Эрнест резерфорд краткая биография. Биография эрнеста резерфорда. Подлодки и ядерная реакция

Эрнест резерфорд краткая биография. Биография эрнеста резерфорда. Подлодки и ядерная реакция
Эрнест резерфорд краткая биография. Биография эрнеста резерфорда. Подлодки и ядерная реакция

ЭРНЕСТ РЕЗЕРФОРД

Эрнест Резерфорд родился 30 августа 1871 года вблизи города Нелсон (Новая Зеландия) в семье переселенца из Шотландии. Эрнест был четвёртым из двенадцати детей. Мать его работала сельской учительницей. Отец будущего учёного организовал деревообрабатывающее предприятие. Под руководством отца мальчик получил хорошую подготовку для работы в мастерской, что впоследствии помогло ему при конструировании и постройке научной аппаратуры.

Окончив школу в Хавелоке, где в это время жила семья, он получил стипендию для продолжения образования в колледже провинции Нельсон, куда поступил в 1887 году. Через два года Эрнест сдал экзамен в Кентерберийский колледж - филиал Новозеландского университета в Крайчестере. В колледже на Резерфорда оказали большое влияние его учителя: преподававший физику и химию Э. У. Бикертон и математик Дж. Х. Х. Кук. После того как в 1892 году Резерфорду была присуждена степень бакалавра гуманитарных наук, он остался в Кентербери-колледже и продолжил свои занятия благодаря полученной стипендии по математике. На следующий год он стал магистром гуманитарных наук, лучше всех сдав экзамены по математике и физике. Его магистерская работа касалась обнаружения высокочастотных радиоволн, существование которых было доказано около десяти лет назад. Для того чтобы изучить это явление, он сконструировал беспроволочный радиоприёмник (за несколько лет до того, как это сделал Маркони) и с его помощью получал сигналы, передаваемые коллегами с расстояния полумили.

В 1894 году в «Известиях философского института Новой Зеландии» появилась его первая печатная работа «Намагничение железа высокочастотными разрядами». В 1895 году оказалась вакантной стипендия для получения научного образования, первый кандидат на эту стипендию отказался по семейным обстоятельствам, вторым кандидатом был Резерфорд. Приехав в Англию, Резерфорд получил приглашение Дж. Дж. Томсона работать в Кембридже в лаборатории Кавендиша. Так начался научный путь Резерфорда.

На Томсона произвело глубокое впечатление проведённое Резерфордом исследование радиоволн, и он в 1896 году предложил совместно изучать воздействие рентгеновских лучей на электрические разряды в газах. В том же году появляется совместная работа Томсона и Резерфорда «О прохождении электричества через газы, подвергнутые действию лучей Рентгена». В следующем году выходит в свет заключительная статья Резерфорда «Магнитный детектор электрических волн и некоторые его применения». После этого он полностью сосредоточивает свои силы на исследовании газового разряда. В 1897 году появляется и его новая работа «Об электризации газов, подверженных действию рентгеновских лучей, и о поглощении рентгеновского излучения газами и парами».

Их сотрудничество увенчалось весомыми результатами, включая открытие Томсоном электрона - атомной частицы, несущей отрицательный электрический заряд. Опираясь на свои исследования, Томсон и Резерфорд выдвинули предположение, что, когда рентгеновские лучи проходят через газ, они разрушают атомы этого газа, высвобождая одинаковое число положительно и отрицательно заряженных частиц. Эти частицы они назвали ионами. После этой работы Резерфорд занялся изучением атомной структуры.

В 1898 году Резерфорд принял место профессора Макгиллского университета в Монреале, где начал серию важных экспериментов, касающихся радиоактивного излучения элемента урана. Резерфорда при проведении его весьма трудоёмких экспериментов довольно часто одолевало удручённое настроение. Ведь при всех усилиях он не получал достаточных средств для постройки необходимых приборов. Много необходимой для опытов аппаратуры Резерфорд построил собственными руками. Он работал в Монреале довольно долго - семь лет. Исключение составил 1900 год, когда во время краткой поездки в Новую Зеландию Резерфорд женился на Мэри Ньютон. Позднее у них родилась дочь.

В Канаде он сделал фундаментальные открытия: им была открыта эманация тория и разгадана природа так называемой индуцированной радиоактивности; совместно с Содди он открыл радиоактивный распад и его закон. Здесь им была написана книга «Радиоактивность».

В своей классической работе Резерфорд и Содди коснулись фундаментального вопроса об энергии радиоактивных превращений. Подсчитывая энергию испускаемых радием альфа-частиц, они приходят к выводу, что «энергия радиоактивных превращений, по крайней мере, в 20 000 раз, а может, и в миллион раз превышает энергию любого молекулярного превращения» Резерфорд и Содди сделали вывод, что «энергия, скрытая в атоме, во много раз больше энергии, освобождающейся при обычном химическом превращении». Эта огромная энергия, по их мнению, должна учитываться «при объяснении явлений космической физики». В частности, постоянство солнечной энергии можно объяснить тем, «что на Солнце идут процессы субатомного превращения».

Нельзя не поразиться прозорливости авторов, увидевших ещё в 1903 году космическую роль ядерной энергии. Этот год стал годом открытия этой новой формы энергии, о которой с такой определённостью высказывались Резерфорд и Содди, назвав её внутриатомной энергией.

Огромен размах научной работы Резерфорда в Монреале, им было опубликовано как лично, так и совместно с другими учёными 66 статей, не считая книги «Радиоактивность», которая принесла Резерфорду славу первоклассного исследователя. Он получает приглашение занять кафедру в Манчестере. 24 мая 1907 года Резерфорд вернулся в Европу. Начался новый период его жизни.

В Манчестере Резерфорд развернул кипучую деятельность, привлекая молодых учёных из разных стран мира. Одним из его деятельных сотрудников был немецкий физик Ганс Гейгер, создатель первого счётчика элементарных частиц (счётчика Гейгера). В Манчестере с Резерфордом работали Э. Марсден, К. Фаянс, Г. Мозли, Г. Хевеши и другие физики и химики.

Приехавший в Манчестер в 1912 году Нильс Бор позже вспоминал об этом периоде: «В это время вокруг Резерфорда группировалось большое число молодых физиков из разных стран мира, привлечённых его чрезвычайной одарённостью как физика и редкими способностями как организатора научного коллектива».

В 1908 году Резерфорду была присуждена Нобелевская премия по химии «за проведённые им исследования в области распада элементов в химии радиоактивных веществ». В своей вступительной речи от имени Шведской королевской академии наук К. Б. Хассельберг указал на связь между работой, проведённой Резерфордом, и работами Томсона, Анри Беккереля, Пьера и Мари Кюри. «Открытия привели к потрясающему выводу: химический элемент… способен превращаться в другие элементы», - сказал Хассельберг. В своей Нобелевской лекции Резерфорд отметил: «Есть все основания полагать, что альфа-частицы, которые так свободно выбрасываются из большинства радиоактивных веществ, идентичны по массе и составу и должны состоять из ядер атомов гелия. Мы, следовательно, не можем не прийти к заключению, что атомы основных радиоактивных элементов, таких как уран и торий, должны строиться, по крайней мере частично, из атомов гелия».

После получения Нобелевской премии Резерфорд занялся изучением явления, которое наблюдалось при бомбардировке пластинки тонкой золотой фольги альфа-частицами, излучаемыми таким радиоактивным элементом, как уран. Оказалось, что с помощью угла отражения альфа-частиц можно изучать структуру устойчивых элементов, из которых состоит пластинка. Согласно принятым тогда представлениям, модель атома была подобна пудингу с изюмом: положительные и отрицательные заряды были равномерно распределены внутри атома и, следовательно, не могли в значительной мере изменять направление движения альфа-частиц. Резерфорд, однако, заметил, что определённые альфа-частицы отклонялись от ожидаемого направления в значительно большей степени, чем это допускалось теорией. Работая с Эрнестом Марсденом, студентом Манчестерского университета, учёный подтвердил, что довольно большое число альфа-частиц отклоняется дальше, чем ожидалось, причём некоторые под углом более чем 90 градусов.

Размышляя над этим явлением. Резерфорд в 1911 году предложил новую модель атома. Согласно его теории, которая сегодня стала общепринятой, положительно заряженные частицы сосредоточены в тяжёлом центре атома, а отрицательно заряженные (электроны) находятся на орбите ядра, на довольно большом расстоянии от него. Эта модель, подобна крошечной модели Солнечной системы, подразумевает, что атомы состоят главным образом из пустого пространства.

Широкое признание теории Резерфорда началось, когда к работе учёного в Манчестерском университете подключился датский физик Нильс Бор. Бор показал, что в терминах предлагаемой Резерфордом структуры могут быть объяснены общеизвестные физические свойства атома водорода, а также атомов нескольких более тяжёлых элементов.

Плодотворная работа резерфордовской группы в Манчестере была прервана Первой мировой войной. Война разбросала дружный коллектив по разным, враждующим друг с другом странам. Был убит Мозли, только что прославивший своё имя крупным открытием в спектроскопии рентгеновских лучей, Чедвик томился в немецком плену. Английское правительство назначило Резерфорда членом «адмиральского штаба изобретений и исследований» - организации, созданной для изыскания средств борьбы с подводными лодками противника. В лаборатории Резерфорда в связи с этим начались исследования распространения звука под водой, чтобы дать теоретическое обоснование для определения местонахождения подводных лодок. Лишь по окончании войны учёный смог возобновить свои исследования, но уже в другом месте.

После войны он вернулся в манчестерскую лабораторию и в 1919 году сделал ещё одно фундаментальное открытие. Резерфорду удалось провести искусственным путём первую реакцию превращения атомов. Бомбардируя атомы азота альфа-частицами. Резерфорд открыл, что при этом образуются атомы кислорода. Это новое наблюдение явилось ещё одним доказательством способности атомов к превращению. При этом, в данном случае из ядра атома азота, выделяется протон - частица, несущая единичный положительный заряд. В результате проведённых Резерфордом исследований резко возрос интерес специалистов по атомной физике к природе атомного ядра.

В 1919 году Резерфорд перешёл в Кембриджский университет, став преемником Томсона в качестве профессора экспериментальной физики и директора Кавендишской лаборатории, а в 1921-м занял должность профессора естественных наук в Королевском институте в Лондоне. В 1925 году учёный был награждён британским орденом «За заслуги». В 1930 году Резерфорд был назначен председателем правительственного консультативного совета Управления научных и промышленных исследований. В 1931 году он получил звание лорда и стал членом палаты лордов английского парламента.

Резерфорд стремился к тому, чтобы научным подходом к выполнению всех порученных ему задач способствовать умножению славы его родины. Он постоянно и с большим успехом доказывал в авторитетных органах необходимость всемерной государственной поддержки науки и проведения исследовательской работы.

Находясь на вершине своей карьеры, учёный привлекал к работе в своей лаборатории в Кембридже много талантливых молодых физиков, в том числе П. М. Блэкетта, Джона Кокрофта, Джеймса Чедвика и Эрнеста Уолтона. Побывал в этой лаборатории и советский учёный Капица.

В одном из писем Капица называет Резерфорда Крокодилом. Дело в том, что у Резерфорда был громкий голос, и он не умел управлять им. Могучий голос мэтра, встретившего кого-нибудь в коридоре, предупреждал тех, кто находился в лабораториях, о его приближении, и сотрудники успевали «собраться с мыслями». В «Воспоминаниях о профессоре Резерфорде» Капица писал: «Наружностью он был довольно плотный, роста выше среднего, глаза у него были голубые, всегда очень весёлые, лицо очень выразительное. Он был подвижен, голос у него был громкий, он плохо умел его модулировать, все знали об этом, и по интонации можно было судить - в духе профессор или нет. Во всей его манере общения с людьми сразу с первого слова бросались в глаза его искренность и непосредственность. Ответы его были всегда кратки, ясны и точны. Когда ему что-нибудь рассказывали, он немедленно реагировал, что бы это ни было. С ним можно было обсуждать любую проблему - он сразу начинал охотно говорить о ней».

Несмотря на то что у самого Резерфорда оставалось из-за этого меньше времени на активную исследовательскую работу, его глубокая заинтересованность в проводимых исследованиях и чёткое руководство помогали поддерживать высокий уровень работ, осуществляемых в его лаборатории.

Резерфорд обладал способностью выявлять наиболее важные проблемы своей науки, делая предметом исследования ещё неизвестные связи в природе. Наряду с присущим ему как теоретику даром предвидения Резерфорд обладал практической жилкой. Именно благодаря ей он был всегда точен в объяснении наблюдаемых явлений, какими бы необычными они на первый взгляд ни казались.

Ученики и коллеги вспоминали об учёном как о милом, добром человеке. Они восхищались его необычайным творческим способом мышления, вспоминали, как он с удовольствием говорил перед началом каждого нового исследования: «Надеюсь, что это важная тема, поскольку существует ещё так много вещей, которых мы не знаем».

Обеспокоенный политикой, проводимой нацистским правительством Адольфа Гитлера, Резерфорд в 1933 году стал президентом Академического совета помощи, который был создан для оказания содействия тем, кто бежал из Германии.

Почти до конца жизни он отличался крепким здоровьем и умер в Кембридже 19 октября 1937 года после непродолжительной болезни. В признание выдающихся заслуг в развитии науки учёный был похоронен в Вестминстерском аббатстве.

Из книги 100 великих нобелевских лауреатов автора Мусский Сергей Анатольевич

ЭРНЕСТ РЕЗЕРФОРД (1871- 1937)Как пишет В.И. Григорьев: «Труды Эрнеста Резерфорда, которого нередко справедливо называют одним из титанов физики нашего века, работы нескольких поколений его учеников оказали огромное влияние не только на науку и технику нашего века, но и на

Из книги Мысли, афоризмы и шутки знаменитых мужчин автора

Эрнест РЕЗЕРФОРД (1871–1937) английский физик Науки делятся на физику и собирание марок. * * * Диалог между молодым физиком и Резерфордом: - Я работаю с утра до вечера. - А когда же вы думаете? * * * Три стадии признания научной истины: первая - «это абсурд», вторая - «в этом

Из книги Большая Советская Энциклопедия (БЛ) автора БСЭ

Блох Эрнест Блох (Bloch) Эрнест (24.7.1880, Женева, - 16.7.1959, Портленд, штат Орегон), швейцарский и американский композитор, скрипач, дирижёр и педагог. Среди его учителей - Э. Жак-Далькроз и Э. Изаи. Профессор Женевской консерватории (1911-15). Выступал как симфонический дирижёр в

Из книги Большая Советская Энциклопедия (КР) автора БСЭ

Из книги Большая Советская Энциклопедия (ЛА) автора БСЭ

Из книги Большой словарь цитат и крылатых выражений автора Душенко Константин Васильевич

РЕЗЕРФОРД Эрнест (Rutherford, Ernest, 1871-1937), британский физик 23 ** А когда же вы думаете? Ответ молодому физику, который заявил, что работает с утра до

Из книги Всемирная история в изречениях и цитатах автора Душенко Константин Васильевич

56. ЭРНЕСТ РЕЗЕРФОРД (1871–1937) Эрнест Резерфорд считается величайшим физиком-экспериментатором двадцатого столетия. Он является центральной фигурой в наших познаниях в области радиоактивности, а также человеком, который положил начало ядерной физике. Помимо своего

Из книги автора

Как классифицировал науки Эрнест Резерфорд? На протяжении большей части ХХ века (с 1910-х по 1960-е годы) многие физики свысока смотрели на своих ученых собратьев, занимающихся исследованиями в других областях естествознания. Рассказывают, что, когда жена американского

Из книги автора

РЕЗЕРФОРД (Резефорд), Эрнест (Rutherford, Ernest, 1871–1937), английский физик 52 Науки делятся на физику и собирание марок. Как «знаменитая острота» Резерфорда приведено в кн. Дж. Б. Бёркса «Эрнест Резерфорд в Манчестере» (1962). ? Birks J. B. Rutherford at Manchester. – London, 1962, p.

Из книги автора

БЕВИН, Эрнест (Bevin, Ernest, 1881–1951), британский политик-лейборист, в 1945–1951 гг. министр иностранных дел29Если открыть этот ящик Пандоры, неизвестно, что за троянские кони оттуда выскочат.О Совете Европы; приведено в кн. Р. Баркли «Эрнест Бевин и Министерство иностранных дел» (1975).

Из книги автора

РЕНАН, Эрнест (Renan, Ernest, 1823–1892), французский историк23бГреческое чудо. // Miracle grec.«Молитва к Акрополю» (1888)«Я давно уже больше не верил в чудо в буквальном смысле; а единственная в своем роде судьба еврейского народа, ведущая к Иисусу и христианству, казалась мне чем-то

Эрнест Резерфорд родился 30 августа 1871 года в Брайтуотере, живописном местечке Новой Зеландии. Он был четвертым ребенком в семье выходцев из Шотландии Джеймса Резерфорда и Марты Томсон, и из двенадцати детей он оказался наиболее одаренным. Эрнест блестяще закончил начальную школу, получив 580 баллов из 600 возможных и премию в 50 фунтов стерлингов для продолжения образования.
В колледже в Нельсоне, где Эрнеста Резерфорда приняли в пятый класс, учителя обратили внимание на его исключительные математические способности. Но математиком Эрнест не стал. Не стал он и гуманитарием, хотя проявлял недюжинные способности к языкам и литературе. Судьбе угодно было распорядиться, чтобы Эрнест увлёкся естественными науками -- физикой и химией.
После окончания колледжа Резерфорд поступил в Кентерберийский университет, и уже на втором курсе он выступил с докладом "Эволюция элементов", в котором высказал предположение, что химические элементы представляют собой сложные системы, состоящие из одних и тех же элементарных частиц. Студенческий доклад Эрнеста не был должным образом оценён в университете, однако его экспериментальные работы, например, создание приёмника электромагнитных волн, удивили даже крупных учёных. Спустя всего несколько месяцев ему была присуждена "стипендия 1851 года", которой отмечались самые талантливые выпускники провинциальных английских университетов.
После этого Резерфорд в течение трёх лет работал в Кембридже, в Кавендишской лаборатории, под руководством известного физика Джозефа-Джона Томсона. В 1898 г. он начал изучать радиоактивность. Первое же фундаментальное открытие Резерфорда в этой области - обнаружение неоднородности излучения, испускаемого ураном -- сделало его имя известным в научном мире; благодаря ему в науку вошло понятие об альфа- и бета-излучении.
В том же году 26-летнего Резерфорда пригласили в Монреаль в качестве профессора Мак-Гиллского университета -- лучшего в Канаде. Этот университет получил название по имени своего основателя -- переселенца из Шотландии, которому под конец жизни удалось разбогатеть. Перед отъездом Резерфорда в Канаду Дж. Томсон вручил ему рекомендательное письмо, где было написано: "В моей лаборатории ещё никогда не было молодого учёного с таким энтузиазмом и способностями к оригинальным исследованиям, как господин Резерфорд, и я уверен, что, если он будет избран, то создаст выдающуюся школу физиков в Монреале…". Предсказание Томсона сбылось. Резерфорд проработал в Канаде 10 лет и действительно создал там научную школу.
В 1903 г. 32-летний ученый был избран членом Лондонского Королевского общества -- британской Академии наук.
В 1907 г. Резерфорд вместе с семьей переезжает из Канады в Англию, чтобы занять должность профессора кафедры физики Манчестерского университета. Сразу же после приезда Резерфорд занялся экспериментальными исследованиями радиоактивности. Вместе с ним работал его помощник и ученик, немецкий физик Ханс Гейгер (1882-1945), разработавший ионизационный метод измерения интенсивности излучения - широко известный счетчик Гейгера. Резерфорд произвел серию опытов, подтвердивших, что альфа-частицы представляют собой дважды ионизованные атомы гелия. Вместе с другим своим учеником, Эрнестом Марсденом (1889-1970), он исследовал особенности прохождения альфа-частиц через тонкие металлические пластинки. На основании этих опытов ученый предложил планетарную модель атома: в центре атома - ядро, вокруг которого вращаются электроны. Резерфорд предсказал открытие нейтрона, возможность расщепления атомных ядер легких элементов и искусственных ядерных превращений.
В течение 18 лет - с 1919 года и до конца своей жизни - Резерфорд возглавлял основанную в 1874 году Кавендишскую лабораторию. До него ею руководили великие английские физики Максвелл, Релей и Томсон. Резерфорд не дожил всего нескольких лет до того, как немецкие физики Отто Ган (1879-1968) и Лизе Майтнер (Мейтнер) (1878-1968) открыли деление урана.
По словам Патрика Блэкетта, одного из ближайших сотрудников Резерфорда, это открытие "в известном смысле явилось последним из великих открытий в ядерной физике, отличающейся от физики элементарных частиц. Резерфорд не дожил до кульминационного пункта развития направления, которое фактически было областью его научной деятельности ".

30 августа 1871 года родился британский физик новозеландского происхождения, известный как «отец» ядерной физики, также лауреат Нобелевской премии по химии 1908 года, сэр Эрнест Резерфорд.

Мы решили вспомнить биографию знаменитого ученого и проиллюстрировать ее основные вехи в нашей фотоподборке.

Родился 30 августа 1871 г. в городе Спринг — Броув (Новая Зеландия) в семье шотландских эмигрантов. Отец работал механиком и фермером-льноводом, мать — учительницей. Эрнест был четвёртым из 12 детей Резерфордов и самым талантливым.


Дом в Фоксхилл , где Эрнест провел часть своего детства


«Науки делятся на две группы — на физику и коллекционирование марок»

Уже при окончании начальной школы, как первый ученик, он получил премию в 50 фунтов стерлингов для продолжения образования. Благодаря этому Резерфорд поступил в колледж в Нельсоне (Новая Зеландия).


Портрет Резерфорда в 1892 году, когда он был студентом в Кентерберийском колледже


После окончания колледжа юноша сдал экзамены в Кентерберийский университет и здесь серьёзно занялся физикой и химией.


« Если ученый не может объяснить, чем он занимается, уборщице, моющей пол в его лаборатории, значит, он сам не понимает, чем он занимается «


Резерфордом со студентами в Монреале , штат Калифорния. 1899 год



Дж. Дж. Томсон , как и многие выдающиеся профессоры физики в конце 19 века , собрал группу ярких молодых « студентов-исследователей » вокруг себя . Непосредственно среди них находится его протеже Эрнест Резерфорд .

Он участвовал в создании научного студенческого общества и сделал в 1891 г. доклад на тему «Эволюция элементов», где впервые прозвучала идея о том, что атомы — сложные системы, построенные из одних и тех же составных частей.


Ханс Гейгер был у Резерфорда основным партнером в исследовании с 1907 по 1913 год

В период, когда в физике господствовала идея Дж. Дальтона о неделимости атома, эта мысль показалась абсурдной, и молодому Резерфорду даже пришлось извиняться перед коллегами за «явную чепуху».


Эрнест Резерфорд (первый слева в нижнем ряду) с коллегами

Правда, через 12 лет Резерфорд доказал свою правоту. После окончания университета Эрнест стал учителем средней школы, но это занятие было ему явно не по душе. Резерфорду — лучшему выпускнику года — присудили стипендию, и он отправился в Кембридж — научный центр Англии — для продолжения занятий.


Резерфорд (второй слева в верхнем ряду) с одноклассниками в 1896 году

В Кавендишской лаборатории Резерфорд создал передатчик для радиосвязи в радиусе 3 км, но отдал приоритет на его изобретение итальянскому инженеру Г. Маркони, а сам приступил к изучению ионизации газов и воздуха. Учёный заметил, что урановое излучение имеет две составляющие — альфа- и бета-лучи. Это было открытием.


Резерфорд любил хорошую игру в гольф по воскресеньям. Слева-направо: Ральф Фаулер , Ф. У. Астон , Резерфорд , Г. И. Тейлор

В Монреале при изучении активности тория Резерфорд открыл новый газ — радон. В 1902 г. в работе «Причина и природа радиоактивности» учёный впервые высказал мысль о том, что причиной радиоактивности является самопроизвольный переход одних элементов в другие. Он установил, что альфа-частицы заряжены положительно, их масса больше массы атома водорода, а заряд приблизительно равен заряду двух электронов, и это напоминает атомы гелия.


Свадьба Эрнеста и Мэри Резерфорд , 28 июня 1900 г. в Новой Зеландии

В 1903 г. Резерфорд стал членом Лондонского королевского общества, а с 1925 по 1930 г. занимал пост его президента.


Эрнест Резерфорд на Сольвеевском конгрессе 1911 года

В 1904 г. вышел фундаментальный труд учёного «Радиоактивные вещества и их излучения», который стал энциклопедией для физиков-ядерщиков. В 1908 г. Резерфорд стал нобелевским лауреатом за исследования радиоактивных элементов. Руководитель физической лаборатории в Манчестерском университете, Резерфорд создал школу физиков-ядерщиков, своих учеников.


Резерфорд всегда собирал группу ярких молодых талантов вокруг себя. Фото 1910 года

Вместе с ними он занимался исследованием атома ив 1911 г. окончательно пришёл к планетарной модели атома, о чём написал в статье, вышедшей в майском номере «Философского журнала». Модель приняли не сразу, она утвердилась только после её доработки учениками Резерфорда, в частности Н. Бором.


Кокрофт , Резерфорд , и Уолтон в 1932 году


Скульптура молодого Эрнеста Резерфорда. Мемориал в Новой Зеландии

Умер учёный 19 октября 1937 г. в Кембридже. Как и многие великие люди Англии, Эрнест Резерфорд покоится в соборе Святого Павла, в «Уголке науки», рядом с Ньютоном, Фарадеем, Дарённом, Гершелем.

Первая страница статьи Э. Резерфорда в журнале Philosophical Magazine, 6, 21 (1911), в которой впервые водится понятие «атомное ядро».

Открытое 100 лет назад Э.Резерфордом атомное ядро является связанной системой взаимодействующих протонов и нейтронов. Каждое атомное ядро по-своему уникально. Для описания атомных ядер разработаны различные модели, описывающие отдельные специфические особенности атомных ядер. Изучение свойств атомных ядер открыло новый мир - субатомный квантовый мир, привело к установлению новых законов сохранения и симметрии. Полученные в ядерной физике знания широко используются в естествознании от изучения живых систем до астрофизики.

1. 1911 г. Резерфорд открывает атомное ядро.

В июньском 1911 г. номере журнала «Philosophical Magazine» была опубликована работа Э. Резерфорда «Рассеяние α- и β-частиц веществом и строение атома», в которой впервые было введено понятие «атомное ядро» .
Э.Резерфорд проанализировал результаты работы Г. Гейгера и Э.Марсдена по рассеянию α-частиц на тонкой золотой фольге, в которой совершенно неожиданно было обнаружено, что небольшое число α-частиц отклоняется на угол больше 90°. Этот результат противоречил господствовавшей в то время модели атома Дж. Дж. Томсона, согласно которой атом состоял из отрицательно заряженных электронов и равного количества положительного электричества равномерно распределенного внутри сферы радиуса R ≈ 10 - 8 см. Для объяснения результатов, полученных Гейгером и Марсденом, Резерфорд разработал модель рассеяния точечного электрического заряда другим точечным зарядом на основе закона Кулона и законов движения Ньютона и получил зависимость вероятности рассеяния α-частиц на угол θ от энергии E налетающей α-частицы

Измеренное Гейгером и Марсденом угловое распределение α-частиц можно было объяснить только в том случае, если предположить, что атом имеет центральный заряд, распределенный в области размером <10 -12 см. Результирующий заряд ядра приблизительно равен Ae/2, где A - вес атома в атомных единицах массы, e - фундаментальная единица заряда. Точность определения величины заряда ядра золота составила ≈ 20%. Так возникла планетарная модель атома, согласно которой атом состоит из массивного положительно заряженного атомного ядра и вращающихся вокруг него электронов. Так как в целом атом электрически нейтрален - положительный заряд ядра компенсировался отрицательным зарядом электронов. Число электронов в атоме определялось величиной заряда ядра Z.

В 1910 г. к Резерфорду в лабораторию приехал работать молодой ученый по имени Марсден. Он попросил Резерфорда дать ему какую-нибудь очень простую задачу. Резерфорд поручил ему считать α-частицы, проходящие через материю, и найти их рассеяние. При этом Резерфорд заметил, что по его мнению Марсден ничего заметного не обнаружит. Свои соображения Резерфорд основывал на принятой в то время модели атома Томсона. В соответствии с этой моделью атом представлялся сферой размером 10 -8 см с равнораспределенным положительным зарядом, в которую были вкраплены электроны. Гармонические колебания последних определяли спектры лучеиспускания. Легко показать, что α-частицы должны были легко проходить через такую сферу, и особенного рассеяния их нельзя было ожидать. Всю энергию на пути своего пробега α-частицы тратили на то, чтобы выбрасывать электроны, которые ионизировали окружающие атомы.
Марсден под руководством Гейгера стал делать свои наблюдения и скоро заметил, что большинство α-частиц проходит через материю, но все же существует заметное рассеяние, а некоторые частицы как бы отскакивают назад. Когда это узнал Резерфорд, он сказал:
Это невозможно. Это так же невозможно, как для пули невозможно отскочить от бумаги.
Эта фраза показывает, как конкретно и образно он видел явление.
Марсден и Гейгер опубликовали свою работу, а Резерфорд сразу решил, что существующее представление об атоме неправильно и его надо в корне пересмотреть.
Изучая закон распределения отразившихся α-частиц, Резерфорд постарался определить, какое распределение поля внутри атома необходимо, чтобы определить закон рассеивания, при котором α-частицы могут даже возвращаться обратно. Он пришел к выводу, что это возможно тогда, когда весь заряд сосредоточен не по всему объему атома, а в центре. Размер этого центра, названного им ядром, очень мал: 10
-12 —10 -13 см в диаметре. Но куда же тогда поместить электроны? Резерфорд решил, что отрицательно заряженные электроны надо распределить кругом — они могут удерживаться благодаря вращению, центробежная сила которого уравновешивает силу притяжения положительного заряда ядра. Следовательно, модель атома есть не что иное, как некая солнечная система, состоящая из ядра — солнца и электронов — планет. Так он создал свою модель атома.
Эта модель встретила полное недоумение, так как она противоречила некоторым тогдашним, казавшимся незыблемыми, основам физики .

П.Л. Капица. «Воспоминания о профессоре Э. Резерфорде»

1909-1911 г. Опыты Г. Гейгера и Э. Марсдена

Г. Гейгер и Э. Марсден увидели, что при прохождении через тонкую фольгу из золота большинство α-частиц, как и ожидалось, пролетает без отклонения, но неожиданно было обнаружено, что часть α-частиц отклоняется на очень большие углы. Некоторые α-частицы рассеивались даже в обратном направлении. Расчеты напряженности электрического поля атомов в моделях Томсона и Резерфорда показывают существенное различие этих моделей. Напряжённость поля положительного заряда распределенного по поверхности атома в случае модели Томсона ~10 13 В/м. В модели Резерфорда положительный заряд, находящийся в центре атома в области R < 10 -12 см создаёт напряженности поля на 8 порядков больше. Только такое сильное электрического поле массивного заряженного тела может отклонить α-частицы на большие углы, в то время как в слабом электрическом поле модели Томсона это было невозможно.

Э. Резерфорд, 1911 г. «Хорошо известно, что α- и β-частицы при столкновении с атомами вещества испытывают отклонение от прямолинейного пути. Это рассеяние гораздо более заметно у β-частиц нежели у α-частиц, т.к. они обладают значительно меньшими импульсами и энергиями. Поэтому нет сомнения в том, что столь быстро движущиеся частицы проникают сквозь атомы, встречающиеся на их пути, и что наблюдаемые отклонения обусловлены сильным электрическим полем, действующим внутри атомной системы. Обычно предполагалось, что рассеяние пучка α- или β-лучей при прохождении через тонкую пластинку вещества есть результат многочисленных малых рассеяний при прохождении атомов вещества. Однако наблюдения проведенные Гейгером и Марсденом показали, что некоторое количество α-частиц при однократном столкновении испытывают отклонение на угол больше 90°. Простой расчет показывает, что в атоме должно существовать сильное электрическое поле, чтобы при однократном столкновении создавалось столь большое отклонение».

1911 г. Э. Резерфорд. Атомное ядро

α + 197 Au → α + 197 Au


Эрнест Резерфорд
(1891-1937)

Исходя из планетарной модели атома, Резерфорд вывел формулу описывающую рассеяние α-частиц на тонкой фольге из золота, согласующуюся с результатами Гейгера и Марсдена. Резерфорд предполагал, что α-частицы и атомные ядра с которыми они взаимодействуют можно рассматривать как точечные массы и заряды и что между положительно заряженными ядрами и α-частицами действуют только электростатические силы отталкивания и что ядро настолько тяжелое по сравнению с α-частицей, что оно не смещается в процессе взаимодействия. Электроны вращаются вокруг атомного ядра на характерных атомных масштабах ~10-8 см и из-за малой массы не влияют на рассеяние α-частиц.

Вначале Резерфорд получил зависимость угла рассеяния θ α-частицы с энергией E от величины прицельного параметра b столкновения с точечным массивным ядром. b − прицельный параметр − минимальное расстояние на которое α-частица подошла бы к ядру, если бы между ними не действовали силы отталкивания, θ − угол рассеяния α-частицы, Z 1 e − электрический заряд α-частицы, Z 2 e − электрический заряд ядра.
Затем Резерфорд рассчитал, какая доля пучка α-частиц с энергией E рассеивается на угол θ в зависимости от заряда ядра Z 2 e и заряда α-частицы Z 1 e. Так исходя из классических законов Ньютона и Кулона была получена знаменитая формула рассеяния Резерфорда. Основным при получении формулы было предположение, что в атоме находится массивный положительно заряженный центр, размеры которого R < 10 -12 см.

Э. Резерфорд, 1911 г.: «Наиболее простым является предположение, что атом имеет центральный заряд, распределенный по очень малому объему, и что большие однократные отклонения обусловлены центральным зарядом в целом, а не его составными частями. В то же время экспериментальные данные недостаточно точны, чтобы можно было отрицать возможности существования небольшой части положительного заряда в виде спутников, находящихся на некотором расстоянии от центра … Следует отметить, что найденное приближенное значение центрального заряда атома золота (100e) примерно совпадает с тем значением, который имел бы атом золота, состоящий из 49 атомов гелия, несущих каждый заряд 2e. Быть может, это лишь совпадение, но оно весьма заманчиво с точки зрения испускания радиоактивным веществом атомов гелия, несущих две единицы заряда».


Дж. Дж. Томсон и Э. Резерфорд

Э. Резерфорд, 1921 г.: «Представление о нуклеарном строении атома первоначально возникло из попыток объяснить рассеяние α-частиц на большие углы при прохождении через тонкие слои материи. Так как α частицы обладают большою массою и большою скоростью, то эти значительные отклонения были в высшей степени замечательны; они указывали на существование весьма интенсивных электрически! или магнитных полей внутри атомов. Чтобы объяснить эти результаты, необходимо было предположить, что атом состоит из заряженного массивного ядра, весьма малых размеров по сравнению с обычно принятой величиной диаметра атома. Это положительно заряженное ядро содержит большую часть массы атома и окружено на некотором расстоянии известным образом распределенными отрицательными электронами; число которых равняется общему положительному заряду ядра. При таких условиях вблизи ядра должно существовать весьма интенсивное электрическое поле и α-частицы, при встрече с отдельным атомом проходя вблизи от ядра, отклоняются на значительные углы. Допуская, что электрические силы изменяются обратно пропорционально квадрату расстояния в области, прилегающей к ядру, автор получил соотношение, связывающее число α-частиц, рассеянных на некоторый угол с зарядом ядра и энергией α-частицы.
Вопрос о том, является ли атомное число элемента действительной мерой его нуклеарного заряда, настолько важен, что для разрешения его должны быть применены все возможные методы. В настоящее время в кавендишевской лаборатории ведется несколько исследований с целью проверки точности этого соотношения. Два наиболее прямых метода основаны на изучения рассеяния быстрых α- и β-лучей. Первый метод применяется Chadwick"oм, пользующимся новыми приемами; последний - Crowthar"oм. Результаты, полученные до сих пор Chadwick"oм, вполне подтверждают тождество атомного числа с нуклеарным зарядом в пределах возможной точности эксперимента, которая у Chadwick"a составляет около 1%».

Несмотря на то, что комбинация двух протонов и двух нейтронов исключительно устойчивое образование, в настоящее время считается, что α-частицы не входит в состав ядра в качестве самостоятельного структурного образования. В случае α-радиоактивных элементов энергия связи α-частицы больше, чем энергия которую необходимо затратить на то, чтобы по отдельности удалить из ядра два протона и два нейтрона, поэтому α-частица может быть испущена из ядра, хотя она не присутствует в ядре как самостоятельное образование.
Предположение Резерфорда о том, что атомное ядро может состоять из какого-то количества атомов гелия или о положительно заряженных спутниках ядра, было вполне естественным объяснением открытой им α радиоактивности. Представления о том, что частицы могут рождаться в результате различных взаимодействий, в это время еще не существовало.
Открытие атомного ядра Э. Резерфордом в 1911 г. и последующее изучение ядерных явлений радикально изменило наше представление об окружающем мире. Обогатило науку новыми концепциями, явилось началом исследования субатомной структуры материи.

Сэр Эрнест Резерфорд (Ernest Rutherford). Родился 30 августа 1871 года в Спринг Грув, Новая Зеландия - умер 19 октября 1937 года в Кембридже. Британский физик новозеландского происхождения. Известен как «отец» ядерной физики. Лауреат Нобелевской премии по химии 1908 года. В 1911 году своим знаменитым опытом рассеяния α-частиц доказал существование в атомах положительного заряженного ядра и отрицательно заряженных электронов вокруг него. На основе результатов опыта создал планетарную модель атома.

Резерфорд родился в Новой Зеландии в небольшом посёлке Спринг-Грув (англ. Spring Grove), расположенном на севере Южного острова близ города Нельсона, в семье фермера, выращивавшего лён. Отец - Джеймс Резерфорд, иммигрировал из г. Перт (Шотландия). Мать - Марта Томпсон, родом из Хорнчёрча, графство Эссекс, Англия. В это время другие шотландцы эмигрировали в Квебек (Канада), но семье Резерфорд не повезло и бесплатный билет на пароход правительство предоставило до Новой Зеландии, а не до Канады.

Эрнест был четвёртым ребёнком в семье из двенадцати детей. Имел удивительную память, богатырское здоровье и силу. С отличием окончил начальную школу, получив 580 баллов из 600 возможных и премию в 50 фунтов стерлингов для продолжения учёбы в колледже Нельсона. Очередная стипендия позволила ему продолжить обучение в Кентербери-колледже в Крайстчёрче (ныне Новозеландский университет). В те времена это был маленький университет со 150 студентами и всего 7 профессорами. Резерфорд увлекается наукой и с первого дня начинает исследовательскую работу.

Его магистерская работа, написанная в 1892 году, называлась «Магнетизация железа при высокочастотных разрядах». Работа касалась обнаружения высокочастотных радиоволн, существование которых было доказано в 1888 году немецким физиком Генрихом Герцем. Резерфордом был придуман и изготовлен прибор - магнитный детектор, один из первых приёмников электромагнитных волн.

Закончив университет в 1894 году, Резерфорд в течение года был преподавателем в средней школе.

Наиболее одарённым молодым подданным британской короны, проживавшим в колониях, один раз в два года предоставлялась особая Стипендия имени Всемирной выставки 1851 года - 150 фунтов в год, дававшая возможность поехать для дальнейшего продвижения в науке в Англию. В 1895 году Резерфорд был удостоен этой стипендии, так как тот, кто её сначала получил - Маккларен, отказался от неё. Осенью того же года, заняв деньги на билет на пароход до Великобритании, Резерфорд прибывает в Англию в Кавендишскую лабораторию Кембриджского университета и становится первым докторантом её директора Джозефа Джона Томсона.

1895 год был первым годом, когда (по инициативе Дж. Дж. Томсона) студенты, закончившие другие университеты, могли продолжать научную работу в лабораториях Кембриджа. Вместе с Резерфордом этой возможностью воспользовались, записавшись в Кавендишскую лабораторию, Джон Мак-Леннан, Джон Таунсенд и Поль Ланжевен. С Ланжевеном Резерфорд работал в одной комнате и подружился с ним, эта дружба продолжалась до конца их жизни.

В том же 1895 году была заключена помолвка с Мэри Джорджиной Ньютон (1876-1945) - дочерью хозяйки пансиона, в котором жил Резерфорд. (Свадьба состоялась в 1900 году, 30 марта 1901 года у них родилась дочь - Эйлин Мэри (1901-1930), впоследствии жена Ральфа Фаулера, известного астрофизика.)

Резерфорд планировал заниматься детектором радиоволн или волн Герца, сдать экзамены по физике и получить степень магистра. Но в следующем году оказалось, что государственная почта Великобритании выделила деньги Маркони на эту же самую работу и отказалась её финансировать в Кавендишской лаборатории. Так как стипендии не хватало даже на еду, Резерфорд вынужден был начать работать репетитором и ассистентом у Дж. Дж. Томсона по теме изучения процесса ионизации газов под действием рентгеновских лучей. Вместе с Дж. Дж. Томсоном Резерфорд открывает явление насыщения тока при ионизации газа.

В 1898 году Резерфорд открывает альфа- и бета-лучи. Спустя год Поль Вийяр открыл гамма-излучение (название этого типа ионизирующего излучения, как и первых двух, предложено Резерфордом).

С лета 1898 года учёный делает первые шаги в исследовании только что открытого явления радиоактивности урана и тория. Осенью Резерфорд по предложению Томсона, преодолев конкурс в 5 человек, занимает должность профессора университета Макгилла в Монреале (Канада) с окладом 500 фунтов стерлингов или 2500 канадских долларов в год. В этом университете Резерфорд плодотворно сотрудничает с Фредериком Содди, в то время младшим лаборантом химического факультета, впоследствии (как и Резерфорд) нобелевским лауреатом по химии (1921 г.). В 1903 году Резерфорд и Содди выдвинули и доказали революционную идею о преобразовании элементов в процессе радиоактивного распада.

Получив широкую известность благодаря своим работам в области радиоактивности, Резерфорд становится востребованным учёным и получает многочисленные предложения работы в научно-исследовательских центрах различных стран мира. Весной 1907 года он покидает Канаду и начинает профессорскую деятельность в университете Виктории (ныне - Манчестерский университет) в Манчестере (Англия), где его зарплата стала выше примерно в 2,5 раза.

В 1908 году Резерфорду была присуждена Нобелевская премия по химии «за проведённые им исследования в области распада элементов в химии радиоактивных веществ».

Получив известие о присуждении ему Нобелевской премии по химии, Резерфорд заявил: «Вся наука - или физика, или коллекционирование марок» (All science is either physics or stamp collecting) .

Важным и радостным событием в жизни стало избрание учёного членом Лондонского Королевского общества в 1903 году, а с 1925 по 1930 года он занимал пост его президента. В 1931 - 1933 годах Резерфорд был президентом Института Физики.

В 1914 году Резерфорд удостоен дворянского титула и становится «сэром Эрнстом». 12 февраля в Букингемском дворце король посвятил его в рыцари: он был облачён в придворный мундир и препоясан мечом.

Свой геральдический герб, утверждённый в 1931 году, пэр Англии барон Резерфорд Нельсон (так стал зваться великий физик после возведения в дворянское звание) увенчал птицей киви, символом Новой Зеландии. Рисунок герба - изображение экспоненты - кривой, характеризующей монотонный процесс убывания со временем числа радиоактивных атомов.

Научные достижения Резерфорда:

Согласно воспоминаниям , Резерфорд был ярким представителем английской экспериментальной школы в физике, которая характерна стремлением разобраться в сути физического явления и проверить, может ли оно быть объяснено существующими теориями (в отличие от «немецкой» школы экспериментаторов, которая исходит из существующих теорий и стремится проверить их опытом).

Он мало пользовался формулами и мало прибегал к математике, но был гениальным экспериментатором, напоминая в этом отношении Фарадея. Отмечаемым Капицей важным качеством Резерфорда как экспериментатора была его наблюдательность. В частности, благодаря ей он открыл эманацию тория, заметив различия в показаниях электроскопа, измерявшего ионизацию, при открытой и закрытой дверце в приборе, перекрывавшей поток воздуха. Другой пример - открытие Резерфордом искусственной трансмутации элементов, когда облучение ядер азота в воздухе альфа-частицами сопровождалось появлением высокоэнергичных частиц (протонов), имевших больший пробег, но очень редких.

1904 год - «Радиоактивность»
1905 год - «Радиоактивные превращения»
1930 год - «Излучения радиоактивных веществ» (в соавторстве с Дж. Чедвиком и Ч. Эллисом).

12 учеников Резерфорда стали лауреатами Нобелевской премии по физике и химии. Один из наиболее талантливых учеников Генри Мозли, экспериментально показавший физический смысл Периодического закона, погиб в 1915 году на Галлиполи в ходе Дарданелльской операции. В Монреале Резерфорд работал с Ф. Содди, О. Ханом; в Манчестере - с Г. Гейгером (в частности, помог тому разработать счётчик для автоматического подсчёта числа ионизирующих частиц), в Кембридже - с Н. Бором, П. Капицей и многими другими знаменитыми в будущем учёными.

После открытия радиоактивных элементов началось активное изучение физической природы их излучения. Резерфорду удалось обнаружить сложный состав радиоактивного излучения.

Опыт состоял в следующем. Радиоактивный препарат помещали на дно узкого канала свинцового цилиндра, напротив помещалась фотопластинка. На выходившее из канала излучение действовало магнитное поле. При этом вся установка находилась в вакууме.

В магнитном поле пучок распадался на три части. Две составляющие первичного излучения отклонялись в противоположные стороны, что указывало на наличие у них зарядов противоположных знаков. Третья составляющая сохраняла прямолинейность распространения. Излучение, обладающее положительным зарядом, получило название альфа-лучи, отрицательным - бета-лучи, нейтральным - гамма-лучи.

Изучая природу альфа-излучения, Резерфорд провёл следующий эксперимент. На пути альфа-частиц он поместил счётчик Гейгера, который измерял число испускающихся частиц за определённое время. После этого при помощи электрометра он измерил заряд частиц, испущенных за это же время. Зная суммарный заряд альфа-частиц и их количество, Резерфорд рассчитал заряд одной такой частицы. Он оказался равен двум элементарным.

По отклонению частиц в магнитом поле он определил отношение её заряда к массе. Оказалось, что на один элементарный заряд приходятся две атомные единицы массы.

Таким образом, было установлено, что при заряде, равном двум элементарным, альфа-частица имеет четыре атомные единицы массы. Из этого следует, что альфа-излучение - это поток ядер гелия.

В 1920 году Резерфорд высказал предположение, что должна существовать частица массой, равной массе протона, но не имеющая электрического заряда - нейтрон. Однако обнаружить такую частицу ему не удалось. Её существование было экспериментально доказано Джеймсом Чедвиком в 1932 году.

Кроме того, Резерфорд уточнил на 30% отношение заряда электрона к его массе.

На основе свойств радиоактивного тория Резерфорд открыл и объяснил радиоактивное превращение химических элементов. Учёный обнаружил, что активность тория в закрытой ампуле остаётся неизменной, но если препарат обдувать даже очень слабым потоком воздуха, его активность значительно уменьшается. Было высказано предположение о том, что одновременно с альфа-частицами торий испускает радиоактивный газ.

Результаты совместной работы Резерфорда и его коллеги Фредерика Содди были опубликовали в 1902-1903 годах в ряде статей в «Philosophical Magazine». В этих статьях, проанализировав полученные результаты, авторы пришли к выводу о возможности превращения одних химических элементов в другие.

Выкачивая воздух из сосуда с торием, Резерфорд выделил эманацию тория (газ, известный сейчас как торон или радон-220, один из изотопов радона) и исследовал её ионизирующую способность. Было выяснено, что активность этого газа каждую минуту убывает вдвое.

Изучая зависимость активности радиоактивных веществ от времени, учёный открыл закон радиоактивного распада.

Поскольку ядра атомов химических элементов достаточно устойчивы, Резерфорд предположил, что для их преобразования или разрушения нужна очень большая энергия. Первое ядро, подвергнутое искусственному преобразованию - ядро атома азота. Бомбардируя азот альфа-частицами с большой энергией, Резерфорд обнаружил появление протонов - ядер атома водорода.

Резерфорд - один из немногих лауреатов Нобелевской премии, кто сделал свою самую известную работу после её получения. Совместно с Гансом Гейгером и Эрнстом Марсденом в 1909 году, он провёл эксперимент, который продемонстрировал существование ядра в атоме. Резерфорд попросил Гейгера и Марсдена в этом эксперименте искать альфа-частицы с очень большими углами отклонения, что не ожидалось от модели атома Томсона в то время. Такие отклонения, хотя и редкие, были найдены, и вероятность отклонения оказалась гладкой, хотя и быстро убывающей функцией угла отклонения.

Позднее Резерфорд признался, что когда предложил своим ученикам провести эксперимент по рассеиванию альфа-частиц на бо́льшие углы, он сам не верил в положительный результат.

Резерфорд смог интерпретировать полученные в результате эксперимента данные, что привело его к разработке планетарной модели атома в 1911 году. Согласно этой модели атом состоит из очень маленького положительно заряженного ядра, содержащего большую часть массы атома, и обращающихся вокруг него лёгких электронов.

За добрый нрав Капицa прозвал Резерфорда «Крокодилом». В 1931 году «Крокодил» выхлопотал 15 тысяч фунтов стерлингов на постройку и оборудование специального здания лаборатории для Капицы. В феврале 1933 года в Кембридже состоялось торжественное открытие лаборатории. На торцевой стене 2- этажного здания был высечен по камню огромный, во всю стену крокодил. Его по заказу Капицы сделал известный скульптор Эрик Гилл. Резерфорд сам объяснил, что это он. Входную дверь открыли позолоченным ключом в форме крокодила.

По словам Ива, Капица так объяснял придуманное им прозвище: «Это животное никогда не поворачивает назад и потому может символизировать Резерфордовскую проницательность и его стремительное продвижение вперед» . Капица добавлял, что «в России на Крокодила смотрят со смесью ужаса и восхищения».

Интересно, что Резерфорд, открывший ядро атома, скептически отзывался о перспективах ядерной энергетики: «Каждый, кто надеется, что преобразования атомных ядер станут источником энергии, исповедует вздор» .