Jeans with floral embroidery. Embroidered jeans are a fashion trend. Where is embroidery most often located?

Jeans with floral embroidery. Embroidered jeans are a fashion trend. Where is embroidery most often located?

Lithium batteries (Li-Io, Li-Po) are currently the most popular rechargeable sources of electrical energy. The lithium battery has a nominal voltage of 3.7 Volts, which is indicated on the case. However, a 100% charged battery has a voltage of 4.2 V, and a discharged one “to zero” has a voltage of 2.5 V. There is no point in discharging the battery below 3 V, firstly, it will deteriorate, and secondly, in the range from 3 to 2.5 It only supplies a couple of percent of energy to the battery. Thus, the operating voltage range is 3 – 4.2 Volts. You can watch my selection of tips for using and storing lithium batteries in this video

There are two options for connecting batteries, series and parallel.

With a series connection, the voltage on all batteries is summed up, when a load is connected, a current flows from each battery equal to the total current in the circuit; in general, the load resistance sets the discharge current. You should remember this from school. Now comes the fun part, capacity. The capacity of the assembly with this connection is fairly equal to the capacity of the battery with the smallest capacity. Let's imagine that all batteries are 100% charged. Look, the discharge current is the same everywhere, and the battery with the smallest capacity will be discharged first, this is at least logical. And as soon as it is discharged, it will no longer be possible to load this assembly. Yes, the remaining batteries are still charged. But if we continue to remove current, our weak battery will begin to overdischarge and fail. That is, it is correct to assume that the capacity of a series-connected assembly is equal to the capacity of the smallest or most discharged battery. From here we conclude: to assemble a series battery, firstly, you need to use batteries of equal capacity, and secondly, before assembly, they all must be charged equally, in other words, 100%. There is such a thing called BMS (Battery Monitoring System), it can monitor each battery in the battery, and as soon as one of them is discharged, it disconnects the entire battery from the load, this will be discussed below. Now as for charging such a battery. It must be charged with a voltage equal to the sum of the maximum voltages on all batteries. For lithium it is 4.2 volts. That is, we charge a battery of three with a voltage of 12.6 V. See what happens if the batteries are not the same. The battery with the smallest capacity will charge the fastest. But the rest have not yet charged. And our poor battery will fry and recharge until the rest are charged. Let me remind you that lithium also does not like overdischarge very much and deteriorates. To avoid this, recall the previous conclusion.

Let's move on to parallel connection. The capacity of such a battery is equal to the sum of the capacities of all batteries included in it. The discharge current for each cell is equal to the total load current divided by the number of cells. That is, the more Akum in such an assembly, the more current it can deliver. But an interesting thing happens with tension. If we collect batteries that have different voltages, that is, roughly speaking, charged to different percentages, then after connecting they will begin to exchange energy until the voltage on all cells becomes the same. We conclude: before assembly, the batteries must again be charged equally, otherwise large currents will flow during connection, and the discharged battery will be damaged, and most likely may even catch fire. During the discharge process, the batteries also exchange energy, that is, if one of the cans has a lower capacity, the others will not allow it to discharge faster than themselves, that is, in a parallel assembly you can use batteries with different capacities. The only exception is operation at high currents. On different batteries under load, the voltage drops differently, and current will start flowing between the “strong” and “weak” batteries, and we don’t need this at all. And the same goes for charging. You can absolutely safely charge batteries of different capacities in parallel, that is, balancing is not needed, the assembly will balance itself.

In both cases considered, the charging current and discharge current must be observed. The charging current for Li-Io should not exceed half the battery capacity in amperes (1000 mah battery - charge 0.5 A, 2 Ah battery, charge 1 A). The maximum discharge current is usually indicated in the datasheet (TTX) of the battery. For example: 18650 laptops and smartphone batteries cannot be loaded with a current exceeding 2 battery capacities in Amperes (example: a 2500 mah battery, which means the maximum you need to take from it is 2.5 * 2 = 5 Amperes). But there are high-current batteries, where the discharge current is clearly indicated in the characteristics.

Features of charging batteries using Chinese modules

Standard purchased charging and protection module for 20 rubles for lithium battery ( link to Aliexpress)
(positioned by the seller as a module for one 18650 can) can and will charge any lithium battery, regardless of shape, size and capacity to the correct voltage of 4.2 volts (the voltage of a fully charged battery, to capacity). Even if it is a huge 8000mah lithium package (of course we are talking about one 3.6-3.7v cell). The module provides a charging current of 1 ampere, this means that they can safely charge any battery with a capacity of 2000mAh and above (2Ah, which means the charging current is half the capacity, 1A) and, accordingly, the charging time in hours will be equal to the battery capacity in amperes (in fact, a little more, one and a half to two hours for every 1000mah). By the way, the battery can be connected to the load while charging.

Important! If you want to charge a smaller capacity battery (for example, one old 900mAh can or a tiny 230mAh lithium pack), then the charging current of 1A is too much and should be reduced. This is done by replacing resistor R3 on the module according to the attached table. The resistor is not necessarily smd, the most ordinary one will do. Let me remind you that the charging current should be half the battery capacity (or less, no big deal).

But if the seller says that this module is for one 18650 can, can it charge two cans? Or three? What if you need to assemble a capacious power bank from several batteries?
CAN! All lithium batteries can be connected in parallel (all pluses to pluses, all minuses to minuses) REGARDLESS OF CAPACITY. Batteries soldered in parallel maintain an operating voltage of 4.2v and their capacity is added up. Even if you take one can at 3400mah and the second at 900, you will get 4300. The batteries will work as one unit and will discharge in proportion to their capacity.
The voltage in a PARALLEL assembly is ALWAYS THE SAME ON ALL BATTERIES! And not a single battery can physically discharge in the assembly before the others; the principle of communicating vessels works here. Those who claim the opposite and say that batteries with a lower capacity will discharge faster and die are confused with SERIAL assembly, spit in their faces.
Important! Before connecting to each other, all batteries must have approximately the same voltage, so that at the time of soldering, equalizing currents do not flow between them; they can be very large. Therefore, it is best to simply charge each battery separately before assembly. Of course, the charging time of the entire assembly will increase, since you are using the same 1A module. But you can parallel two modules, obtaining a charging current of up to 2A (if your charger can provide that much). To do this, you need to connect all similar terminals of the modules with jumpers (except for Out- and B+, they are duplicated on the boards with other nickels and will already be connected anyway). Or you can buy a module ( link to Aliexpress), on which the microcircuits are already in parallel. This module is capable of charging with a current of 3 Amps.

Sorry for the obvious stuff, but people still get confused, so we'll have to discuss the difference between parallel and serial connections.
PARALLEL connection (all pluses to pluses, all minuses to minuses) maintains the battery voltage of 4.2 volts, but increases the capacity by adding all the capacities together. All power banks use parallel connection of several batteries. Such an assembly can still be charged from USB and the voltage is raised to an output of 5v by a boost converter.
CONSISTENT connection (each plus to minus of the subsequent battery) gives a multiple increase in the voltage of one charged bank 4.2V (2s - 8.4V, 3s - 12.6V and so on), but the capacity remains the same. If three 2000mah batteries are used, then the assembly capacity is 2000mah.
Important! It is believed that for sequential assembly it is strictly necessary to use only batteries of the same capacity. Actually this is not true. You can use different ones, but then the battery capacity will be determined by the SMALLEST capacity in the assembly. Add 3000+3000+800 and you get an 800mah assembly. Then the specialists begin to crow that the less capacious battery will then discharge faster and die. But it doesn’t matter! The main and truly sacred rule is that for sequential assembly it is always necessary to use a BMS protection board for the required number of cans. It will detect the voltage on each cell and turn off the entire assembly if one discharges first. In the case of an 800 bank, it will discharge, the BMS will disconnect the load from the battery, the discharge will stop and the residual charge of 2200mah on the remaining banks will no longer matter - you need to charge.

The BMS board, unlike a single charging module, IS NOT A sequential charger. Needed for charging configured source of the required voltage and current. Guyver made a video about this, so don’t waste time, watch it, it’s about this in as much detail as possible.

Is it possible to charge a daisy chain assembly by connecting several single charging modules?
In fact, under certain assumptions, it is possible. For some homemade products, a scheme using single modules, also connected in series, has proven itself, but EACH module needs its own SEPARATE POWER SOURCE. If you charge 3s, take three phone chargers and connect each to one module. When using one source - power short circuit, nothing works. This system also works as protection for the assembly (but the modules are capable of delivering no more than 3 amperes). Or, simply charge the assembly one by one, connecting the module to each battery until fully charged.

Battery charge indicator

Another pressing problem is to at least know approximately how much charge remains on the battery so that it does not run out at the most crucial moment.
For parallel 4.2-volt assemblies, the most obvious solution would be to immediately purchase a ready-made power bank board, which already has a display showing charge percentages. These percentages aren't super accurate, but they still help. The issue price is approximately 150-200 rubles, all are presented on the Guyver website. Even if you are not building a power bank but something else, this board is quite cheap and small to fit into a homemade product. Plus, it already has the function of charging and protecting batteries.
There are ready-made miniature indicators for one or several cans, 90-100 rubles
Well, the cheapest and most popular method is to use an MT3608 boost converter (30 rubles), set to 5-5.1v. Actually, if you make a power bank using any 5-volt converter, then you don’t even need to buy anything additional. The modification consists of installing a red or green LED (other colors will work at a different output voltage, from 6V and higher) through a 200-500 ohm current-limiting resistor between the output positive terminal (this will be a plus) and the input positive terminal (for an LED this will be a minus). You read that right, between two pluses! The fact is that when the converter operates, a voltage difference is created between the pluses; +4.2 and +5V give each other a voltage of 0.8V. When the battery is discharged, its voltage will drop, but the output from the converter is always stable, which means the difference will increase. And when the voltage on the bank is 3.2-3.4V, the difference will reach the required value to light the LED - it begins to show that it is time to charge.

How to measure battery capacity?

We are already accustomed to the idea that for measurements you need an Imax b6, but it costs money and is redundant for most radio amateurs. But there is a way to measure the capacity of a 1-2-3 can battery with sufficient accuracy and cheaply - a simple USB tester.

Appliqué on denim trousers is moving away a little from designer use, and instead, a 2000s trend - embroidery - is appearing on the fashion scene. This is a beautiful trend, so Russian fashionistas see no reason why not buy women's jeans with embroidery in Moscow. True, a large pattern on the hips is absolutely not an option for those with plump legs.

Which direction to follow?

This decor is applied to models of various cuts: from straight to cropped and flared. Let's take a look at the Shopomio catalog and use the photos to determine the most original options:

  • Fashionable women's boyfriend jeans with embroidery are offered by the Gas brand. The pattern is located on the front of the thigh and smoothly flows back;
  • Stella McCartney flared trousers with a torn hem (the last squeak) will surprise you with an original tiger;
  • The black embroidery on the blue Victoria Beckham model contrasts unusually.

Roberto Cavalli, Otto and other brands often use sequins, rhinestones and other decor to create prints. Often, floral themes are embroidered, but sometimes there are animals, birds, cartoon characters (Mickey Mouse), and inscriptions.

The Shopomio service directs thrifty shoppers in the right direction so that they can buy women's jeans with embroidery in the online store at an attractive price for their wallet. The minimum price in the catalog is 799 rubles, and discounts increase to 55%.