Simulated distillation. Fractional composition of oil oil and

Simulated distillation.  Fractional composition of oil oil and
Simulated distillation. Fractional composition of oil oil and

Chromatography

PAC offers wide choose solutions based on liquid and gas chromatography, mainly targeting the oil, petrochemical and gas industries. Determination of fractional composition using gas chromatography is one of the most common methods for determining the characteristics of hydrocarbon raw materials and final products in petrochemistry and oil refining. This one is fast and reliable method Fully compliant with standardized simulated distillation methods.

Accurate data on the composition of oil and petroleum products increases plant productivity

Oil and petrochemical industry enterprises face big amount challenges, including the need to continuously improve plant productivity and meet increasing environmental requirements for fuel composition - all this in the context of continuous reduction in profitability.

Customized turnkey solutions

AC Analytical Controls uses chromatography analyzers based on Agilent instruments that are capable of performing qualitative and quantitative analysis of components in any samples whose composition our customers need to know. AC uses Agilent gas and liquid chromatographs to develop its own custom turnkey systems. Over the past 29 years, similar comprehensive solutions(that is, including simultaneously hardware, software and methodological parts) were developed for the oil refining and petrochemical industries. However, we can develop solutions for other industries as well. AC primarily produces gas chromatography analyzers, but we can also provide solutions using liquid chromatography (HPLC).

To control instruments, perform calculations and a number of specialized tasks, special software is required. AC develops its own software, such as Reformulyzer software for bulk composition of petroleum products, simulated distillation software (SIMDIS), ROV (detailed hydrocarbon composition, DHA) and gas analysis. Our proprietary software tools provide AC analyzers with complete control over their instruments and procedures. All systems are fully assembled, tested and calibrated at the factory before shipping to the customer. A qualified engineer (PAC or distributor/service provider) then installs the system and familiarizes the user with it. This ensures that the system will be implemented in accordance with customer requirements and will maintain its performance during operation. The advantage for the customer lies not only in the analyzer itself (since there are other competitive solutions on the market), but also in the methodological support of the customer throughout the entire service life of the device. PAC is not an isolated entity. It is a globally stable company with well-structured processes and performance tracking methods, certified to ISO standards. This structure allows PAC to continue to support end users and their systems, both legacy and new, including systems with unique user configurations.

Maintaining competitive advantages

AC Analytical Controls manufactures both standard and custom analyzers and solutions based on chromatographic analysis methods. Some of these analyzers are unique in their kind, such as the Reformulyzer, AC 8612 and Biodiesel All-in-One. Once a measurement methodology becomes successful and is established as an international standard, these methods are often copied by other chromatography analyzer manufacturers - however, not all companies pay attention to important details specific technique. Quality is of fundamental importance to AC, which is why we select the best component suppliers in the global market, allowing us to create the highest level of analytical solutions.

AC's competitive advantage lies in its standardized approach combined with continuous development innovative solutions and the use of high quality components in the production of devices.

Device catalog

Aromatic hydrocarbons

Determination of thiophene content in benzene

Benzene analysis

GOST R EN 12916

Group analysis of gasolines

Biofuel

Oil

Gas chromatography systems designed for special or non-standard tasks

DHA

SimDis - simulated distillation

Analyzer for simulated distillation of petroleum products with the ability to study sulfur and nitrogen content in various fractions

Determination of distillation curves and true boiling points of all oil fractions

Custom analyzers

Detailed hydrocarbon analysis

Petrol

Distribution of boiling points for products of groups 1 and 2

Gas chromatography systems designed for special or non-standard tasks

Benzene analysis

Determination of the content of aromatic and oxygen-containing compounds

DHA - detailed hydrocarbon analysis (DHA)

Quick Total Olefin Analysis

Group analysis of hydrocarbons with pre-fractionation

Group analysis of gasolines

SimDis - simulated distillation

Simulated distillation

Also for the analysis of petroleum products, the widely used gas chromatographic method of simulated distillation is used. Traditional method Simulated distillation involves the use of packed columns. Jet fuel specification and diesel fuel indicates simulated distillation as an alternative to distillation in atmospheric pressure when obtaining information about the true distribution of boiling points. The simulated distillation method uses gas chromatographic techniques to obtain information about the true distribution of boiling points of oil and oil fractions up to 750 °C.

Using the method of simulated distillation, a curve of true boiling points is obtained, which is constructed according to the data of the chromatographic separation of the product under study on a column with a non-polar sorbent in temperature programming mode. After introducing the sample into the injector, hydrocarbon groups are displayed on the chromatogram in order of increasing boiling points. The system is first calibrated using a standard mixture of hydrocarbons with known boiling points. The simulated distillation curves coincide well with the results of determining the fractional composition by distillation at atmospheric pressure and at reduced pressure. To describe heavy oil fractions, a gas chromatograph with a high-temperature thermostat was used.

The simulated distillation method using gas chromatography makes it possible to analyze petroleum products not only faster and with a greater degree of accuracy, but also requires fewer quantities of analyzed substances.

Atomic absorption analysis

The analysis of petroleum products occupies one of the main segments of the application of atomic absorption in the analysis of substances. Typical samples of petroleum products are crude oil, fuel (gasoline) and lubricating oils (freshly prepared and used).

Atomic absorption analysis (atomic absorption spectrometry), a method of quantitative elemental analysis based on atomic absorption (absorption) spectra. Radiation in the range of 190–850 nm is passed through a layer of atomic vapors of samples obtained using an atomizer. As a result of the absorption of light quanta, atoms transform into excited energy states. These transitions in atomic spectra correspond to the so-called resonance lines characteristic of of this element. According to the Bouguer–Lambert–Beer law, the measure of element concentration is the optical density A = log(I0/I), where I0 and I are the radiation intensities from the source, respectively, before and after passing through the absorbing layer.

Picture 1: Schematic diagram flame atomic absorption spectrometer: 1-radiation source; 2-flame; 3-monochrome of mountains; 4-photomultiplier; 5-recording or indicating device.

Instruments for atomic absorption analysis - atomic absorption spectrometers - are precision, highly automated devices that ensure reproducibility of measurement conditions, automatic introduction of samples and recording of measurement results. Some models have built-in microcomputers. As an example, the figure shows a diagram of one of the spectrometers. The source of line radiation in spectrometers is most often single-element lamps with a hollow cathode filled with neon. To determine some highly volatile elements (Cd, Zn, Se, Te, etc.), it is more convenient to use high-frequency electrodeless lamps.

The transfer of the analyzed object into an atomized state and the formation of an absorbing layer of vapor of a certain and reproducible shape is carried out in an atomizer - usually in a flame or a tubular furnace. Naib. flames of mixtures of acetylene with air (max. temperature 2000 °C) and acetylene with N2O (2700 °C) are often used. A burner with a slot-like nozzle 50–100 mm long and 0.5–0.8 mm wide is installed along the optical axis of the device to increase the length of the absorbing layer.

Tubular resistance furnaces are most often made from dense grades of graphite. To eliminate vapor diffusion through the walls and increase durability, graphite tubes are coated with a layer of gas-tight pyrolytic carbon. Maximum temperature heating reaches 3000 °C. Less common are thin-walled tubular furnaces made of refractory metals (W, Ta, Mo), quartz with nichrome heater. To protect graphite and metal furnaces to prevent burning in air, they are placed in semi-hermetic or sealed chambers through which inert gas (Ar, N2) is blown. The introduction of samples into the absorption zone of a flame or furnace is carried out using different techniques. Solutions are sprayed (usually into a flame) using pneumatic sprayers, less often ultrasonic sprayers. The former are simpler and more stable in operation, although they are inferior to the latter in the degree of dispersion of the resulting aerosol. Only 5–15% of the smallest aerosol droplets enter the flame, and the rest is screened out in the mixing chamber and discharged into the drain. The maximum concentration of solids in solution usually does not exceed 1%. Otherwise, intense deposition of salts occurs in the burner nozzle.

Thermal evaporation of dry solution residues is the main method of introducing samples into tube furnaces. In this case, samples are most often evaporated with inner surface ovens; the sample solution (volume 5–50 μl) is injected using a micropipette through the dosing hole in the wall of the tube and dried at 100 °C. However, samples evaporate from the walls with a continuous increase in the temperature of the absorbing layer, which causes instability of the results. To ensure a constant oven temperature at the time of evaporation, the sample is introduced into a preheated oven using a carbon electrode (graphite cell), graphite crucible (Woodriff oven), metal or graphite probe. The sample can be evaporated from a platform (graphite trough), which is installed in the center of the furnace under the dosing hole. As a result of a significant lag between the temperature of the platform and the temperature of the furnace, which is heated at a rate of about 2000 K/s, evaporation occurs when the furnace reaches an almost constant temperature.

To be introduced into the flame solids or dry residues of solutions, rods, threads, boats, crucibles made of graphite or refractory metals are used, placed below the optical axis of the device, so that the sample vapors enter the absorption zone with the flow of flame gases. In some cases, graphite evaporators are additionally heated electric shock. To eliminate mechanical losses of powdered samples during the heating process, cylindrical capsule-type evaporators made of porous graphite are used.

Sometimes sample solutions are processed in a reaction vessel in the presence of reducing agents, most often NaBH4. In this case, Hg, for example, is distilled off in elemental form, As, Sb, Bi and others in the form of hydrides, which are introduced into the atomizer by flow inert gas. To monochromatize radiation, prisms or diffraction gratings are used; in this case, a resolution of 0.04 to 0.4 nm is achieved.

The simulated distillation method is a gas chromatography technique designed to simulate real process distillation of crude oil and petroleum products.

This method includes not only equipment (Clarus gas chromatograph), but also software (Simulated Distillation Software (Model 3022)). By using software The chromatogram of a hydrocarbon sample is divided into homogeneous sections. Boiling points are associated with retention times using a calibration standard. Based on these data, a boiling curve V,% - T, o C can be obtained and a report can be generated.

This method allows you to obtain data equivalent to the results of distillation according to ASTM D 2892 (15 theoretical plates) and GOST 11011 (fractional composition on ARN-2), while allowing you to significantly save on analysis time, work with small volumes of sample, and also use a smaller size equipment.

The simulated distillation method can also be used to determine the fractional composition of gasolines ( ASTMD 3710 ) and oil fractions with boiling points of 174...700 o C ( ASTMD6352 ).

E70-24944

GAS CHROMATOGRAPHER CLARUS - ANALYZER 3023

CONTENTS OF DELIVERY:

ARNEL PE analyzer with autosampler, FID detector, injector and instrument control software

Autonomous thermostat cooling system that does not require the use of liquid carbon dioxide and LN2

SIMDIST software for calculating simulated distillation results

Capillary column (depending on configuration)

Equipment for supplying the chromatograph with gas

Other components and consumables

HYDROGEN GENERATOR 20H:

SPECIFICATIONS

MINIMUM ORDER SET

PE analyzer ARNEL Model 3023

OPTIONAL EQUIPMENT

Septa for THERMOGREEN LB-2 injector (50 pcs.)

Syringe for introducing sample into the injector

Replacement needle for syringes

Capillary column

Starter kit for capillary injector

Detector connection kit

Autodispenser starter kit

Carrier gas purification system. (three cartridges: purification from moisture, hydrocarbons and oxygen)

A set of spare cartridges for the cleaning system

Filter drier

High purity helium reducer

Workstation (computer, monitor and printer)

Low noise oil-free compressor for chromatography (54 l/min 8 bar)

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-1.jpg" alt="> Factional composition oil ">

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-3.jpg" alt="> Oil and petroleum products are such a complex mixture of hydrocarbons and non-hydrocarbon compounds,"> Нефть и нефтепродукты представляют собой такую сложную смесь углеводородов и неуглеводородных соединений, что обычными методами перегонки их невозможно разделить на индивидуальные соединения. Как правило, нефти и нефтепродукты разделяют путем перегонки на отдельные части, каждая из которых является менее сложной смесью. Такие части принято называть фракциями или дистиллятами. Нефтяные фракции в отличие от индивидуальных соединений не имеют постоянной температуры кипения. Они выкипают в определенных интервалах температур, т. е. имеют температуру начала кипения (н. к.) и конца кипения (к. к.). Температуры начала и конца кипения зависят от !} chemical composition factions. The fractional composition of oil and petroleum products shows the content in them (in volume or mass percentage) of various fractions that boil off in certain temperature limits. This indicator is of great practical importance. The fractional composition of oil is used to determine which petroleum products and in what quantities can be isolated from it, and the fractional composition of gasoline and other motor fuels characterizes their volatility, completeness of evaporation, etc.

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-4.jpg" alt="> The main fractions isolated from oil at industrial installations: 1."> The main fractions separated from oil in industrial plants: 1. Gasoline oil (28˚С) – 180˚С (without selecting the kerosene fraction) or oil (28˚С) – 150˚ C (without kerosene fraction selection); 2. Kerosene 150 ˚С – 250 ˚С; 3. Diesel (180 ˚С) – 350 ˚С (without kerosene fraction selection) or 250 ˚С – 350 ˚С (with kerosene fraction selection) In some cases, a heavy diesel fraction with a boiling point of 360 ˚С is selected. The total yield of these fractions (up to 360 ˚С) is the amount of light oil fractions: 4. Vacuum gas oil 350 ˚С (360 ˚С) is obtained from the residual fuel oil. - 500 ˚С (550 ˚С); 5. Tar >500 ˚С (> 550 ˚С) is the heaviest product of oil distillation.

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-5.jpg" alt="> Distillation (distillation) is the process of separating complex mixtures of hydrocarbons by partial evaporation liquid or"> Дистилляция (перегонка) – процесс разделения сложных смесей углеводородов путем частичного испарения жидкости или частичной конденсацией паровой смеси с образованием двух фаз (перегонка), из которых паровая обогащается низкокипящим компонентом (нкк), а жидкая – высококипящим (вкк) по сравнению с исходной смесью. Лабораторная установка для перегонки нефти!}

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-8.jpg" alt="> Laboratory equipment for oil distillation ARN-2">!}

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-9.jpg" alt="> ARN-LAB-11 Automatic apparatus for determining the fractional composition of oil and petroleum products">!}

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-10.jpg" alt="> Distillation of oil and petroleum products for the purpose of separation into fractions can be carried out with"> Перегонку нефти и нефтепродуктов с целью разделения на фракции можно осуществить с постепенным либо с однократным испарением. При перегонке с постепенным испарением образующиеся пары непрерывно отводят из перегонного аппарат, они конденсируются и охлаждаются в конденсаторе-холодильнике и собираются в приемник в виде жидких фракций. В том случае, когда образующиеся в процессе нагрева пары не выводятся из перегонного аппарата до тех пор, пока не будет достигнута заданная температура, при которой в один прием (однократно) отделяют паровою фазу от жидкой, процесс называют перегонкой с однократным испарением. После этого строят кривую ОИ (см. рис.) Данные способы перегонки не позволяют добиться четкого разделения нефтепродуктов на узкие фракции, т. к. часть высококипящих компонентов переходит в дистиллят, а часть низкокипящих фракций остается в жидкой фазе. Поэтому применяют перегонку с дефлегмацией или ректификацией. Для этого в колбе нагревают нефть или нефтепродукт; образующиеся при перегонке пары, почти лишенные высококипящих компонентов, охлаждаются в специальном аппарате – дефлегматоре и переходят в !} liquid state- phlegm. Phlegm, flowing down, meets the newly formed vapors. As a result of heat exchange, low-boiling components evaporate, and high-boiling components of the vapor condense. With this contact of vapors, a clearer separation into fractions is achieved than without reflux.

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-11.jpg" alt=">1 – curve obtained by distillation with clear rectification (ITC curve) ; 2 – curve"> 1 – кривая, полученная перегонкой с четкой ректификацией (кривая ИТК); 2 – кривая однократного испарения (кривая ОИ); 3 – кривая, полученная простой перегонкой (разгонка по Энглеру) ; t 1, t 2, t 3, …tn – температуры кипения при оборе дистиллята в точках x 1, x 2, x 3, …xn. ; Фракция t 1 -t 2 выкипает в количестве x 2 -x 1, е – массовая доля отгона!}

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-12.jpg" alt="> Distillation apparatus with reflux condenser">!}

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-13.jpg" alt=">An even clearer separation occurs during distillation with rectification. An apparatus for such distillation"> Еще более четкое разделение происходит при перегонке с ректификацией. Аппарат для такой перегонки состоит из перегонной колбы, ректификационной колонки, конденсатора холодильника и приемника.!}

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-16.jpg" alt="> Most widespread in laboratory practice received the following types distillation: "> The following types of distillation are most widespread in laboratory practice: 1. Distillation based on the principle of gradual evaporation: – simple distillation of oil and petroleum products boiling up to 350 ˚С at atmospheric pressure; – simple distillation of petroleum products boiling above 350 ˚С under reduced pressure (under vacuum); – distillation with reflux; – distillation with precise rectification. 2. Distillation based on the principle of single evaporation: – distillation with single evaporation. 3. Molecular distillation for high molecular weight compounds and resins.

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-17.jpg" alt="> Vacuum distillation is one of the methods for separating mixtures organic matter. Widely used"> Vacuum distillation is one of the methods for separating mixtures of organic substances. It is widely used in situations where distillation cannot be carried out at atmospheric pressure due to the high boiling point of the target substance, which leads to thermal decomposition of the distilled product. Since the liquid is in a vacuum boils at a lower temperature, it becomes possible to disperse liquids that decompose during distillation at atmospheric pressure.

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-19.jpg" alt="> Molecular distillation, unlike conventional distillation, is not associated with"> Молекулярная дистилляция в отличие от обычной дистилляции не связана с кипением раствора, а протекает в условиях испарения со свободной поверхности. Она может быть применена для жидкостей, которые не выдерживают !} high temperatures and cannot be brought to a boil without danger of decomposition. Molecular distillation is used to separate and study high molecular weight substances contained in petroleum residues obtained by conventional distillation. This method is used to distill thermally unstable substances from molecular weight 250 - 1200, vacuum oils, high-viscosity oils with a high viscosity index are obtained.

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-20.jpg" alt=">Industrial molecular distillation plants">!}

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-21.jpg" alt="> Simulated distillation. For the analysis of petroleum products, a widely used gas chromatographic"> Имитированная перегонка. Для анализа нефтепродуктов используется широко распространенный газохроматографический метод имитированной дистилляции. Традиционный метод имитированной дистилляции предполагает использование насадочных колонок. Спецификация на реактивное топливо и дизельное топливо указывает имитированную дистилляцию как альтернативу дистилляции при атмосферном давлении при получении информации об истинном распределении по температурам кипения. Метод имитированной дистилляции использует газохроматографическую технику для получения информации об истинном распределении по температурам кипения нефти и нефтяных фракций до 750 °С.!}

Src="https://present5.com/presentation/3/174642540_451406648.pdf-img/174642540_451406648.pdf-22.jpg" alt="> Simulated distillation. Using the simulated distillation method, a true boiling point curve is obtained, which"> Имитированная перегонка. Методом имитированной дистилляции получают кривую истинных температур кипения, которая строится по данным хроматографического разделения исследуемого продукта на колонке с неполярным сорбентом в режиме программирования температуры. После ввода образца в инжектор, группы углеводородов выводятся на хроматограмму в порядке возрастания их температур кипения. Предварительно выполняется калибровка системы по эталонной смеси углеводородов с известными температурами кипения. Кривые имитированной дистилляции хорошо совпадают с результатами определения фракционного состава перегонкой при атмосферном давлении и при пониженном давлении. Для описания тяжелых фракций нефти использовали газовый хроматограф с высокотемпературным термостатом. Метод имитированной дистилляции с помощью газовой хроматографии позволяет проводить анализ нефтяных продуктов не только быстрее и с большей степенью точности, но и требует для осуществления меньшего количества анализируемых веществ.!}