Датчики присутствия. Классификация датчиков, основные требования к ним Современные датчики назначение устройство принцип действия

Датчики присутствия. Классификация датчиков, основные требования к ним Современные датчики назначение устройство принцип действия
Датчики присутствия. Классификация датчиков, основные требования к ним Современные датчики назначение устройство принцип действия

Электронные датчики (измерители) – важная составляющая в автоматизации любых технологических процессов и в управлении различными машинами и механизмами.

С помощью электронных устройств можно получить полную информацию о параметрах контролируемого оборудования.

Принцип работы любого электронного датчика построен на преобразовании контролируемых показателей в сигнал, который передается для дальнейшей обработки управляющим устройством. Возможно измерение любых величин – температуры, давления, электрического напряжения и силы тока, силы света и других показателей.

Популярность электронных измерителей обуславливается рядом конструкционных особенностей, в частности возможно:

  • передать измеряемые параметры на практически любое расстояние;
  • преобразовать показатели в цифровой код для достижения высокой чувствительности и быстродействия;
  • осуществлять передачу данных с максимально высокой скоростью.

По принципу действия электронные датчики разделяют на несколько категорий в зависимости от принципа действия. Одними из самых востребованных считаются:

  • емкостные;
  • индуктивные;
  • оптические.

Каждый из вариантов обладает определенными преимуществами, которые определяют оптимальную сферу его применения. Принцип работы любого типа измерителя может различаться в зависимости от конструкции и используемого контролирующего оборудования.

ЕМКОСТНЫЕ ДАТЧИКИ

Принцип работы электронного емкостного датчика построен на изменении емкости плоского или цилиндрического конденсатора в зависимости от перемещения одной из обкладок. Также учитывается такой показатель как диэлектрическая проницаемость среды между обкладок. Одно из преимуществ подобных устройств – очень простая конструкция, которая позволяет достичь хороших показателей прочности и надежности.

Также измерители этого типа не подвержены искажениям показателей при перепадах температуры. Единственно условие для точных показателей – защита от пыли, влажности и коррозии.

Емкостные датчики широко используются в самых разнообразных отраслях. Простые в изготовлении приборы отличаются низкой себестоимостью производства, при этом обладают длительным сроком эксплуатации и высокой чувствительностью.

В зависимости от исполнения устройства делятся на одноемкостные и духъемкостные. Второй вариант более сложен в изготовлении, но отличается повышенной точностью измерений.

Область применения.

Наиболее часто емкостные датчики используют для измерения линейных и угловых перемещений, причем конструкция устройства может различаться в зависимости от метода измерения (меняется площадь электродов, либо зазор между ними). Для измерения угловых перемещений используют датчики с переменной площадью обкладок конденсатора.

Также емкостные преобразователи используют для измерения давления. Конструкция предусматривает наличие одного электрода с диафрагмой, которая под действием давления изгибается, меняя емкость конденсатора, что фиксируется измерительной схемой.

Таким образом, емкостные измерители могут использоваться в любых системах управления и регулирования. В энергетике, машиностроении, строительстве обычно используют датчики линейных и угловых перемещений. Емкостные преобразователи уровня наиболее эффективны при работе с сыпучими материалами и жидкостями, и часто используются в химической и пищевой промышленности.

Электронные емкостные датчики применяются для точного измерения влажности воздуха, толщины диэлектриков, различных деформаций, линейных и угловых ускорений, гарантируя точность показателей в самых разных условиях.

ИНДУКТИВНЫЕ ДАТЧИКИ

Бесконтактные индуктивные датчики работают по принципу изменения показателя индуктивности катушки с сердечником. Ключевая особенность измерителей данного типа – они реагируют только на изменение местоположения металлических предметов. Металл оказывает непосредственное влияние на электромагнитное поле катушки, что приводит к срабатыванию датчика.

Таким образом, с помощью индуктивного датчика можно эффективно отслеживать положение металлических предметов в пространстве. Это позволяет использовать индуктивные измерители в любой отрасли промышленности, где требуется наблюдение за положением различных конструктивных элементов.

Одна из интересных особенностей датчика – электромагнитное поле изменяется по-разному, в зависимости от вида металла, это несколько расширяет сферу применения устройств.

Индуктивные датчики обладают рядом преимуществ, из которых отдельного внимания заслуживает отсутствие подвижных частей, что существенно повышает надежность и прочность конструкции. Также датчики можно подключать к промышленным источникам напряжения, а принцип работы измерителя гарантирует высокую чувствительность.

Индуктивные датчики изготавливают в нескольких форм-факторах, для максимально удобной установки и эксплуатации, например двойные измерители (две катушки в одном корпусе).

Область применения.

Сфера использования индуктивных измерителей – автоматизация в любой сфере промышленности. Простой пример – устройство можно использовать в качестве альтернативы концевому выключателю, при этом будет увеличена скорость срабатывания. Датчики выполняют в пылевлагозащитном корпусе для эксплуатации в самых сложных условиях.

Устройства можно использовать для измерения самых различных величин – для этого используют преобразователи измеряемого показателя в величину перемещения, которая и фиксируется устройством.

ОПТИЧЕСКИЕ ДАТЧИКИ

Бесконтактные электронные оптические датчики – один из самых востребованных типов измерителей в отраслях промышленности, где требуется эффективное позиционирование любых объектов с максимальной точностью.

Принцип работы данного типа измерителей построен на фиксации изменения светового потока, при прохождении через него объекта. Самая простая схема устройства это излучатель (светодиод) и фотоприемник, преобразующий световое излучение в электрический сигнал.

В современных оптических измерителях используется современная электронная система кодирования, позволяющая исключить влияние посторонних источников света (защита от ложных срабатываний).

Конструктивно, оптические измерители могут выполняться как в отдельных корпусах для излучателя и приемника, так и в одном, в зависимости от принципа работы устройства и области его применения. Корпус дополнительно обеспечивает защиту от пыли и влаги (для работы при низких температурах используют специальные термокожухи).

Оптические датчики классифицируются в зависимости от схемы работы. Самый распространенный тип – барьерный, состоящий из излучателя и приемника, расположенных строго напротив друг друга. Когда постоянный световой поток прерывается объектом, устройство подает соответствующий сигнал.

Второй востребованный тип – диффузный оптический измеритель, в котором излучатель и фотоприемник располагаются в одном корпусе. Принцип действия основан на отражение луча от объекта. Отраженный световой поток улавливается фотоприемником, после чего происходит срабатывание электроники.

Третий вариант – рефлекторный оптический датчик. Как и в диффузном измерителе, излучатель и приемник конструктивно выполнены в одном корпусе, но световой поток отражается от специального рефлектора.

Использование.

Оптические датчики широко применяются в системах автоматизированного управления и служат для обнаружения предметов и их пересчета. Относительно простая конструкция обуславливает надежность и высокую точность измерения. Кодированный световой сигнал обеспечивает защиту от внешних факторов, а электроника позволяет определять не только наличие объектов, но и определять их свойства (габариты, прозрачность и т.д.).

Широкое распространение оптические устройства получили в охранных системах, где используются в качестве эффективных датчиков движения. Вне зависимости от типа, электронные датчики это лучший вариант для современных систем управления и автоматического оборудования.

Высокая точность и скорость измерения обеспечивают надлежащее функционирование оборудования с минимальными отклонениями. При этом большинство электронных измерителей бесконтактные, что в несколько раз повышает надежность устройств и гарантирует длительный срок эксплуатации даже в сложных производственных условиях.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


В системах автоматики датчик предназначен для преобразования контролируемой или регулируемой величины (параметра регулируемого объекта) в выходной сигнал, более удобный для дальнейшего движения информации. Поэтому датчик нередко называют преобразователем, хотя этот термин является слишком общим, так как любой элемент автоматики и телемеханики, имея вход и выход, является в той или иной мере преобразователем.

В простейшем случае датчик осуществляет только одно преобразование Y=f(X), как, например, силы в перемещении (в пружине), или температуры в электродвижущую силу (в термоэлементе) и т.п. Такой вид датчиков называют датчики с непосредственным преобразованием. Однако в ряде случаев не удается непосредственно оказать воздействие входной величины Х на необходимую входную величину U (если такая связь неудобна или она не дает желаемых качеств). В этом случае осуществляют последовательные преобразования: входной величиной Х воздействуют на промежуточную Z, а величиной Z - на необходимую величину Y:

Z=f1(Х); Y=f2(Z)

В результате получается функция, связывающая Х с Y:

Y=f2=F(Х).

Число таких последовательных преобразований может быть и больше двух, и в общем случае функциональная связь Y с Х может проходить через ряд промежуточных величин:

Y=fn{...}=F(Х).

Датчики, имеющие такие зависимости, называются датчиками с последовательным преобразованием. Все остальные части называются промежуточными органами . В датчике с двумя преобразованиями промежуточные органы отсутствуют, в нем имеются только воспринимающий и исполнительный органы. Нередко один и тот же конструктивный элемент выполняет функции нескольких органов. Например, упругая мембрана выполняет функцию воспринимающего органа (преобразование давления в силу) и функцию исполнительного органа (преобразование силы в перемещение).

Классификация датчиков.

Исключительное многообразие датчиков, применяемое в современной автоматике, вызывает необходимость их классификации. В настоящее время известны следующие типы датчиков, которые наиболее целесообразно классифицировать по входной величине, практически соответствующей принципу действия:

Наименование датчика

Входная величина

Механический

Перемещение твердого тела

Электрический

Электрическая величина

Гидравлический

Перемещение жидкости

Пневматический

Перемещение газа

Термический

Оптический

Световая величина

Акустический

Звуковая величина

Радиоволновой

Радиоволны

Ядерные излучения

Здесь рассматриваются наиболее распространенные датчики, у которых хотя бы одна из величин (входная или выходная) – электрическая.

Датчики различают также по диапазону изменения входного сигнала. Например, одни электрические датчики температуры предназначены для измерения температуры от 0 до 100°С, а другие – от 0 до 1600°С. Очень важно, чтобы диапазон изменения выходного сигнала был при этом одинаков (унифицирован) для разных приборов. Унификация выходных сигналов датчиков позволяет использовать общие усилительные и исполнительные элементы для самых разных систем автоматики.

Электрические датчики относятся к наиболее важным элементам систем автоматики. С помощью датчиков контролируемая или регулируемая величина преобразуется в сигнал, в зависимости от изменения которого и протекает весь процесс регулирования. Наибольшее распространение в автоматике получили датчики с электрическим выходным сигналом. Объясняется это, прежде всего удобством передачи электрического сигнала на расстояние, его обработки и возможностью преобразования электрической энергии в механическую работу. Кроме электрических распространение получили механические, гидравлические и пневматические датчики.

Электрические датчики в зависимости от принципа производимого ими преобразования делятся на два типа – модуляторы и генераторы.

У модуляторов (параметрических датчиков) энергия входа воздействует на вспомогательную электрическую цепь, изменяя ее параметры и модулируя значение и характер тока или напряжения от постороннего источника энергии. Благодаря этому одновременно усиливается сигнал, поступивший на вход датчика. Наличие постороннего источника энергии является обязательным условием работы датчиков – модуляторов.

Рис. 1. Функциональные блоки датчика – модулятора (а) и датчика – генератора (б).

Модуляция осуществляется с помощью изменения одного из трех параметров – омического сопротивления, индуктивности, емкости. В соответствии с этим различают группы омических, индуктивных и емкостных датчиков.

Каждая из этих групп может делиться на подгруппы. Так, наиболее обширная группа омических датчиков может быть разделена на подгруппы: тензорезисторы, потенциометры, терморезисторы, фоторезисторы. Ко второй подгруппе относятся варианты индуктивных датчиков, магнитоупругие и трансформаторные. Третья подгруппа объединяет различного типа емкостные датчики.

Второй тип – датчики-генераторы являются просто преобразователями. Они основаны на возникновении электродвижущей силы под влиянием различных процессов, связанных с контролируемой величиной. Возникновение такой электродвижущей силы может происходить, например, вследствие электромагнитной индукции, термоэлектричества, пьезоэлектричества, фотоэлектричества и других явлений, вызывающих разделение электрических зарядов. Соответственно этим явлениям генераторные датчики подразделяются на индукционные, термоэлектрические, пьезоэлектрические и фотоэлектрические.

Возможны еще группы электротехнических, электростатических датчиков, датчиков Холла и др.

Потенциометрические и тензометрические датчики.

Потенциометрические датчики применяются для преобразования угловых или линейных Перемещений в электрический сигнал. Потенциометрический датчик представляет собой переменный резистор, который может включаться по схеме реостата или по схеме потенциометра (делителя напряжения).

Конструктивно потенциометрический датчик представляет собой электромеханическое устройство (рис. 2-1), состоящее из каркаса 1 с намотанным на него тонким проводом (обмотка) из сплавов с высоким удельным сопротивлением, скользящего контакта - щетки 2 и токопровода 3, выполненного в виде или скользящего контакта, или спиральной пружинки.

Каркас с намотанным проводом закрепляется неподвижно, а щетка соединяется механически с подвижной частью ОУ, перемещение которой нужно преобразовать в электрический сигнал. При перемещении щетки изменяется активное сопротивление Rх участка провода между щеткой и одним из выводов обмотки датчика.

В зависимости от схемы включения датчика перемещение может быть преобразовано в изменение активного сопротивления или тока (при последовательной схеме включения) или в изменение напряжения (при Включении по схеме делителя напряжения). На точность преобразования при последовательном включении значительное влияние оказывает изменение сопротивления соединительных проводов, переходного сопротивления между щеткой и обмоткой датчика.

В устройствах автоматики чаще применяется включение потенциометрических датчиков по схеме делителя напряжения. При одностороннем перемещении подвижной части ОУ применяют однотактную схему включения, дающую нереверсивную статическую характеристику. При двустороннем перемещении применяют двухтактную схему включения, дающую реверсивную характеристику (рис. 2-2).

В зависимости от конструкции и функционального закона, связывающего выходной сигнал датчика с перемещением щетки, различают потенциометрические датчики нескольких типов.



Линейные потенциометрические датчики.

Они имеют одинаковое сечение каркаса по всей длине. Диаметр провода и шаг намотки у них постоянны. В режиме холостого хода (при нагрузке Rn→∞ и I→0) выходное напряжение линейного потенциометрического датчика Uвых пропорционально перемещению щётки х: Uвых = (U0/L)х, где U0 - напряжение питания датчика; l-длина намотки. Напряжение питания датчика U0 и длина намотки L являются постоянными величинами, поэтому в окончательном виде: Uвых = kx, где k=U0/L- коэффициент передачи.



Функциональные потенциометрические датчики.

Они имеют функциональную нелинейную зависимость между перемещением щетки и выходным напряжением: Uвых= f(х). Часто применяются функциональные потенциометры, имеющие тригонометрическую, степенную или логарифмическую характеристику. Применяют функциональные потенциометры в аналоговых автоматических вычислительных устройствах, в поплавковых измерителях уровня жидкости для баков сложной геометрической формы и т. д. Получить требующуюся функциональную зависимость у потенциометрических датчиков можно различными методами: изменением высоты каркаса потенциометра (плавно или ступенчато), шунтированием участков обмотки потенциометра резисторами.

Многооборотные потенциометрические датчики.

Они являются конструктивной разновидностью линейных потенциометрических датчиков с угловым перемещением щетки. У многооборотных датчиков щетка должна повернуться на угол 360° несколько раз, чтобы переместиться на всю длину намотки L. Достоинствами многооборотных датчиков являются высокая точность, малый порог чувствительности, небольшие габариты, недостатками - относительно большой момент трения, сложность конструкции, наличие нескольких скользящих контактов

и трудность использования в быстродействующих системах.

Металлопленочные потенциометрические датчики.

Это новая перспективная конструкция потенциометрических датчиков. Каркас у них представляет собой

стеклянную или керамическую пластину, на которую наносится тонкий слой (несколько микрометров) металла с высоким удельным сопротивлением. Съем сигнала у металлопленочных потенциометрических датчиков осуществляется металлокерамическими щетками. Изменение ширины металлической пленки или ее толщины позволяет получить линейную или нелинейную характеристику потенциометрического датчика, не изменяя его конструкции. Используя обработку электронным или лазерным лучом, можно осуществлять автоматическую подгонку сопротивления датчика и его характеристики к заданным значениям. Габариты металлопленочных потенциометрических датчиков существенно меньше, чем проволочных, а порог чувствительности практически равен нулю ввиду отсутствия витков обмотки.

Оценивая потенциометрические датчики, следует отметить наличие у них как существенных достоинств, так и крупных недостатков. Их достоинствами являются: простота конструкции; высокий уровень выходного сигнала (напряжение - до нескольких десятков вольт, ток - до нескольких десятков миллиампер); возможность работы как на постоянном, так и на переменном токе. Их недостатка ми являются: недостаточно высокая надежность и ограниченная долговечность из-за наличия скользящего контакта н истирания обмотки; влияние на характеристику сопротивления нагрузки; потери энергии за счет рассеяния мощности активным сопротивлением обмотки; сравнительно большой момент, необходимый для вращения подвижной части датчика со щеткой.

Важнейшим и наиболее широко используемым техническим средством автоматизации являются датчики.

Датчиком называется первичный преобразователь контролируемой или регулируемой величины в выходной сигнал, удобный для дистанционной передачи и дальнейшего использования. В состав датчика входят воспринимающий (чувствительный) орган и один или несколько промежуточных преобразователей. Довольно часто датчик состоит только из одного воспринимающего органа (например: термопара, термометр сопротивления и т.д.) . Датчик характеризуется входными и выходными величинами.

Изменение выходной величины в зависимости от изменения входной величины

называется чувствительностью датчика ;

Изменение выходного сигнала, возникающего в результате изменения внутренних

свойств датчика или изменения внешних условий его работы - изменения

температуры среды, колебания напряжения и т.д. называются погрешностью датчика ;

Отставание изменений выходной величины от изменений входной величины

называется инерционностью датчика .

Все эти показатели датчиков необходимо учитывать при выборе датчиков для автоматизации конкретной машины или технологического процесса.

Датчики предназначенные для измерения физических (не электрических входных величин уровня влажности, плотности, температуры и др.) преобразуют их в электрические выходные величины, передаваемые на расстоянии для воздействия на исполнительный механизм.

Датчики подразделяются:

- по назначению - измерение перемещения усилий, температуры, влажности, скорости

- по принципу действия - электротехнические, механические, тепловые, оптические, и

- по способу преобразования - неэлектрической величины в электрическую -

индуктивные, термоэлектрические, фотоэлектрические, радиоактивные, активного

сопротивления (потенциометрические, тензометрические, и т.д.).

Датчики бывают:

- контактные (непосредственно соприкасаются);

- бесконтактные (не соприкасаются: фотоэлектрические, ультразвуковые,

радиоактивные, оптические и т.д.).

ПЕРЕЧЕНЬ

используемых в строительном производстве для автоматизации строительных машин и технологических процессов, технических средств автоматизации и автоматизированных систем управления.

1. Для контроля и информации:

1.1 качество уплотняемого грунта (плотность);

1.2 подсчёт выполняемого объема работ (пройденных км, поданной воды и т.д.);

1.3 скорость движения машины;

1.4 наличие жидкости в ёмкости и её количество;

1.5 количество сыпучих материалов, находящихся в ёмкости (цемент, песок, щебень

2. Для регулирования:

2.1 поддержание заданной температуры при прогреве бетона;

2.2 термостат охлаждающей жидкости двигателя внутреннего сгорания;

2.3 давление жидкости в ёмкости (системе);

2.4 давление газов (воздуха) в системе (ёмкости);

2.5 грузоподъёмность грузоподъёмных и других машин;

2.6 высота подъёма рабочего органа машины (стрелы крана, рабочей площадки,

подъёмников и лифтов, загрузочного скипа, ковша и т.д.);

2.7 высота подъёма груза грузоподъёмной машины;

2.8 поворот стрелы грузоподъёмного крана;

2.9 ограничение движения машины по путям (башенный или мостовой кран, тележки

2.10 ограничение приближения к проводам, находящихся под напряжением (стрела и

трос грузоподъёмного крана);

2.11 поддержание заданного уровня и уклона дна котлована и траншеи при работе

экскаватора;

2.12 защита от короткого замыкания;

2.13 защита от повышения (понижения) напряжения;

2.14 отключение всех двигателей и закрепление захватами за рельсы башенного крана в зависимости от скорости ветра.

3. Для локальной автоматизации системы управления:

3.1 режим работы двигателя в зависимости от нагрузки на рабочий орган (бульдозер - заглубление отвала, скрепер и грейдер - заглубление ножа, экскаватор - заглубление ковша);

3.2 задание доз компонентов бетонной смеси в соответствии с рецептурой;

3.3 дозирование составляющих материалов для приготовления бетонной смеси;

3.4 определение продолжительности и выдерживание этой подолжительности при приготовлении бетонной смеси.

4. Для автоматизации системы управления:

4.1 автоматизированная система управления работой бетоносмесительной установки;

4.2 автоматизированная система управления бульдозером - комплект “АКА-Дормаш”, “Комбиплан-10 ЛП”, при выполнении работ по заданным отметкам, уклону и направлению;

4.3 автоматизированная система управления автогрейдером - “Профиль-20”,

”Профиль-30” при профилировании дорог и планировка территории;

4.4 автоматизированная система управления скрепером - “Копир-Стабиплан-10” при разработке грунта или вертикальной планировке под заданную отметку (высотное положение ковша, перемещение задней стенки ковша, заглубление (подъём) ножа ковша и регулирование двигателя тягача и его направление;

4.5 автоматизированная система управления многоковшовым экскаватором при разработке траншей по заданному направлению, глубине копания, заданному уклону дна траншеи и регулирования работы двигателя.

Для наглядного изображения автоматизированной (автоматической) системы используются графические изображения:

Структурная схема, которая отражает улучшенную структуру системы и взаимосвязи между пунктами контроля и управления объектами;

Функциональная схема, чертёж на котором схематически условными обозначениями изображены технологическое оборудование, коммуникации, органы управления и средства автоматизации (приборы, регуляторы, датчики) указанием связей между

технологическим оборудованием и элементами автоматики. На схеме указаны параметры которые подлежат контролю и регулированию;

А также принципиальные, монтажные и другие схемы.

Ежегодно число датчиков в автомобиле увеличивается. Электронные устройства отличаются по своим техническим параметрам, назначению и особенностям применения. Датчики можно классифицировать по функциональности и условиям эксплуатации.
  1. Датчики первого типа отвечают за диагностику и работоспособность тормозов и системы рулевого управления.
  2. Приборы второго класса контролируют состояние силового агрегата, трансмиссии, подвески и шин.
  3. Третья категория датчиков должна обеспечивать защитные функции транспортного средства и комфортабельность езды.
Современное развитие электроники позволяет изготавливать датчики из долговечных высокотехнологичных материалов. Поэтому по сравнению с первыми приборами, новые электронные устройства работают качественнее и дольше. Инновационные технологии позволили уменьшить и габаритные размеры датчиков, что важно для автомобилей с большим числом дополнительных агрегатов и узлов. Конструктивно можно разделить все автомобильные электронные приборы на две группы.
  1. Интегральные датчики с интеллектуальными возможностями снижают нагрузку на блок управления. Приборы соединяются гибкими линиями связи, одновременно можно использовать несколько электронных приборов в связке. Такие датчики способны обрабатывать даже сигналы с малой интенсивностью.
  2. Электронные приборы волоконно-оптического типа отличаются высокой чувствительностью к загрязнениям и повышенному давлению. Из-за этого они недолговечны, слабо воспринимают электромагнитные помехи. Такие сенсоры подходят не для всех типов автомобилей, потому что для присоединения их требуются специальные ответвители и разъемы.

Датчики двигателя

Чтобы оптимизировать работу силового агрегата, а также следить за исправностью узлов и механизмов, на двигатели автомобилей устанавливаются следующие датчики.
  • Воздушный датчик предназначен для слежения за количеством поступающего во впускной тракт воздуха. Расходомер является надежным прибором, а главным его врагом считается влага. При выходе из строя прибора двигатель неустойчиво работает, появляется эффект "троения", наблюдается повышенный расход топлива. Расходомер встраивается во впускной тракт сразу за воздушным фильтром.
  • "Лямбда-зонд" контролирует массовую долю кислорода, выходящего из выпускного коллектора. Прибор дозирует подачу топлива, отталкиваясь от концентрации кислорода. Располагается "лямбда-зонд" в системе выпуска отработанных газов.
  • В системе регенерации отработанных газов современных автомобилей устанавливаются электронные приборы, контролирующие концентрацию оксида азота. Они размещаются в дроссельном узле. Как только устройство будет загрязнено, увеличится число повторений циклов регенерации.
  • Датчик клапана EGR предназначен для снижения концентрации вредных газов, выбрасываемых в атмосферу. При резком ускорении авто прибор приоткрывает клапан, и выхлопные газы направляются в камеры сгорания. Таким образом, происходит полное сгорание углеводородов.
  • В бензиновых моторах находит применение датчик Холла. Прибор устанавливается в задней крышке распредвала и измеряет его угол положения. Полученные сигналы от датчика Холла изменяют скорость перемещения поршней в цилиндрах.
  • Датчик дроссельной заслонки снимает показания с педали акселератора. Прибор корректирует работу дроссельной заслонки, исходя из температуры охлаждающей жидкости. Чем холоднее антифриз, тем медленнее вращается коленвал. Датчик монтируется на дроссельном патрубке и взаимосвязан с заслонкой.
  • Датчик положения коленвала отвечает на своевременную подачу топлива, связывая дозировку с моментом впрыска или опережением зажигания. Прибор снимает показания с зубчатого шкива, поэтому он крепится внизу блока цилиндров. Как только датчик выйдет из строя, мотор невозможно завести.

Датчики давления


Принцип работы датчиков давления примерно одинаков. А вот устанавливаются они в самых разных узлах и механизмах автомобиля. Различают приборы первостепенного и второстепенного значения.

Датчики первостепенного значения

К приборам первостепенного значения, измеряющим давление, необходимо отнести:
  • датчик давления во впускном тракте, который обеспечивает взаимосвязь между частотой вращения коленвала (уровнем нагрузки) и потоком топливной смеси;
  • датчик давления воздуха в шинах контролирует заданный диапазон с целью безопасного движения автомобилей. Он встраивается внутри колеса.

Датчики второстепенного значения


датчик давления масла В зависимости от комплектации автомобиля число второстепенных датчиков может существенно отличаться.
  • Датчик давления масла присутствует в автомобилях японских производителей. Прибор мембранного типа определяет показатель давления за счет прогиба мембраны. Датчик встраивается в блок цилиндров.
  • Датчик давления топлива устанавливается в бензонасосе. При низком показателе прибор дает команду подкачивающему насосу.
  • В модуле антиблокировочной системы имеется датчик давления тормозной жидкости.
  • Под сиденьями некоторых авто есть сенсоры, которые определяют вес пассажира.

Температурные датчики


Специальные устройства для измерения температуры технических жидкостей и газообразных соединений в автомобиле встречаются во многих системах.
  1. Чтобы контролировать температуру охлаждающей жидкости, в термостате или головке блока цилиндров устанавливается специальный датчик. Он определяет температурный режим двигателя, а при выходе за верхний предел дает команду на включение вентилятора. Если контрольная лампочка охлаждающей жидкости загорается на панели приборов, то это указывает на появление неполадок в системе.
  2. Для бесперебойной работы мотора важно контролировать температуру масла. Датчик монтируется в корпусе масляного фильтра.
  3. Находясь в салоне автомобиля, водителю полезно знать и о температуре атмосферного воздуха. Датчик температуры окружающей среды устанавливается спереди автомобиля.
  4. Многие автомобили, укомплектованные системами климатического контроля, оснащаются датчиками температуры воздуха в салоне. Приборы монтируются в торпеде.

Датчики в топливной системе


Чтобы качество и количество топлива соответствовало нагрузке на двигатель, в топливной системе используется ряд датчиков.
  • Прибор, контролирующий уровень топлива, монтируется в баке. Он оснащен поплавком с длинной штангой и сенсорным реостатом. Показатель уровня топлива напрямую зависит от величины сопротивления сенсора.
  • В топливной системе находится и датчик расхода топлива. Он преобразует количество прошедшего топлива в электрические импульсы. Отличительными чертами прибора являются точность и надежность.
  • Электронное устройство альтиметр встраивается в блок управления двигателем. Он регулирует подачу в камеры сгорания отработанных газов в зависимости от атмосферного давления.
  • Правильную организацию работы газораспределительного механизма обеспечивает измеритель фаз. Он устанавливается недалеко от воздушного фильтра. При износе датчика происходит избыточное обогащение топливной смеси.
  • Датчик детонации предназначен для измерения угла опережения зажигания. Устанавливается измеритель между цилиндрами двигателя. При выходе из строя наблюдается повышение детонации из-за увеличения числа взрывных процессов.
Инновационные технологии позволяют создавать для комфортной эксплуатации автомобиля. Например, датчик дождя управляет работой дворников. Прибор монтируется в области лобового стекла, при попадании капель воды сигнал подается в электронную систему, которая включает щетки. Водителю не нужно отвлекаться от езды на включение и выключение стеклоочистителей.

Элементы систем автоматического управления

Автоматика — отрасль науки и техники об управлении различными процессами и контроле их протекания, осуществляемых без непосредственного участия человека.

Управление различными процессами без вмешательства человека называется автоматическим управлением , а технические средства, с помощью которых оно осуществляется — средствами автоматики .

Параметры производственного технологического процесса, которые необходимо поддерживать постоянно или изменять по определенному закону называется управляемой величиной.

Комплекс технических средств, предназначенных для автоматизации производственных процессов, представляет собой автоматическую систему .

В зависимости от выполняемых функций различают автоматические системы контроля, управления и регулирования .

Системы состоят из объекта управления и автоматического управляющего устройства. Если входными воздействиями для управляющего устройства являются только внешние воздействия, система называется разомкнутой (без обратной связи), если внешние и внутренние — замкнутой (с обратной связью).

В зависимости от способа формирования сигналов управления системы делятся на непрерывные и дискретные (цифровые).

Системы автоматики состоят из ряда связанных между собой элементов, выполняющих определённые функции и обеспечивающих в комплексе весь процесс управления.

В соответствии с выполняемыми функциями все элементы автоматической системы делятся на три группы:

1) измерительная

2) преобразовательная

3) исполнительная

Измерительную группу составляют различного рода датчики.

Преобразовательную — усилительные устройства, регуляторы, цифровые и микропроцессорные устройства.

Исполнительную — электродвигатели , контакторы , управляющие клапаны и др.

Элементами автоматики называются конструктивно законченные устройства, выполняющие определённые самостоятельные функции преобразования сигналов в системах автоматики.

Каждый элемент преобразует энергию, полученную от предыдущего элемента, и передаёт её последующему. Элементы бывают электрическими и неэлектрическими: гидравлическими, пневматическими, механическими и т.д.

Важнейшим требованием, предъявляемым к устройствам автоматики, является высокая надежность. Ненадежная работа системы автоматического управления (отказ или ошибка) может привести к нарушению производственного процесса и к другим тяжелым последствиям.

Особое значение приобретает использование автоматических систем в тех областях, где возможности человека не в состоянии обеспечивать должный уровень контроля над технологическим процессом. Это может касаться как быстро протекающих процессов (например, изменения напряжения), так вредных факторов (например, ядерные реакции, химическое производство).


Автоматизация различных технологических процессов, управление различными машинами, механизмами требуют многочисленных измерений разнообразных физических величин. Информацию о параметрах контролируемой системы или устройства получают с помощью датчиков или по-другому сенсоров.

Датчик — это устройство, преобразующее входное воздействие любой физической величины в сигнал, удобный для дальнейшего использования (чаще всего в электрический сигнал).

Т.о. датчики преобразуют любимую величину в электрический сигнал, который удобно передавать, обрабатывать, выводить на дисплей и т.п.

Используемые датчики весьма разнообразны и могут быть классифицированы по различным признакам:

1) В зависимости от вида входной (измеряемой) величины различают: датчики механических перемещений (линейных и угловых), пневматические, электрические, расходомеры, датчики скорости, ускорения, усилия, температуры, давления и др.

В настоящее время существует приблизительно следующее распределение доли измерений различных физических величин в промышленности: температура - 50%, расход (массовый и объемный) - 15%, давление - 10%, уровень - 5%, количество (масса, объем) - 5%, время - 4%, электрические и магнитные величины - менее 4%.

2) По виду выходной величины, в которую преобразуется входная величина, различают неэлектрические и электрические датчики. Большинство датчиков являются электрическими.

3) По принципу действия датчики можно разделить на два класса: генераторные и параметрические (датчики-модуляторы). Генераторные датчики осуществляют непосредственное преобразование входной величины в электрический сигнал. Параметрические датчики входную величину преобразуют в изменение какого-либо электрического параметра (R, L или C) датчика, поэтому для работы требуют источник питания.

По принципу действия датчики также можно разделить на омические, термометрические, фотоэлектрические, индуктивные, емкостные и д.р.

Различают три класса датчиков:

Аналоговые датчики, вырабатывающие аналоговый сигнал, пропорционально изменению входной величины;

Цифровые датчики, генерирующие последовательность импульсов или цифровой код;

Бинарные (двоичные) датчики, которые вырабатывают сигнал только двух уровней: "включено/выключено" (иначе говоря, 0 или 1).

Омические (резистивные) датчики— принцип действия основан на изменении их активного сопротивления при изменении длины l , площади сечения S или удельного сопротивления p , т.е.

R= pl/S (1.1)

Кроме того, используется зависимость величины активного сопротивления от температуры, контактного давления и освещённости. В соответствии с этим омические датчики делят на: контактные, потенциометрические (реостатные), тензорезисторные, терморезисторные, фоторезисторные.

Контактные датчики — это простейший вид резисторных датчиков, которые преобразуют перемещение первичного элемента в скачкообразное изменение сопротивления электрической цепи. С помощью контактных датчиков измеряют и контролируют усилия, перемещения, положение, температуру, размеры объектов и т. д. К контактным датчикам относятся путевые и концевые выключатели, контактные термометры и так называемые электродные датчики, используемые в основном для измерения предельных уровней электропроводных жидкостей.

Недостаток контактных датчиков является ограниченный срок службы контактной системы, но благодаря простоте этих датчиков они находят широкое применение.

Реостатные датчики представляют собой резистор с изменяющимся активным сопротивлением. Входной величиной датчика является перемещение контакта, а выходной — изменение его сопротивления. Подвижный контакт механически связан с объектом, перемещение (угловое или линейное) которого необходимо преобразовать.

Наибольшее распространение получила потенциометрическая схема включения реостатного датчика, в которой реостат включают по схеме делителя напряжения (рис. 1.1). Переменный резистор, включаемый по схеме делителя напряжения, называют потенциометром.

Выходной величиной U вых такого датчика является падение напряжения между подвижным и одним из неподвижных контактов. Зависимость выходного напряжения от перемещения «х» контакта U вых = f(х) соответствует закону изменения сопротив-ления вдоль потенциометра.

Рисунок 1.1 — Потенциометрическая схема включения реостатного датчика

Обычно реостатные датчики применяют в механических измерительных приборах для преобразования их показаний в электрические величины (ток или напряжение), например, в поплавковых измерителях уровня жидкостей, различных манометрах и т. п.

Тензометрические датчики служат для измерения механических напряжений, небольших деформаций, вибра-ции. Действие тензорезисторов основано на тензоэффекте, заключающемся в изменении активного сопротивления проводниковых и полупроводниковых материалов под воздействием приложенных к ним усилий.

Термометрические датчики (терморезисторы) — сопротивление зависит от температуры.

Терморези-сторы в качестве датчиков используют двумя способами:

1) Температура терморезистора определяется окружающей средой; ток, проходящий через терморезистор, настолько мал, что не вызывает нагрева терморезистора. При этом условии терморезистор используется как датчик температуры.

2) Температура терморезистора определяется степенью нагрева постоянным по величине током и условиями охлаждения. В этом случае установившаяся температура определяется условиями теплоотдачи поверхности терморезистора (скоростью движения окружающей среды - газа или жидкости - относительно терморезистора, ее плотностью, вязкостью и температурой), поэтому терморезистор может быть использован как датчик скорости потока, теплопроводности окружающей среды, плотности газов и т. п.

Рисунок 1.2 — Применение самонагревающегося резистора в качестве датчика расхода

Например, для измерения объёма потребляемого воздуха в автомобильных двигателях в воздухопроводе устанавливается самонагревающийся резистор. Сопротивление такого резистора изменяется вследствие охлаждения потоком воздуха, в результате чего резистор действует как датчик расхода (рис. 1.2).

Индуктивные датчики служат для бесконтактного получения информации о перемещениях рабочих органов машин, механизмов.

Принцип действия датчика основан на изменении электромагнитного поля при попадании в зону действия датчика металлических объектов (на неметаллические материалы датчик не реагирует). В основном индуктивные датчики применяются в качестве бесконтактных выключателей (не требует механического воздействия) для определения положения (конечные и путевые выключатели).

На рисунке 1.3 представлены примеры применения индуктивных датчиков в качестве датчика положения, угла, скорости.

Рисунок 1.3 — Примеры использования индуктивного датчика (ВБИ — выключатель бесконтактный индукционный)

Недостатками индуктивных датчиков является малое расстояние срабатывания и сравнительно небольшая чувствительность.

Емкостные датчики — принцип действия основан на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от диэлектрической проницаемости среды между ними.

Для двухобкладочного плоского конденсатора электрическая емкость определяется выражением:

С = e 0 eS/h (1.2)

где e 0 — диэлектрическая постоянная;

e — относительная диэлектрическая проницаемость среды между обкладками;

S — активная площадь пластин;

h — расстояние между пластинами конденсатора.

Зависимости емкости от площади пластин и расстоянии между ними используется для измерения угловых перемещений, очень малых линейных перемещений, вибраций, скорости движения и т. д.

Широко емкостные датчики применяются для контроля уровня жидкостей и сыпучих материалов. При этом возможно располагать датчики вне резервуара или бункера. Материал, попадая в рабочую зону датчика, вызывает изменение диэлектрическая проницаемость e, что изменяет емкость и вызывает срабатывание датчика (рис. 1.4).

а) б)

Рисунок 1.4 — Емкостной датчик

а) распределение электрического поля конденсатора,

б) пример контроля минимального и максимального уровня

Кроме того, на измерении значения диэлектрической проницаемости e работают датчики толщины слоя непроводящих материалов (толщино-меры) и контроля влажности и состава вещества.

Достоинства емкостных датчиков — простота, высокая чувствительность и малая инерционность. Недостатки — влияние внешних электрических полей, относительная сложность измерительных устройств.

Индукционные датчики преобразуют измеряемую величину в ЭДС индукции. К этим датчикам относятся тахогенераторы, у которых выходное напряжение пропорционально угловой скорости вращения вала генератора. Используются как датчики угловой скорости.

Тахогенератор (рис. 1.5) представляет собой электрическую машину, работающую в генераторном режиме. Контролируемый объект механически связан с ротором тахогенератора и приводит его во вращение. При этом вырабатываемая ЭДС пропорциональна скорости вращения и величине магнитного потока. Кроме того, с изменением скорости вращения изменяется частота ЭДС.

Рисунок 1.5 — Тахогенератор

а) конструкция, б) диаграммы входной и выходной ЭДС

Температурные датчики являются наиболее распространенными; широкий диапазон измеряемых температур, разнообразие условий использования средств измерений и требований к ним определяют многообразие применяемых средств измерения температуры.

Основные классы датчиков температуры для промышленного применения: кремниевые датчики температуры, биметаллические датчики, жидкостные и газовые термометры, термоиндикаторы, термопары, термопреобразователи сопротивления, инфракрасные датчики.

Кремниевые датчики температуры используют зависимость сопротивления полупроводникового кремния от температуры. Диапазон измеряемых температур -50…+150 0 C. Применяются в основном для измерения температуры внутри электронных приборов.

Биметаллический датчик представляет собой пластину из двух разнородных металлов, имеющих различный температурный коэффициент линейного расширения. При нагревании или охлаждении пластина изгибается, размыкая (замыкая) электрические контакты или перемещая стрелку индикатора. Диапазон работы биметаллических датчиков -40 до +550 0 C. Используются для измерения поверхности твердых тел и температуры жидкостей. Основные области применения - системы отопления и нагрева воды.

Термоиндикаторы — это особые вещества, изменяющие свой цвет под воздействием температуры. Производятся в виде пленок.

Термопреобразователи сопротивления (терморезисторы)основаны на изменении электрического сопротивления проводников и полупроводников в зависимости от температуры.

С ростом температуры сопротивление металлов возрастает. Для изготовления металлических терморезисторов используется медь, никель, платина. Платиновые терморезисторы позволяют измерять температуры в пределах от -260 до 1100 0 С.

Полупроводниковые терморезисторы имеют отрицательный или положительный температурный коэффициент сопротивления. Кроме того, полупроводниковые терморезисторы при весьма малых размерах имеют высокие значения сопротивления (до 1 МОм).

Применяются для изменения температур в диапазоне от -100 до 200 0 С.

Термопары представляет собой соединение (спай) двух разнородных металлов. Работа основана на термоэлектрическом эффекте - при наличии разности температур спая Т 1 и концов термопары Т 0 возникает электродвижущая сила, называемая термо-электродвижущей (сокращенно термо-ЭДС). В определенном интервале температур можно считать, что термо-ЭДС прямо пропорциональна разности температур ΔT = Т 1 - Т 0 .

Термопары позволяют измерять температуру в диапазоне от -200 до 2200 0 С. Наибольшее распространение для изготовления термоэлектрических преобразователей получили платина, платинородий, хромель, алюмель.

Термопары дешевы, простоты в изготовлении и надёжны в эксплуатации. Измерительные мультиметры комплектуются именно термопарами.

Инфрокрасные датчики (пирометры) - используют энергию излучения нагретых тел, что позволяет измерять температуру поверхности на расстоянии. Пирометры делятся на радиационные, яркостные и цветовые. Позволяют измерять температуру в труднодоступных местах и температуру движущихся объектов, высокие температуры, где другие датчики уже не работают.

Пьезоэлектрические датчики основаны на пьезоэлектрическом эффекте (пьезоэффекте), заключаю-щегося в том, что при сжатии или растяжении некоторых кристал-лов на их гранях появляется электрический заряд, величина ко-торого пропорциональна действующей силе.

Используются для измерения сил, давления, вибрации и т.д.

Оптические (фотоэлектрические) датчики работают либо на основе внутреннего фотоэффекта - изменении сопротивления при изменении освещенности, либо вырабатывают фотоЭДС, пропорциональную освещенности.

Различают аналоговые и дискретные оптические датчики. У аналоговых датчиков выходной сигнал изменяется пропорционально внешней освещенности. Основная область применения - автоматизированные системы управления освещением.

Датчики дискретного типа изменяют выходное состояние на противоположное при достижении заданного значения освещенности.

Фотоэлектрические датчики могут быть применены практически во всех отраслях промышленности. Датчики дискретного действия используются как своеобразные бесконтактные выключатели для подсчета, обнаружения, позиционирования и других задач.

Рисунок 1.6 — Примеры использования фотоэлектрических датчиков

Регистрирует изменение светового потока в контролируемой области,связанное с изменением положения в пространстве каких-либо движущихся частей механизмов и машин, отсутствия или присутствия объектов.

Оптический бесконтактный датчик состоит из двух функциональных узлов: приемника и излучателя. Данные узлы могут быть выполнены как в одном корпусе, так и в различных корпусах.

Выделяют два метода обнаружения объекта фотоэлектрическими датчиками:

1) Пересечение луча - в этом методе передатчик и приемник разделены по разным корпусам, что позволяет устанавливать их напротив друг друга на рабочем расстоянии. Принцип работы основан на том, что передатчик постоянно посылает световой луч, который принимает приемник. Если световой сигнал датчика прекращается, вследствие перекрытия сторонним объектом, приемник немедленно реагирует, меняя состояние выхода.

2) Отражение от объекта - в этом методе приемник и передатчик находятся в одном корпусе. Во время рабочего состояния датчика все объекты, попадающие в его рабочую зону, становятся своеобразными рефлекторами (отражателями). Как только световой луч отразившись от объекта попадает на приемник датчика, тот немедленно реагирует, меняя состояние выхода.

Домашнее задание

1) Назовите какие типы датчиков и объясните, почему могут быть применены в качестве датчиков положения.

2) Назовите какие типы датчиков и объясните, почему могут быть применены в качестве датчиков скорости.

3) Назовите какие типы датчиков и объясните, почему могут быть применены в качестве датчиков - расходомеров.

4) На рисунке изображён индуктивный датчик.

Запишите, какие параметры датчика и в какую сторону будут изменяться при движении якоря:

1) вверх; 2) вниз; 3) вправо; 4) влево.

5) Объясните назначение изображённого на рисунке датчика (слева).

6) Объясните назначение изображённых на рисунке датчиков (справа). Почему использовано два датчика?