Функции корня. Корень: строение корня. Типы корней (биология) Корень выполняет функцию вегетативного размножения у

Функции корня. Корень: строение корня. Типы корней (биология) Корень выполняет функцию вегетативного размножения у
Функции корня. Корень: строение корня. Типы корней (биология) Корень выполняет функцию вегетативного размножения у

§ Поглощение воды и минеральных веществ. Поступление почвенного раствора в корень происходит через корневые волоски. Волоски активно воздействуют на содержимое почвы, выделяя различные вещества, облегчающие избирательное поглощение ионов из почвы. Так как концентрация минеральных веществ в клеточном соке выше, чем в почвенном растворе, вода с растворенными в ней минеральными солями в виде ионов поступает в корневые волоски. Роль насоса в корневом волоске выполняют вакуоли, в которых создается более высокая концентрация солей, чем в почве. Поступление минеральных солей в корень происходит за счет активного транспорта анионов и катионов, которые входят в состав мембран с использованием энергии АТФ. При этом может происходить обмен ионами между почвой и корнями. Поскольку концентрация клеточного сока в вакуоли выше концентрации раствора почвы, то вода в процессе диффузии устремляется внутрь клетки. Из корневых волосков вода по такому же принципу передвигается в клетки паренхимы коры и через пропускные клетки эндодермы поступают в сосуды. Сила, движущая поток воды к сосудам и во все органы, называется корневым давлением. Согласно гидростатическим законам величина тургорного давления (Т) во всех частях клетки одинакова, поэтому всасывающая сила (S) больше в той части, где больше осмотическое давление (Р). Этот закон можно выразить в виде формулы:

S = Р - T, где S - всасывающая сила; Р - осмотическое давление; Т - тургорное давление.

Обратному току жидкости препятствуют клетки эндодермы с плотными оболочками, которые не пропускают назад в почву вещества, растворенные в воде, создавая высокую концентрацию клеточного сока в центральном цилиндре. Таким образом, продвижению воды и растворенных в ней солей способствует сосущая сила корневых волосков, корневое давление, сила сцепления между молекулами воды и стенками сосудов, а также сосущая сила листьев, которые, постоянно испаряя воду, притягивают ее из корней.

§ Второй главной функцией корня является укрепление растений в почве, которое происходит благодаря ветвлению главного корня. Разветвление главного корня называют боковыми корнями. Они закладываются (эндогенно) в перицикле и через первичную кору выходят наружу. По мере роста главного корня появляются боковые корни первого порядка, которые в дальнейшем разветвляются и образуют корни второго порядка, а из них формируются корни третьего порядка и т.д. Ветвление корня способствует укреплению растения в почве и увеличению поглощающей поверхности корня. Из других функций корня можно назвать следующие.

§ Синтез органических веществ.

§ Запас питательных веществ, такие корни сильно утолщаются и выполняю функцию запаса питательных веществ.


§ За счет корней происходит связь растений с бактериями и грибами. Корень выделяет в почву различные вещества и вступает в симбиоз с грибами и бактериями.

§ С помощью корней осуществляется вегетативное размножение.

Дыхание корня имеет большое значение для нормального функционирования растения. Совокупность процессов, обеспечивающих поступление в растение кислорода и удаление диоксида углерода, а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии, необходимой для жизнедеятельности растения, составляет дыхание. Энергия дыхания необходима для поступления, транспорта и синтеза веществ. Из органических соединений, поступающих из листьев и минеральных солей из почвы, в клетках корня синтезируются многие жизненно важные вещества: аминокислоты, ферменты и фитогормоны и т.д. Образующаяся при дыхании углекислота участвует в обмене и поступлении веществ в корень. Корни многих дикорастущих растений способны переносить анаэробные (бескислородные) условия. Большинство культурных растений - аэробы и дыханию у них предшествует гидролиз (превращение полимеров в мономеры) и окисление органических веществ. Дыхание - многоступенчатый процесс. При дыхании в клетках происходит окисление кислородом ряда веществ (главным образом углеводов) и освобождается энергия, необходимая растениям для роста, движения протоплазмы, передвижения веществ. Дыхание – процесс, противоположный фотосинтезу. При фотосинтезе растение поглощает углекислоту и воду и образует сахара. При дыхании сахара окисляются, и образуется углекислота и вода:

фотосинтез

6(СО 2 +Н 2 О) С 6 Н 12 О 6 +6О 2

При окислении одной грамм-молекулы сахара в процессе дыхания освобождается 674 ккал энергии. Освободившаяся энергия расходуется на разнообразные биохимические и физические процессы: синтез органических веществ, передвижение и поглощение растворов, рост и движение органов. Часть освободившейся при дыхании энергии растение выделяет в виде тепла. Особенно энергично дыхание идет в точках роста корня. Увеличение количества кислорода в воздухе, так же, как некоторое уменьшение содержания его, на интенсивности дыхания не отражается, и лишь уменьшение содержания кислорода в воздухе в 10-20 раз против нормального ослабляет дыхание. Корень осуществляет свои функции по обеспечению растения питательными веществами только при достаточном количестве воздуха в почве. Поэтому, выращивая растения, надо следить, чтобы к корням постоянно поступал свежий воздух. Для этого почву регулярно рыхлят культиваторами или мотыгами. Рыхление почвы, кроме того, помогает сохранить влагу на сухих участках. При подсыхании почвы на ее поверхности образуется корка: она способствует быстрому испарению воды. Во время рыхления корка разрушается и в поверхностном слое сохраняется влага. Вода перестает испаряться из более глубоких слоев почвы. Недаром рыхление иногда называют «сухой поливкой». Говорят так: «Лучше один раз хорошо взрыхлить, чем два раза плохо полить». У ряда тропических болотных растений (мангровый лес) в процессе эволюции развиваются дыхательные корни. Они поднимаются вертикально вверх, на их поверхности имеются отверстия, через которые воздух поступает в корни, а затем в части растения, погруженные в болотистую почву.

Почва - это материнская (почвообразующая) порода, обработанная совместным действием климата, растительных и животных организмов, а на окультуренных территориях и деятельностью человека, способная давать урожай растений. Основным свойством почвы является плодородность - способность удовлетворять потребность растений в элементах питания, воде, воздухе, тепле для их нормальной жизнедеятельности и создания урожая. Почва отличается от горных пород, песка или глины наличием гумуса. Плодородие почвы зависит главным образом от структуры почвы и запасов гумуса. Способность почвы образовывать комочки различной величины и формы называют структурностью почвы, а сами комочки - структурой. В зависимости от наличия структурных элементов почвы бывают структурные и бесструктурные. Хорошо оструктуренная почва обеспечивает благоприятные водно-воздушные ее свойства. В состав почвы входят песок, глина и другие нерастворимые минеральные вещества, а также и растворимые минеральные вещества и перегной. В почве содержатся также воздух и вода.

Гумус (перегной) - сложный комплекс органических веществ, образующийся в почве при разложении растительных и животных остатков. Чем толще верхний слой почвы, содержащий гумус, тем она плодороднее. Наиболее плодородными являются богатые гумусом черноземы и темные луговые почвы пойм рек. Подзолистые, глинистые и песчаные почвы не обладают структурой и бедны гумусом, поэтому менее плодородны.

В зависимости от содержания в почве мелких (глинистых) или более крупных (песчаных) частиц, почвы делятся на легкие песчаные, супесчаные, суглинистые и глинистые.

От плодородия почвы зависит урожайность возделываемых культур. Обрабатываемые земли - результат сложных естественных процессов труда многих поколений людей. Одни воздействия человека на почву приводят к повышению их плодородия, другие - к ухудшению, деградации и гибели. К особо опасным последствиям влияния человека на почву следует отнести эрозию, загрязнение чужеродными химическими веществами, засоление, заболачивание, изъятие почв под различные сооружения (транспортные магистрали, водохранилища). Уменьшение площадей плодородных почв происходит во много раз быстрее, чем их образование. Охрана почв должна носить природоохранительный, ресурсосберегающий характер и предусматривать их сохранение. Для обеспечения рационального использования земель в России ведётся Государственный земельный кадастр, который содержит информацию о землях всех категорий. Кадастр принят в 2001 году, он осуществляет следующие основные мероприятия:

1) осуществляет контроль за использованием и охраной земель;

2) ведёт мониторинг земель;

3) выявляет загрязнённые и деградированные земли, подготавливает предложения по их восстановлению и консервации.

Большое значение имеет внедрение почвозащитной бесплужной обработки, которая замедляет нитрофикационные процессы в почве, уменьшает пестицидную нагрузку, уменьшает содержание нитратов в сельскохозяйственной продукции, а также ускоряет восстановительные процессы гумификации органического вещества.

Мониторинг земель – система наблюдений за состоянием земельного фонда для своевременного выявления и оценки изменений, предупреждения и устранения последствий негативных процессов. Мониторинг земель утверждён в 1992 году и является составной частью мониторинга окружающей среды.

В нашей стране принят Закон о земле. Он предусматривает меры по повышению плодородия почвы и ее охране. Неправильное использование почвы, несоблюдение правил выращивания сельскохозяйственных культур может привести к разрушению структуры почвы, эрозии почвы, засолению и заболачиванию ее. Все это ухудшает плодородие почвы, снижает урожай. Вот почему важно проводить мелиорацию (улучшение) земель.

Удобрения. Растительные организмы состоят из органических и неорганических веществ, в состав которых входят различные химические элементы. Для нормального развития растения корни должны доставлять из почвы воду и минеральные соли, макроэлементы (Р, N, K, Ca, Mg, Fe) и микроэлементы
(B, Cu, Mn, Zn, Mo). Известно, что азот входит в состав аминокислот, белков, АТФ, АДФ, витаминов, ферментов. Недостаток его задерживает рост растений. Фосфор входит в состав АТФ и АДФ, аминокислот, ферментов; калий оказывает влияние на состояние цитоплазмы, осмотическое давление клеточного сока, а также влияет на рост растений. Большое значение для жизни растений имеют макро- и микроэлементы. Каждый из элементов имеет индивидуальное значение и не может быть заменен другим. При недостатке или избытке в почве любого минерального элемента происходят различные нарушения процессов жизнедеятельности у растений. Так, при фосфорном голодании у растений наблюдается подавление синтеза и распад ранее образовавшихся белков. Отсутствие калия прекращает рост растений, так как нарушается обмен белков и углеводов. На недостаток железа указывает бледно-зеленый или бледно-желтый цвет, обусловленный недостаточным образованием хлорофилла. Минеральные соли, содержащие как макро-, так и микроэлементы образуются в почве после минерализации органических веществ, растворения минералов, поглощения почвой некоторых элементов из атмосферы. Макро- и микроэлементы находятся в плодородном слое почвы в составе различных соединений. Все вышеперечисленные элементы есть в почве, но иногда в недостаточном количестве. Ежегодно растения выносят из почвы питательные вещества, почва истощается, что снижает урожайность сельскохозяйственных растений. Для улучшения минерального питания в почву вносятся удобрения. Применяя удобрения, человек активно вмешивается в круговорот веществ в природе, создает баланс питательных веществ в почве. Удобрения вносят в почву в определенных дозах, в определенные сроки, что улучшает качество почвы и питание растений.

Различают органические, минеральные, смешанные, зеленые, бактериальные удобрения.

Органические удобрения (навоз, торф, птичий помет, навозная жижа, сапропель и др.). Они содержат питательные вещества в форме органических соединений растительного и животного происхождения. Органические удобрения вносят в почву заблаговременно, обычно осенью, так как они разлагаются медленно и длительное время могут обеспечивать растения элементами минерального питания. Органические удобрения являются полными, они содержат как макро-, так и микроэлементы. Кроме того, они улучшают физические свойства почвы: повышают ее структурность, увеличивают водопроницаемость, водоудерживающую способность, улучшают аэрацию, тепловой режим, активизируют деятельность населяющих почву микроорганизмов.

Минеральные удобрения чаще всего содержат один или два элемента питания, реже - больше, тогда их называют комплексными. Минеральные удобрения легче и быстрее, чем органические, разлагаются в почве.

В зависимости от содержания минеральных веществ различают азотные, фосфорные и калийные минеральные удобрения.

К азотным удобрениям относятся: нитраты - калиевая, кальциевая и натриевая селитры (азот в форме NO аммоний).

К калийным удобрениям относятся: калийные соли (сильвинит, каинит, карналлит); концентрированные калийные удобрения (хлористый калий, сульфат калия и др.).

Фосфорные удобрения - суперфосфат, фосфоритная мука, томасшлак. К смешанным удобрениям относятся органоминеральные - гуматы, гумоаммофосы, нитрогуматы, смеси органических и минеральных удобрений, часто компостированные или изготовленные в виде гранул. В основном это продукты химической обработки органических веществ (торф), аммиаком, азотной или фосфорной кислотой.

Минеральные удобрения вносятся в почву в строго определенной дозе и в определенные сроки. Каждое минеральное удобрение имеет свои специфические особенности. Поэтому весной в период роста растению необходим азот, так как он способствует накоплению вегетативной массы, увеличению хлорофилла и фотосинтезу. К моменту бутонизации и цветения возрастает потребность в фосфоре и калии, так как фосфор, калий и магний влияют на построение новых клеток в эмбриональных тканях (семя). На образование семян и плодов особенно благоприятно влияет калий. Учитывая различную потребность растений в элементах минерального питания в различные фазы развития, удобрения вносят не только перед посевом, но и в период вегетации в виде подкормок, иногда при посеве в рядки. В последнее время распространяется метод внекорневой подкормки, когда жидкие удобрения разбрызгивают непосредственно на растения, часто с самолетов. Растворенные питательные вещества поглощаются листьями. Особенно удобен этот метод для применения микроэлементов, так как достигается равномерное попадание растворов на листья растений и более экономичное использование дефицитных удобрений.

Зеленые удобрения . На площадях, требующих органических удобрений, выращивают такие культуры, как люпин, сераделла, люцерна, горох, клевер, гречиха, горчица и др. В период наибольшей зеленой массы их запахивают. При разложении растений в почве образуются органические вещества.

Бактериальные удобрения . К ним относится нитрагин. Его вносят при посеве семян бобовых растений. Для разных культур используют специфические формы нитрагина, так как расы клубеньковых бактерий, которые развиваются на корнях одного вида, не могут жить на корнях других видов. Азотобактерин, содержащий культуру азотобактера, - специфический для отдельных видов культурных растений. Фосфоробактерин - препарат, содержащий бактерии, которые минерализуют органические соединения фосфорной кислоты. В качестве микроудобрений применяют борные, медные, марганцевые, молибденовые, цинковые и кобальтовые соединения.

Дозы внесения органических и минеральных удобрений зависят от содержания питательных веществ в почве и индивидуальных потребностей растения. Излишнее количество удобрения в почве так же вредно, как и недостаток. Нерациональное применение удобрений наносит серьезный вред не только растениям, но и почве и в конечном счете может привести к повышению кислотности, засолению, а следовательно, и к потере плодородия. Избыточно внесенные удобрения накапливаются в сельскохозяйственной продукции и оказывают вредное действие на организм человека.

Значение обработки почвы. Обработка почвы – это механическое воздействие на почву рабочими органами машин или орудий, обеспечивающими создание наилучших условий для возделывания культур.

Основными задачами обработки почвы являются:

§ Изменение строения пахотного слоя почвы и ее структурного состояния для создания благоприятных водно-воздушного и теплового режимов.

§ Усиление круговорота питательных веществ путем извлечения их из более глубоких горизонтов почвы и воздействия в необходимом направлении на микробиологические процессы.

§ Уничтожение сорных растений путем провоцирования их прорастания, уничтожения всходов, подрезания отпрысков и выворачивания корневищ на поверхность.

§ Заделка жнивья и удобрений.

§ Уничтожение вредителей и возбудителей болезней культурных растений, гнездящихся в растительных остатках или в верхних слоях почвы.

§ Коренное улучшение подзолистых и солонцеватых почв глубокой обработкой.

§ Борьба с водной и ветровой эрозией.

§ Подготовка почв к посеву и уход за растениями: выравнивание и уплотнение поверхности почвы или, наоборот, создание гребнистой поверхности, окучивание растений и т.п.

§ Уничтожение многолетней растительности при обработке целинных и залежных земель, а также пласта сеяных многолетних трав.

Корни многих дикорастущих растений способны переносить анаэробные (бескислородные) условия. Большинство культурных растений – аэробы, и дыханию у них предшествует гидролиз (превращение полимеров в мономеры) и бескислородное окисление органических веществ. Перед посевом культурных растений производят обязательно вспашку на глубину 22-25 см или перекопку. Вспашка – прием обработки почвы, обеспечивающий оборачивание и рыхление обрабатываемого слоя почвы, а также подрезание подземной части растений, заделку удобрений и пожнивных остатков. Это агротехническое мероприятие проводят осенью или ранней весной, перед посевом производят боронование, культивацию (глубокое рыхление) с целью улучшения газообмена в почве. После появления всходов и на протяжении всего вегетационного периода уход за растениями заключается в рыхлении почвы (культивация), внесении удобрений (подкормка) и поливе. Рыхление обеспечивает доступ к корням и микрофлоре почвы кислорода; удобрения, особенно органические, улучшают структуру почвы и почвенное питание. Полив восполняет недостаток воды в жизни растений. Вода, испаряясь, предотвращает перегревание растений, обеспечивает передвижение по растению веществ, поддерживает тургор. При недостатке воды тургор у растений падает и происходит увядание. Поэтому в зоне недостаточного увлажнения проводят полив растений. После полива обязательно необходимо провести рыхление , так как вода вытесняет кислород из почвы. При повышении температуры воздуха на почве образуется корка и происходит сильное испарение воды в результате капиллярности почвы. Чтобы уменьшить испарение, необходимо нарушить капиллярность. Это достигается только рыхлением. Рыхление называют сухим поливом.

Корнеплоды и их использование человеком. В результате длительного процесса эволюции в связи с выполнением специализированных функций типичный главный корень видоизменился в корнеплод. Корнеплод формируется из главного корня благодаря отложению в нем большого количества запасных питательных веществ. Корнеплод представляет собой утолщенный, сочный, мясистый главный корень. У корнеплода различают три составные части: головку, шейку и собственно корень. Головкой корнеплода называют верхнюю часть, которая несет листья и листовые почки. С морфологической точки зрения, головка корнеплода - это укороченный стебель, на нем развивается большое количество листьев. Под головкой расположена шейка корнеплода, она гладкая, не несет на себе ни листьев, ни корней. Головка и шейка - это разросшееся подсемядольное колено (т.е. оно тоже стеблевого происхождения). И только нижняя часть корнеплода является собственно корнем. Корнеплоды образуются у двулетних растений (свекла, морковь, брюква, репа, редька и т.д.). В первый год жизни накапливаются питательные вещества, весной 2-го года корнеплоды высаживают в почву, и они образуют репродуктивные органы - цветки и плоды. Корнеплоды сахарной свеклы являются техническим сырьем для сахарной промышленности, так как они содержат 14-20% углеводов. Корнеплоды брюквы, репы, редьки, моркови, столовой свеклы являются необходимыми продуктами питания и используются как лекарственные растения. Корнеплоды кормовой свеклы используются на корм скоту.

Корневые клубни или корневые шишки представляют мясистые утолщения боковых корней, а также придаточных корней. В корнеклубнях могут накапливаться запасные вещества, преимущественно углеводы, крахмал, инулин. Корнеклубни образуются у орхидей, чистяка, георгины, земляной груши.

ПОБЕГ

Побег - орган высших растений, состоящий из стебля с расположенными на нем листьями и почками. Главная функция побега – фотосинтез. В процессе развития побег формируется как единый орган из почечки семени, а затем из образовательной ткани конуса нарастания. Характерная особенность побега метамерность, т.е. расчленение его оси на сходные участки - узлы с листом и почкой или почками и лежащими под ними междоузлиями. Узлы и междоузлия, стебель, листья, почки - структурные элементы побега.

Рис. 17. Стебель:

а, б – платана восточного (а – удлиненный, б – укороченный); в – многолетний укороченный побег яблони (кольчатка); 1 – междоузлие; 2 – годичные приросты.

Почка. Почка представляет собой зачаточный еще неразвившийся побег, все части которого сильно сближены. Почка состоит из зачаточного стебелька, окруженного зачатками листьев, а в пазухах зачаточных листьев заложены зачаточные боковые почки в виде бугорков. Почки покрыты чешуйками (видоизмененными листьями), которые предохраняют их от низких зимних температур. Чешуи почек часто бывают покрыты волосками, слоем кутикулы, а иногда и смолистыми выделениями, которые плотно склеивают почечные чешуи и тем самым предохраняют почки от вымерзания и высыхания. Почки обеспечивают длительное нарастание побега и его ветвление. Вершина стебелька, находящаяся в почке называется конусом нарастания. Состоит она из меримастической ткани, клетки которой, делясь, образуют ряд слоев однородных клеток. Различают почки боковые и верхушечные. Верхушечные почки располагаются на верхушках стебля и его боковых ответвлениях. Боковые почки могут быть пазушными и придаточными. Пазушные почки располагаются по одной в пазухе листа. У некоторых растений возникает не одна, а несколько почек. Они могут располагаться одна над другой или находиться рядом. Верхушечная и боковые пазушные почки образуются из меристемы конуса нарастания и различаются лишь по местоположению. У деревьев и кустарников пазушные почки бывают ростовыми (вегетативными) с зачатками листьев и стебля и цветочными с зачатками цветков или соцветий. Некоторые пазушные почки могут оставаться в состоянии покоя неопределенно долго. Это "спящие почки". Они начинают функционировать при повреждении верхушечной почки и других повреждениях стебля.

Придаточные почки – могут располагаться в любом месте междоузлия стебля. Они образуются из камбия в нижних частях стеблей, из поверхностных слоев паренхимы в верхней части стебля.

Развитие побега. Рост стебля в высоту обеспечивает верхушечная почка, или почка зародыша семени. Клетки образовательной ткани конуса нарастания постоянно делятся. В процессе деления образуются новые зачатки листьев и почек. За делением следует рост клеток, что влечет за собой удлинение междоузлий и в целом стебля. В развитии побега различают два периода: почечный - закладка элементов будущего побега, и внепочечный - развертывание и рост заложенных в почке структур будущего побега.

По мере удаления от конуса нарастания способность клеток к делению падает, и начинается их дифференцировка с образованием тканей. Возможен другой способ роста стебля: вставочный или интеркалярный. В этом случае образовательная ткань разделена участками неделящихся клеток. Располагается она обычно у основания междоузлий. Такой рост характерен для злаковых.

Рост побега весной начинается с увеличения размеров почек и заложенных в них зачатков стебля и листьев. Почечные чешуйки раздвигаются, опадают, и появляется молодой побег. На самой верхушке конуса нарастания находится верхушечная меристема, которая обеспечивает постоянный рост побега в длину и формирование всех его частей и тканей. Завершается рост побега образованием цветка, соцветия или верхушечной почки.

Стебель - представляет собой осевую часть побега, обладает неограниченным ростом - растет в течение всей жизни растения. Функции стебля:

1) стебель обеспечивает передвижение воды с минеральными веществами от корня вверх и органических веществ от листьев ко всем органам;

2) стебель принимает участие в формировании кроны;

3) является местом отложения запасных питательных веществ;

4) служит для вегетативного размножения;

5) выполняет защитную функцию.

На стебле формируются составные части побега. Узлом называется место прикрепления листа к стеблю. Стеблевой узел обычно имеет некоторое утолщение, особенно хорошо это заметно у злаков (пшеница, бамбук). Участки стебля между двумя соседними узлами называются междоузлиями. Длина междоузлий бывает неодинаковой, как у различных растений, так и на стебле одного растения в зависимости от места расположения. У многих травянистых растений стеблевые междоузлия имеются под землей (одуванчик, маргаритка). Такие растения развивают большое количество густо расположенных листьев, которые образуют на поверхности почвы прикорневую розетку (одуванчик, подорожник). Угол, который образован стеблем и отходящим от него листом называется пазухой листа.

Ветвление стебля (побега). Очень немногие растения имеют неветвящийся стебель. У большинства растений стебель ветвится, в результате чего увеличивается поверхность растения, а следовательно, и его листовая масса. Существует 4 типа ветвления стеблей растений: дихотомическое, моноподиальное, симподиальное и ложнодихотомическое.

Дихотомическое ветвление - является основной первичной формой ветвления растений, от которой возникли остальные. Характеризуется тем, что на верхушке стебля формируются две почки, которые при разрастании образуют две одинаковые ветви в виде вилки. Каждая из этих ветвей продолжает ветвиться таким же способом. Такой тип ветвления характерен для мхов, плаунов, папоротников.

Рис. 18. Ветвление:

А – моноподиальное (а – схема, б – ветка сосны); Б – симподиальное (в – схема, г – ветка черёмухи); В – ложнодихотомическое (д – схема, е – ветка сирени);
1-4 – оси первого и последующих порядков.

Моноподиальное ветвление характеризуется неограниченным верхушечным ростом побега; свойственно растениям, у которых на верхушке побега находится одна почка. Эта почка служит для продолжения роста главного побега (оси), а боковые ветви первого порядка формируются за счет боковых почек, причем боковые ветви не перерастают главный побег (хвойные - ель, сосна, пихта и т.д.).

Симподильное ветвление отличается ранним прекращением верхушечного роста, при этом верхушечная почка отмирает. Вместо нее развивается боковая почка, которая отодвигает главную ось несколько в сторону, а сформировавшийся из этой почки побег дает продолжение основному стеблю. Характерно для древесных - яблоня, груша, персик и т.д., из травянистых - картофель, хлопчатник и др. Характер ветвления определяет внешний вид растения, его габитус.

При ложнодихотомическом ветвлении рост верхушки на главной оси прекращается, и под ней формируются две почки, из которых развиваются более или менее одинаковые ветви, а между ними заметна отмершая верхушечная почка (сирень, каштан). Оно возникает при супротивном расположении листьев, а следовательно, и почек.

Формирование кроны. У разветвленного растения главный стебель называют осью первого порядка, развившиеся из него пазушные почки боковых ветвей – есть оси второго порядка, из них образуются оси третьего порядка и т.д. На деревьях может быть до 20 таких осей. Разветвленная надземная часть дерева называется кроной.

Формирование кроны основано на знании закономерностей развития побега. Удаление конуса нарастания вызывает прекращение роста стебля в длину и усиленный рост боковых почек, т.е. ветвление. Это используют специалисты при озеленении городов и формировании кроны фруктовых деревьев. По форме кроны бывают шаровидные (клен остролистный), пирамидальные (тополь), колоновидные (кипарис) и др. Кроны плодовых и декоративных деревьев формируют обрезкой с учетом их природных особенностей. Овощеводы используют эти данные при выращивании овощей: на боковых побегах огурцов больше формируется женских цветков, чем на главных. При выращивании цветов (розы) удаление боковых цветочных побегов вызывает увеличение размеров главного побега и развивающегося на нем цветка.

Внутреннее строение древесного стебля в связи с его функциями. Рост стебля в толщину. Образование годичных колец. Для древесного стебля характерной особенностью является способность неопределенно долго расти в толщину, давая прирост каждый вегетационный период. Анатомические особенности заключаются в образовании на его поверхности перидермы (вторичной покровной ткани), которая сменяет эпидермис, и появления четко выраженных годичных колец в древесине. В древесном стебле обычно выделяют кору, камбий, древесину и сердцевину.

В состав коры входят все ткани, расположенные к поверхности от камбия. Наружные слои коры представлены перидермой, состоящей из пробки, пробкового камбия и феллодермы. Иногда на поверхности пробки сохраняются остатки эпидермиса. За перидермой расположены элементы первичной коры, возникающие в результате дифференциации первичной образовательной ткани конуса нарастания. К ней относится пластинчатая колленхима, клетки основной ткани, эндодерма, которая содержит крахмальные зерна. За эндодермой располагается перициклическая склеренхима - это одревесневшие склеренхимные волокна. За перициклической склеренхимой начинается флоэма или вторичная кора. В ней выделяют мягкий луб и твердый луб. Мягкий луб представлен ситовидными трубками с клетками-спутницами и флоэмной паренхимой, а твердый луб - вторичными склеренхимными волокнами. Они возникают в результате деятельности и дифференциации клеток камбия. Камбий откладывает попеременно то элементы мягкого, то элементы твердого луба. Волокна твердого луба представляют собой мертвые клетки с сильно утолщенными одревесневшими стенками - лубяные волокна. В зону флоэмы входят первичные сердцевинные лучи, расширяющиеся треугольниками от камбия. Они представлены клетками основной паренхимы и являются местом отложения запасных питательных веществ. Продолжаясь в виде узких полосок по ксилеме, первичные сердцевинные лучи доходят до сердцевины стебля. Имеются и вторичные сердцевинные лучи, которые кончаются в ксилеме не доходя до сердцевины, они значительно уже первичных лучей. Они также возникают из клеток камбия. Часть стебля от камбия до эндодермы называется вторичной корой. Вместе с первичной корой она образует коровую часть стебля.

Камбий состоит из делящихся прямоугольных тонкостенных клеток с живым содержимым. Когда он энергично функционирует, клетки его не успевают дифференцироваться, и камбий вместе с образовавшимися из него клетками хорошо различим.

Рис. 19. Строение ствола двудольного древесного растения:

1 - остатки эпидермы; 2 – перидерма; 3 – колленхима; 4 – паренхима первичной коры; 5 – склеренхима перициклического происхождения; 6 – флоэмная часть первичного сердцевинного луча; 7 – лубяные волокна; 8 – мягкий луб; 9 – камбий; 10 – весенняя древесина; 11 – осенняя древесина; 12 – ксилемная часть первичного сердцевинного луча; 13 – первичная ксилема; 14 – паренхима сердцевины; А – кора (а΄ - первичная; а΄΄ - вторичная); Б – древесина; (I-III – годичные приросты древесины); В – сердцевина.

Основная масса стебля древесного растения состоит из вторичной древесины (составляющей 9/10 объема ствола), которая идет от камбия к центру. Древесина (ксилема) включает трахеи (сосуды), трахеиды, древесную паренхиму и древесные волокна (склеренхиму). Общая особенность всех элементов ксилемы – одревеснение клеточных стенок. Вследствие неравномерной деятельности камбия образованные им клетки древесины имеют различные размеры. Самые крупные клетки образуются весной, когда деятельность камбия наиболее интенсивна. Постепенно деятельность камбия замедляется, и образуемые камбием клетки становятся более мелкими и толстостенными. К зиме камбий вступает в период покоя. Таким образом, за один вегетационный период образуется одно годичное кольцо древесины , в котором хорошо заметны весенние, летние и осенние клетки. После периода зимнего покоя деятельность камбия возобновляется, и формируется новое годичное кольцо , крупные весенние клетки которого непосредственно примыкают к мелким клеткам, образовавшимся осенью предыдущего года. Как правило, за год формируется только одно кольцо древесины . По ширине годичных колец можно узнать в каких условиях росло дерево в разные годы жизни. Узкие годичные кольца свидельствуют о недостатке влаги, о затенении дерева, о его плохом питании. По годичным кольцам можно определить и стороны света. Годичные кольца обычно шире с той стороны дерева, которая обращена к югу, и уже с той, которая обращена к северу. За вторичной древесиной к центру следуют элементы первичной древесины, которые состоят из небольшого числа спиральных и кольчатых сосудов.

В центре стебля находится сердцевина, состоящая из округлых паренхимных клеток. В них накапливаются разнообразные вещества. Рост стебля в толщину происходит за счет клеток вторичной образовательной ткани камбия. В сторону древесины откладывается примерно в четыре раза больше клеток, чем к коре, поэтому древесина толще коры.

Передвижение минеральных и органических веществ по стеблю происходит в двух направлениях. От корня к листьям и всем надземным органам по проводящим сосудам древесины (ксилемы) идет восходящий ток (воды и минеральных солей) . Подъему воды на высоту стебля (а она может достигать около сотни метров) способствует присасывающее действие листьев, корневое давление, сила сцепления молекул воды друг с другом и со стенками сосудов. Благодаря сосущей силе листьев в стебле создается отрицательное гидростатическое давление. Об этом свидетельствуют наблюдения: при рубке дерева воздух с шипением всасывается в древесину. Благодаря силе сцепления между молекулами воды в проводящей системе образуется непрерывный столб жидкости, подтягиваемый сверху сосущей силой листьев и подталкиваемый снизу корневым давлением (восходящий ток).

Передвижение органических веществ происходит по ситовидным трубкам луба (флоэмы) из листьев в корень (нисходящий ток). Это не простое механическое явление, а физиологический процесс, идущий с затратой энергии, т.е. связанный с дыханием. Летом органические вещества поступают не только в корни, но и в цветки и плоды, которые часто располагаются выше листьев. Следовательно, органические вещества передвигаются и вниз и вверх. Кроме передвижения питательных веществ по вертикали, у растений происходит их движение в горизонтальном направлении от сердцевины ствола к периферии. Для этой цели служат сердцевинные лучи, которые состоят из основной ткани и тянутся от сердцевины через древесину к коре. Лучами они названы из-за формы: начинаются узкими полосками в сердцевине, немного расширяются в древесине и очень сильно в коре.

Отложение запасных веществ. Запасные или органические питательные вещества откладываются в специальных запасающих тканях сердцевины, сердцевинных лучах и в клетках основной ткани первичной коры в виде сахара, крахмала, аминокислот, белков, масел. Они могут накапливаться в растворенном (корнеплод свеклы), твердом (зерна крахмала, белка в клубнях картофеля, в плодах злаков, бобовых) или полужидком состояниях (капли масла в эндосперме клещевины). Особенно много веществ откладывается в видоизмененных побегах (корневищах, клубнях, луковицах), а также в семенах и плодах. Значение запасных веществ заключается не только в том, что растение при необходимости питается этими органическими веществами, но и в том, что они являются продуктом питания человека и животных, а также используется как сырье.

Видоизмененные побеги: корневище, клубень, луковица, их строение, биологическое и хозяйственное значение.

В связи с выполнением дополнительных функций стебель претерпевает различные видоизменения, как надземные (усики, колючки), так и подземные - корневища, клубни, луковицы, которые выполняют функции накопления запасных питательных веществ и вегетативного размножения.

Корневище - многолетний подземный побег с чешуйками и почками. Отличается от корня отсутствием корневого чехлика, наличием узлов и междоузлий, листьев (а после их отмирания листовых рубцов), наличием верхушечной и пазушных почек. По форме может быть длинным и тонким (длиннокорневищные растения - пырей) или коротким и толстым (короткокорневищные - щавель, ирис). Ежегодно из верхушки вырастает подземный побег. При повреждении корневища каждый кусочек с почкой дает новое растение, которое располагается параллельно почве.

Рис. 20. Метаморфозы подземных побегов.

Вопросы:
1.Функции корня
2.Виды корней
3.Типы корневой системы
4.Зоны корня
5.Видоизменение корней
6.Процессы жизнедеятельности в корне


1. Функции корня
Корень – это подземный орган растения.
Основные функции корня:
- опорная: корни закрепляют растение в почве и удерживают на протяжении всей жизни;
- питательная: через корни растение получает воду с растворенными минеральными и органическими веществами;
- запасающая: в некоторых корнях могут накапливаться питательные вещества.

2. Виды корней

Различают главные, придаточные и боковые корни. При прорастании семени первым появляется зародышевый корешок, который превращается в главный. На стеблях могут появляться придаточные корни. От главных и придаточных корней отходят боковые корни. Придаточные корни обеспечивают растение дополнительным питанием и выполняют механическую функцию. Развиваются при окучивании, например, томатов и картофеля.

3. Типы корневой системы

Корни одного растения – это корневая система. Корневая система бывает стержневая и мочковатая. В стержневой корневой системе хорошо развит главный корень. Ее имеет большинство двудольных растений (свекла, морковь). У многолетних растений главный корень может отмирать, а питание происходит за счет боковых корней, поэтому главный корень можно проследить только у молодых растений.

Мочковатая корневая система образована только придаточными и боковыми корнями. В ней нет главного корня. Такую систему имеют однодольные растения, например, злаки, лук.

Корневые системы занимают много места в почве. Например, у ржи корни распространяются вширь на 1-1,5 м и проникают вглубь до 2 м.


4. Зоны корня
В молодом корне можно выделить следующие зоны: корневой чехлик, зона деления, зона роста, зона всасывания.

Корневой чехлик имеет более темный цвет, это самый кончик корня. Клетки корневого чехлика защищают верхушку корня от повреждений твердыми частицами почвы. Клетки чехлика образованы покровной тканью и постоянно обновляются.

Зона всасывания имеет множество корневых волосков, которые пред-ставляют собой вытянутые клетки длиной не более 10 мм. Выглядит эта зона в виде пушка, т.к. корневые волоски очень маленькие. Клетки корневого волоска также, как и другие клетки, имеют цитоплазму, ядро и вакуоли с клеточным соком. Эти клетки недолговечны, быстро отмирают, а на их место образуются новые из более молодых поверхностных клеток, расположенных ближе к кончику корня. Задача корневых волосков – всасывание воды с растворенными питательными веществами. Зона всасывания постоянно перемещается за счет обновления клеток. Она нежная и легко повреждается при пересадке. Здесь присутствуют клетки основной ткани.

Зона проведения . Находится выше всасывания, не имеет корневых во-лосков, поверхность покрыта покровной тканью, а в толще находится проводящая ткань. Клетки зоны проведения представляют собой сосуды, по которым вода с растворенными веществами перемещается в стебель и в листья. Здесь так же находятся клетки-сосуды, по которым органические вещества из листьев поступают в корень.

Весь корень покрыт клетками механической ткани, что обеспечивает прочность и упругость корня. Клетки вытянутые, покрыты толстой обо-лочкой и заполнены воздухом.

5. Видоизменение корней

Глубина проникновения корней в почву зависит от условий, в которых находятся растения. На длину корней влияет влажность, состав почвы, вечная мерзлота.

Длинные корни образуются у растений в засушливых местах. Особенно это характерно для растений пустынь. Так у верблюжьей колючки корневая система достигает 15-25 м в длину. У пшеницы на неорошаемых полях корни достигают в длину до 2,5 м, а на орошаемых – 50 см и увеличивается их густота.

Вечная мерзлота ограничивает рост корней в глубину. Например, в тундре у карликовой березы корни всего 20 см. Корни поверхностные, ветвистые.

В процессе приспособления к условиям среды корни растений видоизменились и стали выполнять дополнительные функции.

1. Корневые клубни выполняют роль хранилища питательных веществ вместо плодов. Возникают такие клубни в результате утолщения боковых или придаточных корней. Например, георгины.

2. Корнеплоды – видоизменения главного корня у таких растений, как морковь, репа, свекла. Корнеплоды образуются нижней частью стебля и верхней частью главного корня. В отличие от плодов они не имеют семян. Корнеплоды имеют двулетние растения. В первый год жизни они не цветут и накапливают в корнеплодах много питательных веществ. На второй – они быстро зацветают, используя накопленные питательные вещества и образуют плоды и семена.

3. Корни-прицепки (присоски) – придаточные кори, развивающиеся у растений тропических мест. Они позволяют крепиться к вертикальным опорам (к стене, скале, стволу дерева), вынося листву к свету. Примером может быть плющ и ломонос.

4. Бактериальные клубеньки. Своеобразно изменены боковые корни у клевера, люпина, люцерны. В молодых боковых корешках поселяются бактерии, что способствует усвоению газообразного азота почвенного воздуха. Такие корни приобретают вид клубеньков. Благодаря этим бактериям эти растения способны жить на бедных азотом почвах и делать их более плодородными.

5. Воздушные корни образуются у растений, произрастающих во влажных экваториальных и тропических лесах. Такие корни свисают вниз и поглощают дождевую воду из воздуха – встречаются у орхидей, бромелиевых, у некоторых папоротников, у монстеры.

Воздушные корни-подпорки – это придаточные корни, образующиеся на ветвях деревьев и достигающие земли. Возникают у баньяна, фикуса.

6. Ходульные корни. У растений, произрастающих в приливно-отливной зоне, развиваются ходульные корни. Они высоко над водой удерживают на зыбком илистом грунте крупные облиственные побеги.

7. Дыхательные корни образуются у растений, которым не хватает кислорода для дыхания. Растения произрастают в преизбыточно увлажненных местах – в топких болотах, заводях, морских лиманах. Корни растут вертикально вверх и выходят на поверхность, поглощая воздух. Примером могут быть ива ломкая, болотный кипарис, мангровые леса.

6. Процессы жизнедеятельности в корне

1 - Всасывание корнями воды

Всасывание воды корневыми волосками из почвенного питательного раствора и проведение её по клеткам первичной коры происходит за счет разницы давлений и осмоса. Осмотическое давление в клетках заставляет минеральные вещества проникать в клетки, т.к. их содержание солей в них меньше, чем в почве. Интенсивность поглощения воды корневыми волосками называется сосущей силой. Если концентрация веществ почвенного питательного раствора будет выше, чем внутри клетки, то вода будет выходить из клеток и наступит плазмолиз – растения завянут. Такое явление наблюдается в условиях сухости почвы, а также при неумеренном внесении минеральных удобрений. Корневое давление можно подтвердить с помощью серии опытов.

Растение с корнями опускается в стакан с водой. Поверх воды для защиты её от испарения нальём тонкий слой растительного масла и отметим уровень. Через день-два вода в ёмкости опустилась ниже отметки. Следовательно, корни всосали воду и подали её наверх к листьям.

Цель: выяснить основную функцию корня.

Срежем у растения стебель, оставив пенёк высотой 2-3 см. На пенёк наденем резиновую трубку длиной 3 см, а на верхний конец наденем изогнутую стеклянную трубку высотой 20-25 см. Вода в стеклянной трубке поднимается, и вытекает наружу. Это доказывает, что воду из почвы корень всасывает в стебель.

Цель: выяснить, как температура влияет на работу корня.

Один стакан должен быть с тёплой водой (+17-18ºС), а другой с холодной (+1-2ºС). В первом случае вода выделяется обильно, во втором – мало, или совсем приостанавливается. Это является доказательством того, что температура сильно влияет на работу корня.

Тёплая вода активно поглощается корнями. Корневое давление повышается.

Холодная вода плохо поглощается корнями. В этом случае корневое давление падает.


2 - Минеральное питание

Физиологическая роль минеральных веществ очень велика. Они являются основой для синтеза органических соединений и непосредственно влияют на обмен веществ; выполняют функцию катализаторов биохимических реакций; воздействуют на тургор клетки и проницаемость протоплазмы; являются центрами электрических и радиоактивных явлений в растительных организмах. С помощью корня осуществляется минеральное питание растения.


3 - Дыхание корней

Для нормального роста и развития растения необходимо чтобы к корню поступал свежий воздух.

Цель: проверить наличие дыхания у корней.

Возьмём два одинаковых сосуда с водой. В каждый сосуд поместим развивающие проростки. Воду в одном из сосудов каждый день насыщаем воздухом с помощью пульверизатора. На поверхность воды во втором сосуде нальём тонкий слой растительного масла, так как оно задерживает поступление воздуха в воду. Через некоторое время растение во втором сосуде перестанет расти, зачахнет, и в конце концов погибнет. Гибель растения наступает из-за недостатка воздуха, необходимого для дыхания корня.

Установлено, что нормальное развитие растений возможно только при наличии в питательном растворе трёх веществ – азота, фосфора и серы и четырёх металлов – калия, магния, кальция и железа. Каждый из этих элементов имеет индивидуальное значение и не может быть заменён другим. Это макроэлементы, их концентрация в растении составляет 10-2–10%. Для нормального развития растений нужны микроэлементы, концентрация которых в клетке составляет 10-5–10-3%. Это бор, кобальт, медь, цинк, марганец, молибден др. Все эти элементы есть в почве, но иногда в недостаточном количестве. Поэтому в почву вносят минеральные и органические удобрения.

Растение нормально растёт и развивается в том случае, если в окружающей корни среде будут содержаться все необходимые питательные вещества. Такой средой для большинства растений является почва.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основные функции корней растений

Введение

3. Функции корня

5. Анатомия корня

Литература

Введение

Комрень -- осевой, (обычно) подземный вегетативный орган высших растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

На корне нет листьев, в клетках корня нет хлоропластов.

Кроме основного корня, многие растения имеют боковые и придаточные корни. Совокупность всех корней растения называют корневой системой. В случае, когда главный корень незначительно выражен, а придаточные корни выражены значительно, корневая система называется мочковатой. Если главный корень выражен значительно, корневая система называется стержневой.

Некоторые растения откладывают в корне запасные питательные вещества, такие образования называют корнеплодами.

Основные функции корня

Закрепление растения в субстрате;

Всасывание, проведение воды и минеральных веществ;

Запас питательных веществ;

Взаимодействие с корнями других растений (симбиоз) , грибами, микроорганизмами, обитающими в почве (микориза, клубеньки бобовых).

Вегетативное размножение

Синтез биологически активных веществ

У многих растений корни выполняют особые функции (воздушные корни, корни-присоски).

Происхождение корня.

Тело первых вышедших на сушу растений ещё не было расчленено на побеги и корни. Оно состояло из ответвлений, одни из которых поднимались вертикально, а другие прижимались к почве и поглощали воду и питательные вещества. Несмотря на примитивное строение, эти растения были обеспечены водой и питательными веществами, так как имели небольшие размеры и жили около воды.

В ходе дальнейшей эволюции некоторые ответвления стали углубляться в почву и дали начало корням, приспособленным к более совершенному почвенному питанию. Это сопровождалось глубокой перестройкой их структуры и появлением специализированных тканей. Образование корней было крупным эволюционным достижением, благодаря которому растения смогли осваивать более сухие почвы и образовывать крупные побеги, поднятые вверх к свету. Например, у моховидных настоящих корней нет, их вегетативное тело небольших размеров -- до 30 см, обитают мхи во влажных местах. У папоротникообразных появляются настоящие корни, это приводит к увеличению размеров вегетативного тела и к расцвету этой группы в каменноугольный период.

1. Видоизменения и специализация корней

Корни некоторых строений имеют склонность к метаморфозу.

Видоизменения корней:

Корнеплод -- утолщенный придаточный корень. В образовании корнеплода участвуют главный корень и нижняя часть стебля. Большинство корнеплодных растений двулетние. Корнеплоды состоят в основном из запасающей основной ткани (репа, морковь, петрушка).

Корневые клубни (корневые шишки) образуются в результате утолщения боковых и придаточных корней.

Корни-зацепки -- своеобразные придаточные корни. При помощи этих корней растение «приклеивается» к любой опоре.

Ходульные корни -- выполняют роль опоры.

Воздушные корни -- боковые корни, растут в надземной части. Поглощают дождевую воду и кислород из воздуха. Образуются у многих тропических растений в условиях повышенной влажности.

Микориза -- сожительство корней высших растений с гифами грибов. При таком взаимовыгодном сожительстве, называемом симбиозом, растение получает от гриба воду с растворёнными в ней питательными веществами, а гриб -- органические вещества. Микориза характерна для корней многих высших растений, особенно древесных. Грибные гифы, оплетающие толстые одревесневшие корни деревьев и кустарников, выполняют функции корневых волосков.

Бактериальные клубеньки на корнях высших растений -- сожительство высших растений с азотфиксирующими бактериями -- представляют собой видоизменённые боковые корни, приспособленные к симбиозу с бактериями. Бактерии проникают через корневые волоски внутрь молодых корней и вызывают у них образование клубеньков. При таком симбиотическом сожительстве бактерии переводят азот, содержащийся в воздухе, в минеральную форму, доступную для растений. А растения, в свою очередь, предоставляют бактериям особое местообитание, в котором отсутствует конкуренция с другими видами почвенных бактерий. Бактерии также используют вещества, находящиеся в корнях высшего растения. Чаще других бактериальные клубеньки образуются на корнях растений семейства Бобовые. В связи с этой особенностью семена бобовых богаты белком, а представителей семейства широко используют в севообороте для обогащения почвы почвы азотом.

Дыхательные корни -- у тропических растений -- выполняют функцию дополнительного дыхания.

2. Особенности строения корней

Совокупность корней одного растения называют корневой системой.

В состав корневых систем входят корни различной природы.

Различают:

главный корень,

боковые корни,

придаточные корни.

Главный корень развивается из зародышевого корешка. Боковые корни возникают на любом корне в качестве бокового ответвления. Придаточные корни образованы побегом и его частями.

Органом называют часть тела организма, имеющую определенное строение и выполняющую определенные функции.

Тело высших растений дифференцировано на вегетативные и генеративные (репродуктивные) органы.

Вегетативные органы образуют тело высшего растения и длительное время поддерживают его жизнь. За счет тесного структурного и функционального взаимодействия вегетативных органов -- корня, стебля и листа -- осуществляются все проявления жизни растения как целостного организма: поглощение воды и минеральных веществ из почвы, фототрофное питание, дыхание, рост и развитие, вегетативное размножение.

3. Функции корня

Корень -- это осевой орган растения, служащий для укрепления растения в субстрате и поглощения из него воды и растворенных минеральных веществ. Кроме того, в корне синтезируются различные органические вещества (гормоны роста, алкалоиды и др.), которые затем перемещаются по сосудам ксилемы в другие органы растений или остаются в самом корне. Часто он является местом хранения запасных питательных веществ.

У корнеотпрысковых растений (осины, тополя, ивы, малины, вишни, сирени, осота полевого и др.) корень выполняет функцию вегетативного размножения: на корнях у них образуются придаточные почки, из которых развиваются надземные побеги -- корневые отпрыски.

Образование корней было значительным эволюционным достижением, благодаря которому растения приспособились к более совершенному почвенному питанию и смогли образовывать крупные побеги, поднимающиеся вверх, к солнечному свету.

4. Виды корней и типы корневых систем

Корень, развивающийся из зародышевого корешка семени, называется главным. От него отходят боковые корни, способные к ветвлению. Корни могут формироваться также на надземных частях растений -- стеблях или листьях; такие корни называются придаточными. Совокупность всех корней растения составляет корневую систему.

Различают два основных типа корневых систем: стержневую, имеющую хорошо развитый главный корень, который длиннее и толще других, и мочковатую, в которой главный корень отсутствует или не выделяется среди многочисленных придаточных корней. Стержневая корневая система характерна главным образом для двудольных растений, мочковатая -- для большинства однодольных.

Корень растет в длину благодаря делению клеток верхушечной (апикальной) меристемы. Кончик корня покрыт в виде наперстка корневым чехликом, который защищает нежные (слетки апикальной меристемы от механических повреждений и способствует продвижению корня в почве. Корневой чехлик, состоящий из живых тонкостенных клеток, непрерывно обновляется: но мере того как с его поверхности слущиваются старые клетки, меристема образует новые молодые клетки. Клетки чехлика продуцируют обильную слизь, которая обволакивает корень, облегчая его скольжение между частицами почвы. Кроме того, слизь создает благоприятные условия для поселения полезных бактерий. Она может также влиять на доступность почвенных ионов и обеспечивать кратковременную защиту корня от высыхания, Продолжительность жизни клеток корневого чехлика А--9 дней в зависимости от длины чехлика и вида растения.

5. Анатомия корня

На продольном разрезе кончика корня можно выделить несколько зон: деления, роста, всасывания и проведения (рис. 8.6).

Рис. 8.6. Зоны молодого корня

(а--общий вид; б--продольный разрез верхушки корня): I -- корневой чехлик; II -- зона роста; III -- зона корневых волосков (зона всасывания); IV--зона проведения; I --закладывающийся боковой корень; 2 -- корневые волоски на эпиблеме; 3 --- эпиблема; 4 -- экзодерма; 5 -- первичная кора; б -- эндодерма; 7 -- перицикл; 8 -- осевой цилиндр; 9 -- клетки корневого чехлика; 10 -- апикальная меристема.

Зона деления находится под чехликом и представлена клетками апикальной меристемы. Ее длина около 1 мм. За зоной деления расположена зона растяжения (зона роста) длиной всего несколько миллиметров. Рост клеток именно в этой зоне обеспечивает основное удлинение корня. Зона всасывания (зона корневых волосков) длиной до нескольких сантиметров начинается над зоной растяжения; функция данной зоны понятна из ее названия.

Необходимо отметить, что переход от одной зоны к другой происходит постепенно, без резких границ. Некоторые клетки начинают удлиняться и дифференцироваться еще в зоне деления, в то время как другие достигают зрелости в зоне растяжения.

Поступление почвенного раствора в корень происходит преимущественно через зону всасывания, поэтому чем больше поверхность этого участка корня, тем лучше он выполняет свою основную всасывающую функцию. Именно в связи с этой функцией часть клеток кожицы вытянута в корневые волоски длиной 0,1--8 мм (см. рис. 8.6). Почти всю клетку корневого волоска занимает вакуоль, окруженная тонким слоем цитоплазмы. Ядро располагается в цитоплазме возле верхушки волоска. Корневые волоски способны охватывать частички почвы, как будто срастаются с ними, что облегчает поглощение из почвы воды и минеральных веществ. Поглощению способствует также выделение корневыми волосками различных кислот (угольной, яблочной, лимонной, щавелевой), которые растворяют частички почвы.

Формируются корневые волоски очень быстро (у молодых сеянцев яблони за 30--40 ч). У одной особи четырехмесячного растения ржи примерно 14 млрд. корневых волосков с площадью поглощения около 400 м2 и суммарной длиной более 10 тыс. км; поверхность всей корневой системы, включая корневые волоски, составляет примерно 640 м2, т. е. в 130 раз больше, чем у побега. Функционируют корневые волоски недолго -- обычно 10--20 дней. Сменяют отмершие корневые волоски в более нижней части корня новые. Таким образом, наиболее деятельная, всасывающая зона корней все время перемещается вглубь и в стороны вслед за растущими кончиками разветвлений корневой системы. При этом общая всасывающая поверхность корней все время увеличивается.

корневая система растение анатомическое

Рис. 8.7. Поперечный срез корня

(а -- однодольного, 6 -- двудольного растения): I-- центральный (осевой) цилиндр; 2 -- остатки эпибле-мы; 3 -- экзодерма; 4 -- паренхима первичной коры; 5 -- эндодерма; 6 -- перицикл; 7 -- флоэма; 8 -- ксилема; 9 -- пропускные клетки эндодермы; 10 -- корневой волосок.

На поперечном разрезе в корне отличают кору и центральный цилиндр (рис. 8.6 и 8.7).

Первичная кора покрыта своеобразным эпидермисом, клетки которого участвуют в образовании корневых волосков. В связи с этим эпидермис корня называется ризодермой или эпиблемой.

В состав первичной коры входят экзодерма, паренхима и эндодерма. Экзодерма состоит с одного или нескольких слоев клеток, стенки которых способны утолщаться. После отмирания эпидермы эти слои коры выполняют функцию покровной ткани. Утолщения оболочки имеет и внутренний слой коры -- эндодерма.

Осевой, или центральный, цилиндр состоит из проводящей системы (ксилемы и флоэмы), окруженной кольцом живых клеток перицикла, способного к меристематической деятельности.

За счет деления клеток перицикла образуются боковые корни. Внутреннюю часть центрального цилиндра у большинства корней занимает сложный проводящий пучок радиального строения: радиально расположенные участки первичной ксилемы чередуются с участками первичной флоэмы. У однодольных и папоротников первичная структура корня сохраняется в течение всей жизни. У двудольных и голосеменных растений за счет деятельности камбия образуется вторичная структура корня: в центральном цилиндре происходят изменения (камбий образует вторичные проводящие ткани), обусловливающие рост корня в толщину.

6. Минеральное питание растений

Минеральное питание--это совокупность процессов поглощения из почвы, передвижения и усвоения макро- и микроэлементов (N, S, Р, К, Са, Mg, Mп, Zn, Fе, Си и др.), необходимых для жизни растительного организма. Вместе с фотосинтезом минеральное питание составляет единый процесс питания растений.

Поступление воды и растворенных веществ в клетки корня через биологические мембраны осуществляются благодаря таким процессам, как осмос, диффузия, облегченная диффузия, активный транспорт (см. гл. 1).

Главными движущими силами, обеспечивающими передвижение почвенного раствора по сосудам корня и стебля к ночкам, листьям и цветкам, являются присасывающая сила транспирации и корневое давление.

Практически все минеральные вещества и воду, необходимые для роста и развития, растения получают из почвы -- верхнего плодородного слоя земной коры, измененного под влиянием природных факторов и деятельности человека.

7. Значение обработки почвы и внесения удобрений в жизни культурных растений

Количество воды и минеральных веществ в почве обусловлено ее физическими и химическими свойствами, жизнедеятельностью микроорганизмов и растений, типом почвы и т. д. Совокупность всех этих факторов определяет плодородие почвы, от которого в значительной мере зависит урожайность сельскохозяйственных растений. Поэтому научно обоснованная обработка почвы (лущение, вспашка, культивация, прикатывание, боронование и др.) играет первостепенную роль в повышении ее плодородия. В результате растения получают наилучшие условия для роста и развития в течение всего периода вегетации.

Обработка почвы сопровождается уменьшением размера почвенных частиц. Это ведет к увеличению поглотительной и во-доудерживающей способности почвы. Раздробленность почвенных частиц способствует увеличению их поверхности, что и позволяет почве долго удерживать растворы минеральных веществ, связывать их в менее растворимые соединения и тем самым замедлять их вымывание.

Рыхлая почва отличается хорошей водопроницаемостью и повышенной влагоемкостью. При малой водопроницаемости дождевая и особенно талая вода не успевает впитываться в почву, стекая по уклонам, унося с собой мелкие частицы почвы, вызывая ее эрозию- При отсутствии стока вода застаивается на поверхности поля, закрывая доступ воздуха в почву. Это приводит к угнетению и даже гибели растений (например, вымоканию озимых культур весной). Рыхлая почва содержит значительное количество капиллярной влаги, которая заполняет капиллярные промежутки между почвенными частицами. Под воздействием капиллярных сил эта влага может подниматься в верхние горизонты почвы, создавая восходящий ток. Это особенно важно в летний период, когда усиливается скорость испарения воды с поверхности почвы и растения испытывают затруднения в водоснабжении.

Тепловой режим почв связан с водным и воздушным режимами. Например, повышение температуры почвы усиливает передвижение воды в ней, а также разложение органических соединений и образование минеральных веществ. Поэтому чем быстрее весной будет обработана почва, тем скорее и глубже она прогреется, особенно если в почве имеются крупные поры.

Таким образом, механическая обработка почвы создает в меру рыхлый пахотньй слой, оптималъньй водный, воздушный и тепловой режим почвы, активизирует жизнедеятельность микроорганизмов, переводящих органические вещества гумуса в минеральные соли, которые в виде водных растворов поглощаются корнями растений. При обработке почвы уничтожаются сорняки, вредители и возбудители болезней растений, заделываются в почву растительные остатки, удобрения.

Обычно в плодородной почве содержится достаточное количество таких важнейших элементов минерального питания, как азот, фосфор, калий, сера, кальций, магний и др. Их количество, выносимое с одним урожаем, сравнительно невелико. Однако, когда с поля снимается один урожай за другим и необходимые элементы изымаются из круговорота, содержание некоторых из них (чаще всего калия) может настолько уменьшиться, что возникает потребность вносить удобрения, содержащие дефицитные элементы. Недостаток питательных веществ не могут заменить никакие другие агротехнические приемы.

Удобрения -- вещества, необходимые для минерального питания растений и повышения плодородия почвы. По химическому составу удобрения обычно разделяют на органические и минеральные.

Органические удобрения (навоз, торф, навозная жижа, компост, сапропели, птичий помет и др.) содержат питательные вещества в форме органических соединений растительного и животного происхождения. Они разлагаются очень медленно и длительное время могут обеспечивать растения как макро-, так и микроэлементами. Кроме того, органические удобрения улучшают физические свойства почвы: повышают ее структурированность, водоудерживающую способность, улучшают тепловой режим, активизируют деятельность почвенных микроорганизмов.

Дозы навоза зависят от почвенно-климатическнх условий, биологических особенностей культуры и качества удобрений. Например, оптимальными дозами подстилочного навоза под основные культуры считаются следующие: под озимые зерновые -- 20--30 т/га, под кукурузу и картофель -- 50--70, под корнеплоды и овощи -- 70--80 т/га. При этом необходимо дополнительно вносить минеральные удобрения.

Минеральные удобрения содержат все необходимые для растений питательные вещества. В основу их классификации положен химический состав удобрений -- азотные, фосфорные, калийные, комплексные, известковые, микроудобрения. Все они легче и быстрее, чем органические, разлагаются в почве. Минеральные удобрения вносят осенью или весной одновременно с посевом семян, часто в виде подкормки в различные периоды вегетации растений.

Бактериальные удобрения (нитрагин, азотобактерин, фосфо-робактерин) -- это препараты, содержащие полезные для сельскохозяйственных растений почвенные микроорганизмы, способные улучшать корневое питание растений.

Удобрения способны значительно повысить урожайность сельскохозяйственных культур. Считается, что в мире каждый четвертый житель питается продуктами, полученными в результате применения удобрений.

Значение удобрений состоит также и в том, что они не только повышают урожайность, но и при правильном применении улучшают качество растениеводческой продукции. Например, азотная подкормка озимой пшеницы в период колошения (молочной спелости) повышает содержание белка в зерне на 1 --3%, а внесение фосфорных и калийных удобрений увеличивает содержание крахмала в клубнях картофеля, сахара в корнеплодах, выход у льна-долгунца.

Видоизменения (метаморфозы) корней. В процессе исторического развития корни многих видов растений приобрели, помимо основных, некоторые дополнительные функции. Одной из таких функций является запасающая. Утолщенный в результате откладывания питательных веществ главный корень называется корнеплодом. Корнеплоды образуются у ряда двулетних растений (репы, моркови, свеклы, брюквы и др.). Утолщения боковых или придаточных корней (ятрышник, любка, чистяк, георгин и др.) называются корневыми клубнями или корневыми шишками. Запасные питательные вещества корнеплодов и корневых клубней расходуются на образование и рост вегетативных и генеративных органов растений.

У многих растений развиваются сократительные, воздушные, ходульные и другие виды корней.

Сократительные, или втягивающие, корни способны значительно сокращаться в продольном направлении. При этом они втягивают нижнюю часть стебля с почками возобновления, клубни, луковицы глубоко в почву и таким образом обеспечивают перенесение неблагоприятного холодного зимнего периода. Такие корни имеются у тюльпана, нарцисса, гладиолуса и др.

У тропических растений придаточные воздушные корни способны улавливать атмосферную влагу, а мощные ветвистые ходульные корни на стволах мангровых деревьев обеспечивают сопротивляемость растений прибойным волнам. Во время отлива деревья возвышаются на корнях, как на ходулях.

Растения, произрастающие на болоте или почвах, бедных кислородом, образуют дыхательные корни. Это отростки боковых корней, растущие вертикально вверх и возвышающиеся над водой или почвой. Они богаты воздухоносной тканью -- аэренхимой -- с крупными межклеточными пространствами, через которые атмосферный воздух поступает в подземные части корней.

Литература

1. Фёдоров Ал. А., Кирпичников М.Э. и Артюшенко З.Т. Атлас по описательной морфологии высших растений.

2. Стебель и корень / Академия наук СССР. Ботанический институт им. В.Л. Комарова. Под общ. ред. чл.-корр. АН СССР П.А. Баранова.

3. Фотографии М. Б. Журманова -- М.--Л.: Изд-во Академии наук СССР, 1962. -- 352 с. -- 3 000 экз.

Размещено на Allbest.ru

Подобные документы

    Основной план строения тела растения и место корня в системе его органов. Особенности строения корня и корневой системы высших растений. Функции коры и ризодермы. Метаморфозы корней, симбиозы с грибницами: эктомикориза и эндомикориза. Значение корня.

    реферат , добавлен 18.02.2012

    Распространение плодов и семян. Почки и их типы. Происхождение и морфологическое строение цветка. Стерильные и фертильные его части, андроцей и гинецей. Видоизменения клеточной оболочки. Проводящие ткани и их функции. Строение корня однодольных растений.

    контрольная работа , добавлен 17.01.2011

    Происхождение цветка, основные теории. Микроспорогенез, строение мужского гаметофита (пыльцевого зерна). Ботаническая характеристика рода Паслен, русские и латинские названия сорных растений из разных семейств. Характеристика суккулентов, примеры.

    контрольная работа , добавлен 12.07.2012

    Исследование основных жизненных форм растений. Описание тела низших растений. Характеристика функций вегетативных и генеративных органов. Группы растительных тканей. Морфология и физиология корня. Видоизменения листа. Строение почек. Ветвление побегов.

    презентация , добавлен 18.11.2014

    Ткани высших растений (покровные, проводящие, механические, основные, выделительные). Строение растения и функции его органов: корня, стебля, листа, побега и цветка. Разновидности корневых систем. Роль цветка как особой морфологической структуры.

    презентация , добавлен 28.04.2014

    Рост и развитие корня растения, особенности и этапы данного процесса в ходе прорастания семени, классификация и типы. Факторы, влияющие на рост корневой системы, способствующие вещества и их эффективность. Понятие и строение, развитие воздушных корней.

    контрольная работа , добавлен 08.01.2015

    Покровная, пучковая и основная ткани растений. Ткани и локальные структуры, выполняющее одинаковые структуры функции. Клеточное строение ассимиляционного участка листа. Внутреннее строение стебля. Отличие однодольных растений от двудольных растений.

    презентация , добавлен 27.03.2016

    Активирование определенных ферментативных систем растений с помощью микроэлементов. Роль почвы как комплексного эдафического фактора в жизни растений, соотношение микроэлементов. Классификация растений в зависимости от потребности в питательных веществах.

    курсовая работа , добавлен 13.04.2012

    Закаливание растений. Сущность закаливания растений и его фазы. Закалка семян. Закаливание рассады. Реакция адаптации корневых систем, воздействуя на них температурами закаливания. Холодостойкость растений. Морозоустойчивость растений.

    курсовая работа , добавлен 02.05.2005

    Изучение методов и задач морфологии растений - отрасли ботаники и науки о формах растений, с точки зрения которой, растение состоит не из органов, а из членов, сохраняющих главные черты своей формы и строения. Функции корня, стеблей, листьев и цветков.

Основные функции корня растений следующие:

  • служит основным органом поглощения минеральных элементов и из почвы;
  • первично синтезирует некоторые органические вещества, содер­жащие азот, фосфор и серу;
  • часто является вместилищем запас­ных питательных ве­ществ;
  • за­крепляет растение в почве.

Функции корня растений в исследованиях ученых

  • Еще И. В. Мичурин установил, что корни оказывают весьма существенное влияние на ряд физологических особенностей привитых растений. Корни дикого подвоя, (поробнее: ) обычно ухудшали качество плодов, корни культурного сорта его улучшали.
  • Л. С. Литвиновым и Н. Г. Потаповым было показано, что превращение некоторых минеральных веществ, (подробнее: ) поступивших из почвы, в сложные органические соединения происходит в тка­нях корня.
  • По данным Н. Г. Потапова, у кукурузы от 50 до 70% поглощенного азота поступает в надземную часть в виде органических соединений, из которых до 30% приходится на аминокислоты.
  • А. Л. Курсанов, применяя С 14 и N 15 , (подробнее: ) установил, что углекислота, поглощаемая корнями, входит в состав орга­нических кислот. Превращение фосфора и серы также частично происходит в корнях.
  • И. И. Колосов, работая с Р 32 , выяснил вопрос о превращении фосфора в корнях: в надземные органы он поступил уже в виде нуклеопротеидов и липоидов.
  • А. А. Шмук и Г. С. Ильина показали, что образование нико­тина происходит в корнях растения: при прививках табака на корни томата и паслена в листьях не было никотина.
Все эти данные указывают на возможность синтеза в кор­нях самых разнообразных органических соединений.

Строение корня

Морфолого-анатомическое строение корня хорошо приспо­соблено для поглощения воды и минеральных элементов из почвы. Однако в поглощении минеральных элементов и воды участвует не весь корень, а только его поглощающая зона - часть корня, несущая корневые волоски.
Схема растущей зоны корня. 1 - зона корневых волосков, 2 - зона растяжения, 3 - зона интенсивного клеточного деления, 4 - корневой чехлик. Корневые волоски во много раз увеличивают всасывающую поверхность корня, и вследствие этого возрастает поверхность соприкосновения корня и почвы. Корневые волоски очень недолговечны и через 10-20 суток отмирают. Новые корневые волоски все время образуются на растущей зоне корня.

Корень - это неограниченно растущий вегетативный орган, обеспечивающий закрепление растения в субстрате, поглощение и транспорт воды и минеральных веществ.

Особенности строения

Морфология корней, глубина и ширина их проникновения в почву зависят от вида растения, условий его обитания, методов искусственного воздействия на рост растения. По объему корневые системы растений всегда больше их надземных частей.

Корень, как и все другие органы, имеет клеточное строение. Различные его участки состоят из неодинаковых клеток, образующих зоны корня. Это хорошо видно на молодых корнях лука, фасоли, подсолнечника, пшеницы и других растений.

Видоизменения корня и его функции

Появление корня в процессе эволюции растений - важный ароморфоз, одно из приспособлений к обитанию на суше.

Кроме процессов поглощения воды и минеральных веществ, корень растений выполняет следующие функции:

  • Поглощение продуктов жизнедеятельности почвенных микроорганизмов и корней других растений;
  • выделение в почву продуктов обмена веществ;
  • первичный синтез органических веществ;
  • вегетативное размножение.

Впервые настоящие корни появляются у папоротникообразных. В дальнейшем у цветковых растений, благодаря идиоадаптации, формировались различные типы корней, способные выполнять дополнительные функции.

У тропических деревьев, живущих на бедных кислородом почвах или на болотах, образуются дыхательные корни - пневматофоры (мангровые), растущие вверх; они поднимаются над поверхностью субстрата и обеспечивают дыхание. Ходульные корни образуются на надземных побегах, укрепляются в почве и прочно удерживают растение (фикус-баньян, кукурузу).


Микроорганизмы-симбионты входят в состав ризосферы - почвенного слоя толщиной в 2-3мм, прилегающего к корням растений. Скопление большого количества грибов и бактерий в ризосфере связано с выделением корнями растений веществ, которыми питаются эти микроорганизмы.

Рост и развитие органа

Зачаток корня закладывается одновременно с почечкой в зародыше семени и называется зародышевым корешком. При прорастании семени этот корешок превращается в главный, или первичный, корень, способный ветвиться. По мере роста у него появляются боковые корни первого порядка, которые в свою очередь дают корни второго порядка, образующие корни третьего порядка и т. д.

Кроме главного и боковых корней у растений образуются придаточные корни, которые формируются на стеблях, листьях, но не на корне.

Растет корень своей верхушкой, углубляясь в нижние слои почвы. При повреждении кончика главного корня начинается усиленный рост его боковых ответвлений. Это свойство корня используют при выращивании рассады культурных растений со стержневым корнем.

У молодых растений удаляют - прищипывают - кончик главного корня, тем самым останавливают его рост и вызывают разрастание боковых корней в верхнем наиболее плодородном слое почвы. После прищипывания рассаду высаживают на постоянное место произрастания с помощью заостренного колышка - пикетки, за что процесс получил название пикировки.

Корневые системы

Совокупность всех корней образует корневую систему. По форме различают два типа корневых систем: стержневую и мочковатую.

Стержневая имеет хорошо выраженный главный корень, занимающий в почве вертикальное положение, и боковые ответвления, расположенные радиально. Она встречается у большей части двудольных растений.

У мочковатой системы нельзя заметить главный корень. Множество корней растет пучком от основания стебля. Они примерно одинаковы по длине и толщине, по происхождению это придаточные корни.

Мочковатая корневая система злаков формируется во время кущения. При этом под поверхностью почвы образуется узел кущения, в котором начинается подземное ветвление стебля. Из него развиваются добавочные побеги и многочисленные придаточные корни, усиливающие питание растений. Мочковатая корневая система характерна для большинства однодольных растений.

Отличие этих двух основных типов корневых систем проявляется уже при прорастании семян. У двудольных растений из зародыша семени прорастает один корешок, который впоследствии становится главным корнем. У однодольных растений чаще прорастает несколько корешков. Вскоре их рост останавливается и на подземной части стебля формируется пучок придаточных корней.