиц в пламени крайне малы.

Внутри пламени

Оптическое зондирование разных участков пламени с помощью лазеров позволило установить качественный и количественный состав присутствующих там активных частиц - осколков молекул горючего вещества. Оказалось, что даже в простой с виду реакции горения водорода в кислороде 2Н 2 + О 2 = 2Н 2 О происходит более 20 элементарных реакций с участием молекул О 2 , Н 2 , О 3 , Н 2 О 2 , Н 2 О, активных частиц Н, О, ОН, НО 2 . Вот, например, что написал об этой реакции английский химик Кеннет Бэйли в 1937 году: «Уравнение реакции соединения водорода с кислородом - первое уравнение, с которым знакомится большинство начинающих изучать химию. Реакция эта кажется им очень простой. Но даже профессиональные химики бывают несколько поражены, увидев книгу в сотню страниц под названием «Реакция кислорода с водородом», опубликованную Хиншельвудом и Уильямсоном в 1934 году». К этому можно добавить, что в 1948 году была опубликована значительно большая по объему монография А. Б. Налбандяна и В. В. Воеводского под названием «Механизм окисления и горения водорода».

Современные методы исследования позволили изучить отдельные стадии подобных процессов, измерить скорость, с которой различные активные частицы реагируют друг с другом и со стабильными молекулами при разных температурах. Зная механизм отдельных стадий процесса, можно «собрать» и весь процесс, то есть смоделировать пламя. Сложность такого моделирования заключается не только в изучении всего комплекса элементарных химических реакций, но и в необходимости учитывать процессы диффузии частиц, теплопереноса и конвекционных потоков в пламени (именно последние устраивают завораживающую игру языков горящего костра).

Откуда все берется

Основное топливо современной промышленности - углеводороды, начиная от простейшего, метана, и кончая тяжелыми углеводородами, которые содержатся в мазуте. Пламя даже простейшего углеводорода - метана может включать до ста элементарных реакций. При этом далеко не все из них изучены достаточно подробно. Когда горят тяжелые углеводороды, например те, что содержатся в парафине, их молекулы не могут достичь зоны горения, оставаясь целыми. Еще на подходе к пламени они из-за высокой температуры расщепляются на осколки. При этом от молекул обычно отщепляются группы, содержащие два атома углерода, например С 8 Н 18 → С 2 Н 5 + С 6 Н 13 . Активные частицы с нечетным числом атомов углерода могут отщеплять атомы водорода, образуя соединения с двойными С=С и тройными С≡С связями. Было обнаружено, что в пламени такие соединения могут вступать в реакции, которые не были ранее известны химикам, поскольку вне пламени они не идут, например С 2 Н 2 + О → СН 2 + СО, СН 2 + О 2 → СО 2 + Н + Н.

Постепенная потеря водорода исходными молекулами приводит к увеличению в них доли углерода, пока не образуются частицы С 2 Н 2 , С 2 Н, С 2 . Зона сине-голубого пламени обусловлена свечением в этой зоне возбужденных частиц С 2 и СН. Если доступ кислорода в зону горения ограничен, то эти частицы не окисляются, а собираются в агрегаты - полимеризуются по схеме С 2 Н + С 2 Н 2 → С 4 Н 2 + Н, С 2 Н + С 4 Н 2 → С 6 Н 2 + Н и т. д.

В результате образуются частицы сажи, состоящие почти исключительно из атомов углерода. Они имеют форму крошечных шариков диаметром до 0,1 микрометра, которые содержат примерно миллион атомов углерода. Такие частицы при высокой температуре дают хорошо светящееся пламя желтого цвета. В верхней части пламени свечи эти частицы сгорают, поэтому свеча не дымит. Если же происходит дальнейшее слипание этих аэрозольных частиц, то образуются более крупные частицы сажи. В результате пламя (например, горящей резины) дает черный дым. Такой дым появляется, если в исходном топливе повышена доля углерода относительно водорода. Примером могут служить скипидар - смесь углеводородов состава С 10 Н 16 (C n H 2n–4), бензол С 6 Н 6 (C n H 2n–6), другие горючие жидкости с недостатком водорода - все они при горении коптят. Коптящее и ярко светящее пламя дает горящий на воздухе ацетилен С 2 Н 2 (C n H 2n–2); когда-то такое пламя использовали в ацетиленовых фонарях, установленных на велосипедах и автомобилях, в шахтерских лампах. И наоборот: углеводороды с высоким содержанием водорода - метан СН 4 , этан С 2 Н 6 , пропан С 3 Н 8 , бутан С 4 Н 10 (общая формула C n H 2n+2) - горят при достаточном доступе воздуха почти бесцветным пламенем. Смесь пропана и бутана в виде жидкости под небольшим давлением находится в зажигалках, а также в баллонах, которые используют дачники и туристы; такие же баллоны установлены в автомобилях, работающих на газе. Сравнительно недавно было обнаружено, что в копоти часто присутствуют шарообразные молекулы, состоящие из 60 атомов углерода; их назвали фуллеренами, а открытие этой новой формы углерода было ознаменовано присуждением в 1996 году Нобелевской премии по химии.

Каждый из нас не раз наблюдал за костром. Прочтя эту статью, Вы узнаете, какой газ выделяется при горении.

Что выделяется при горении дерева?

Вы наверняка не раз наблюдали над тем, что во время горения образовывается дым, который являет собой смесь твердых частиц с газообразными продуктами сгорания. Поскольку древесина состоит из соединений водорода, азота, углерода и кислорода, то продукты ее горения это – азот, углекислый газ, пары воды, сернистый газ и окись углерода. К примеру, из одного килограмма сгораемой древесины выделяется около 7,5-8,0 м 3 газообразных веществ. Они, за исключением углерода, не способны гореть в дальнейшем. Когда сгорает древесина, то единственная твердая частица, которая выделяется – сажа (тот же углерод).

Что выделяется при горении бумаги?

Бумага горит намного быстрее, чем древесина. При ее полном сгорании выделяется два вещества: водяной пар и углекислый газ.

Что такое продукты горения?

Продукты горения являют собой жидкие, газообразные и твердые вещества, которые образовываются в процессе горения. Составляющая их часть зависит от того, что горело и при каких условиях.