Ю.В. Балабан-Ирменин, Причины возникновения язв на углеродистой стали в условиях теплосети. Питтинговая коррозия: причины. Методы защиты металлов от коррозии

Ю.В. Балабан-Ирменин, Причины возникновения язв на углеродистой стали в условиях теплосети. Питтинговая коррозия: причины. Методы защиты металлов от коррозии

Локальные виды коррозии

Несмотря на многообразие форм проявления коррозионных про­цессов на металлических материалах, существует классификация, позволяющая более или менее четко относить каждое из наблюдае­мых на практике коррозионных поражений к определенному классу. В один класс выделены так называемые локальные коррозионные процессы, общей чертой которых является то, что все они протека­ют на сравнительно небольших по площади участках поверхности металла и развиваются с крайне высокой скоростью. В результате происходит быстрая потеря металлическими конструкциями эксплу­атационных свойств из-за разрушения их сравнительно небольших участков. Повышенная опасность локальных коррозионных процес­сов связана с тем, что из-за малых размеров пораженных ими пло­щадей поверхности и высоких скоростей растворения металла в них существование самого очага зачастую обнаруживается только в момент выхода оборудования из строя. Постоянное ужесточение условий эксплуатации металлического оборудования и вовлечение в промышленную сферу все новых металлических конструкционных материалов приводит к тому, что с течением времени доля локальных коррозионных поражений неуклонно возрастает.

К основным видам локальной коррозии относится питтинговая, язвенная, щелевая, межкристаллитная, селективное вытравливание и контактная коррозия.

Питтинговая коррозия (ПК) является одним из наиболее опас­ных видов локальной коррозии. Ей подвержены многие пассивиру­ющиеся металлы и сплавы.

К питтинговой коррозии склонно подавляющее большинство ме­таллов (Fе, Ni, Со, Мп, Сг,Т1, А1, Мs, Zг, Та, Си, Zп и др.) и конструкционных материалов на их основе. Питтинговая коррозия возникает в морской воде, растворах солей, в охлаждающих системах холодильных машин, в системах оборотного водоснабжения химиче­ских предприятий. Термин «питтинг» применяют для описания как точечной коррозии, так и специфических коррозионных поражений. Название питтинг обычно используют применительно к глубоким точечным поражениям.

В зависимости от условий формирования и развития (темпера­тура, кислотность

Часто крупные (полусферические) питтинги возникают в резуль­тате слияния множества более мелких кристаллографических

Для протекания питтинговой коррозии необходимо выполнение ряда условий:

Питтинг образуется на поверхности металлов, находящихся в пассивном состоянии

Развитию питтинга способствуют дефекты пассивирующей пленки (структурные неоднородности, посторонние включе­ния, поры). Особенно уязвимы для питтинга ребра, риски, границы лакокрасочных покрытий;

В растворе должны одновременно присутствовать активаторы питтинговой коррозии и пассиваторы металла.

Стимуляторами питтинговой коррозии металлов в водных сре­дах являются ионы С1 - , Вг - , I - Анионы-активаторы в тех или иных количествах присутствуют в подавляющем большин­стве природных и технологических сред, в которых эксплуатируется металлическое оборудование и конструкции.

Относительная эффективность действия анионов-активаторов располагается в ряду С1~ > Вг~ > .

Язвенная коррозия по характеру своего развития очень напомина­ет ПК, однако локализация коррозионного процесса при этом менее острая, и диаметр очагов язвенной коррозии гораздо больше, чем при ПК. Диаметр язв, как правило, существенно больше их глубины. Язвенная коррозия протекает как на пассивных, так и на активно растворяющихся металлах. Повышенной склонностью к язвенной коррозии обладают углеродистые и низколегированные стали.

Язвенная коррозия, как правило, протекает на поверхности актив­но растворяющихся металлов (в некоторых случаях коррозионные язвы могут образовываться и при слиянии питтингов, растущих на пассивном металле) и по характеру своего развития напоминает питтинговую коррозию, вследствие чего четкая квалификация локально­го коррозионного процесса часто бывает затруднена. Склонностью к язвенной коррозии обладают углеродистые и низколегированные стали, эксплуатирующиеся в водных хлоридсодержаших средах, на­пример, водоводы, водопроводы, теплоэнергетическое оборудова­ние.

Щелевая коррозия проявляется в условиях, когда из-за близости расположения двух поверхностей (то есть в местах застоя раство­ра) возникают узкие зазоры или щели. При этом не имеет большого значения, что явилось причиной образования щели - особенно­сти металлической конструкции или свойства структуры металла. Щелевой коррозии подвержены многие металлы и металлические изделия.

Межкристаллитная коррозия (МКК) возникает в поликристал­лических материалах, преимущественно сплавах железа, алюминия и меди, протекает на границах зерен и является следствием различия химического состава тела зерна и его зернограничных областей.

Межкристаллитной коррозии (МКК) под­вержены легко пассивирующиеся металличе­ские материалы, например, нержавеющие ста­ли, сплавы на основе никеля, алюминий и его сплавы. Причиной МКК является ускоренное растворение металла границ зерен (рис. 5.3). Практически важен случай, когда скорость рас­творения приграничных областей на несколько

порядков величины превышает скорость растворения основного ме­талла. При этом происходит нарушение связи между отдельными зернами металла и их последующее выкрашивание, вследствие ко­торого металлические конструкции теряют свои эксплуатационные свойства.

Селективное вытравливание характерно для конструкционных материалов, состоящих из двух или более фаз, сильно отличающих­ся по своим свойствам, вследствие чего одна из них подвергается преимущественному растворению, тогда как другие растворяются с гораздо более низкими скоростями. Это приводит к образованию в металле полостей различной глубины и конфигурации, вследствие чего металл теряет свою сплошность, а, следовательно, и эксплуа­тационные качества. Характерен этот вид растворения для нержаве­ющих сталей, когда селективному растворению подвергаются выде­ляющиеся по границам их зерен карбиды.

Контактная коррозия развивается при возникновении контакта между двумя или более разнородными металлами.

Контактная коррозия развивается в растворах электролитов при контакте металлов, обладающих различными электрохимическими свойствами, например, системы углеродистая сталь/нержавеющая сталь, углеродистая сталь/алюминий (или его сплавы) и др. Контакт­ная коррозия может возникать также в случаях, если различие элек­трохимических свойств обусловлено применением пайки или сварки при изготовлении конструкции из одного и того же металла; или при контакте деталей, изготовленных из металла одной и той же марки, но существенно различающегося по своим свойствам в ее пределах. Механические напряжения, приводящие к изменению электрохими­ческих характеристик металла, также могут вызвать возникновение контактной коррозии при соединении деталей из одного и того же металла, но по-разному механически обработанных. Таким образом, плохо продуманные с точки зрения конструкционного оформления сложные металлические объекты могут досрочно выходить из строя вследствие контактной коррозии.



При контактной коррозии на поверхности обеих составляющих системы реализуется компромиссный потенциал, определяемый пересечением суммарных анодной и катодной поляризационных кри­вых. Скорости растворения обеих составляющих системы при этом потенциале будут отличаться от индивидуальных скоростей раство­рения каждой из составляющих в том же растворе.

Если бы раствор электролита обладал бесконечной электропро­водностью, эквипотенциальность поверхности распространялась бы на сколь угодно большое расстояние. В реальных случаях, когда экс­плуатационная среда обладает конечной электропроводностью, эк­випотенциальность будет соблюдаться лишь на части поверхности биметаллической системы, непосредственно прилегающей к месту контакта. По мере удаления от места контакта потенциал каждой из составляющих системы будет все сильнее отклоняться от компро­миссного потенциала, приближаясь к собственному значению. Зона эквипотенциальности тем протяженнее, чем выше электропровод­ность среды. Такое поведение обусловлено наличием в слабоэлек­тропроводной среде омических потерь - 1К погрешности.

Отличительной чертой процессов локальной коррозии является поражение ими малых участков поверхности металлических кон­струкций, скорость растворения металла в которых существенно превышает скорость растворения основной доли поверхности. Ско­рость проникновения очагов локальной коррозии в глубь металла может достигать десятков см/год. Большинство процессов локаль­ной коррозии (за исключением селективного растворения и контакт­ной коррозии) носит вероятностный характер. Указанные черты хотя и являются общими, но не раскрывают особенностей механизма ло­кальных коррозионных процессов. Более важны сходства, наблюда­емые при рассмотрении механизма процессов локальной коррозии металлов.

Как правило, все локальные коррозионные процессы протека­ют через несколько последовательно сменяющих друг друга ста­дий, каждой из которых соответствует свой лимитирующий процесс. Основными являются:

Стадия зарождения, соответствующая нарушению равномерно­го протекания коррозии и переходу процесса к стационарному развитию очагов локальной коррозии; стадия имеет достаточ­но высокую продолжительность и называется индукционным периодом т инд;

Стадия устойчивого функционирования очага локальной корро­зии, в течение которой происходит катастрофически быстрое разрушение локально активированных участков металла;

Завершающая стадия развития - залечивание (репассивация) очагов локальной коррозии.

В процессе развития локальных коррозионных процессов часто происходит переход одного вида в другой. Так, например, началь­ной стадией развития язвенной, межкристаллитной и щелевой кор­розии, а также ряда коррозионно-механических повреждений при коррозионно-усталостных процессах или при статической коррозии под напряжением, часто является питтинговая коррозия. Вид корро­зии, подобный питтинговой, развивается а местах несплошности и отслоения покрытий различного типа.

2.14. 2.КОРРОЗИОННО-МЕХАНИЧЕСКИЕ РАЗРУШЕНИЯ МЕТАЛЛОВ .

Металлические конструкции, работающие в условиях одновре­менного воздействия агрессивных сред и механических напряжений, подвергаются более сильному разрушению.

В химической промышленности можно найти многочисленные примеры совместного влияния этих двух факторов.

Процессы синтеза аммиака, мочевины, метилового спирта протекают в агрессивных средах, в условиях повышенных темпе­ратур при движении газового потока под давлением 35-40 МПа.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Магнитогорский государственный технический университет

им. Г. И. Носова»

(ФГБОУ ВПО «МГТУ»)

По дисциплине: «Защита металлов от коррозии»

На тему: «Межкристаллитная коррозия. «Ножевая» коррозия. Коррозионное

растрескивание. Язвенная и точечная коррозии»

Выполнили: ст. гр. ТФБ-11 Иванова К. С.,

Пешкова А. А.

Проверила: Пыхтунова С.В.

Магнитогорск, 2013

    Межкристаллитная коррозия 3

    «Ножевая» коррозия 5

    Коррозионное растрескивание 6

    Язвенная коррозия 8

    Питтинговая (точечная) коррозия 9

Список литературы 12

    Межкристаллитная коррозия.

Межкристаллитная коррозия (МКК) – один из видов местной коррозии металла, который приводит к избирательному разрушению границ зерна. Межкристаллитная коррозия – очень опасный вид разрушения, т.к. визуально ее не всегда можно определить. Металл теряет свою пластичность и прочность.

Межкристаллитной коррозии чаще всего подвергаются металлы и сплавы, которые легко становятся пассивными. К ним относятся хромоникелевые и хромистые сплавы (нержавеющие стали), сплавы алюминия, никеля, некоторые другие.

Рис. 1. Межкристаллитная коррозия

Причина возникновения межкристаллитной коррозии: структурные превращения на границах зерен металла. Зона структурных превращений становится анодом, который усиленно растворяется. Связь между зернами металла нарушается и происходит их выкрашивание. Вследствии этих процессов металлические конструкции при эксплуатации теряют свои свойства и быстро приходят в негодность.

Факторы межкристаллитной коррозии (МКК):

1) Состав сплава;

2) Температура;

3) Время выдержки при повышенных температурах;

Скорость протекания межкристаллитной коррозии определяется потенциалом металла. Ускоренное ее развитие наблюдается при потенциалах входа в транспассивную область (1,15 – 1,25В), а также при потенциале активно-пассивного перехода (около 0,35В). В разных областях межкристаллитная коррозия может протекать по разным механизмам.

Рис. 2 . Межкристаллитная коррозии:

а- микроструктура металла до коррозии; б- микроструктура на стадии коррозии, образование трещин по границам металла.

    «Ножевая» коррозия.

Рис. 3. «Ножевая» коррозия.

« Ножевая» коррозия – разновидность межкристаллитной коррозии (МКК). Ножевая коррозия – местное разрушение, которое наблюдается на сварных швах. Протекает в узкой зоне, на границе основной металл - сварной шов. Ножевой коррозии подвержены многослойные сварные швы высокоуглеродистых хромоникелевых сталей, стабилизированные титаном стали, которые эксплуатируются в азотной кислоте. Даже стали с большим содержанием молибдена.

При сварке почти расплавленный металл (с температурой около 1300 ο С) контактирует с холодным. В расплавленном металле растворяются карбиды хрома или титана, а при его охлаждении не успевают выделится новые карбиды. При этом углерод остается в твердом растворе. Из-за достаточно медленного охлаждения выпадает большое количество карбидов Cr. В агрессивных средах происходит постепенное растворение (на межкристаллитном уровне) узкой зоны возле сварного шва.

Предотвращение ножевой коррозии:

Применять только низкоуглеродистые хромоникелевые стали;

Избегать «опасных» температур околошовной зоны;

Использовать стабилизирующий отжиг при температурах 870 – 1150 ο С (карбиды Cr переходят в твердый раствор).

    Коррозионное растрескивание.

Коррозионное растрескивание металлов – это один из видов коррозионных разрушений (коррозии), при котором в металле зарождается и развивается множество трещин. Возникает коррозионное растрескивание при одновременном воздействии на металл агрессивной коррозионной среды и растягивающих напряжений. Характерной особенностью коррозионного растрескивания является практически полное отсутствие пластической деформации металлического изделия.

Коррозионное растрескивание – очень опасный вид разрушения металла, т.к. не всегда его можно вовремя заметить. Чаще всего коррозионному растрескиванию подвергаются металлы, в которых после механической или термической обработки присутствуют остаточные напряжения. Также металлические изделия, эксплуатируемые при повышенных температурах и давлениях. Встречается коррозионное растрескивание при сварке, сборке или монтаже металлических деталей и т.п.

Рис. 4. Коррозионное растрескивание.

Коррозионному растрескиванию могут подвергаться все металлы и сплавы, которые находятся в напряженном состоянии. Большое влияние на интенсивность коррозионного растрескивания оказывает коррозионная среда (ее характер, состав и концентрация агрессивных агентов).

В теплоэнергетической, химической и нефтегазовой отраслях 20 – 40% всех коррозионных разрушений приходится именно на коррозионное растрескивание.

Особенности коррозионного разрушения металлов:

Существует возможность возникновения транскристаллитных и межкристаллитных трещин с разветвлениями;

Металл с появлением трещин охрупчивается;

От величины приложенных растягивающих напряжений зависит время до начала образования трещины (индукционный период).

Коррозионное растрескивание сталей наблюдается в растворах, которые содержат кислоты, хлориды, щелочи, нитраты, H 2 S, CO 2 , NH 3 . Менее склонны к коррозионному растрескиванию углеродистые стали с перлитной или перлитно-ферритной структурой, содержащие в своем составе более 0,2% углерода. Мартенситная структура стали является самой чувствительной к данному виду коррозии, т.к. все режимы термообработки, в результате которых образуется мартенсит, делают сталь склонной к коррозионному растрескиванию.

Хромоникелевые аустенитные стали более подвержены коррозионному растрескиванию, чем ферритные и полуферритные хромистые стали. В нержавеющих сталях аустенит не обладает достаточной стабильностью и в условиях химических предприятий достаточно часто встречается коррозионное растрескивание аустенитных хромоникелевых сталей. Введение стабилизаторов, легирующих компонентов, увеличение содержания никеля не оказывает существенного воздействия на склонность аустенитных сталей к коррозионному воздействию.

Коррозионному растрескиванию подвержены не только черные металлы и сплавы, а и цветные (например, медноцинковые и алюминиевомагниевые сплавы). В присутствии паров аммиака быстро корродируют с коррозионным растрескиванием сплавы меди с оловом, цинком и алюминием. А в растворах карбонатов, хлоридов, сульфатов и хроматов разрушаются магниевые сплавы, которые находятся в напряженном состоянии.

    Язвенная коррозия.

Язвенная коррозия - это форма локального поражения, результатом которой являются поры в металле. Эти поры могут быть как малого, так и большого диаметра, но чаще всего они относительно малы. Они могут быть причиной сквозного прободения металла или сплава. Часто поры изолированы либо расположены так близко друг к другу, что выглядят как шероховатость поверхности. В общем, поры можно представить как отверстия или каверны, диаметр которых равен или меньше их длины. Питтинг это одна из наиболее коварных форм коррозии. Он приводит к разрушению оборудования вследствие сквозного прободения при очень незначительной потере общего веса всей конструкции.

Язвенная коррозия часто развивается в местах пор или поврежденных участков:

Непроводящего слоя металлической поверхности (окисной пленки);

Металлического покрытия поверхности, которое является более благородным по отношению к основному металлу. Это может инициировать питтинг на основном металле

Язвенная коррозия часто наблюдается у нержавеющих стальных сплавов. На развитие коррозии влияют такие факторы, как температура и движение среды.

Рис. 6. Язвенная коррозия.

    Питтинговая (точечная) коррозия.

Питтинговая (точечная) коррозия – вид коррозионного разрушения, которому подвергаются исключительно пассивные металлы и сплавы. Питтинговая коррозия наблюдается у никелевых, циркониевых, хромоникелевых, хромистых, алюминиевых сплавах и др.

При питтинговой (точечной) коррозии разрушению подвергаются только отдельные участки поверхности, на которых образуются глубокие поражения – питтинги (точечные язвы).

Наблюдается питтинговая коррозия при воздействии на металл или сплав не только пассиваторов (приводят поверхность в пассивное состояние, например, окислитель), но и ионов-активаторов (Cl-, Br-, J-). Активно

протекает питтинговая (точечная) коррозия в морской воде, смеси азотной и соляной кислот, растворах хлорного железа, других агрессивных средах.

По размерам питтинги различают:

Микропиттинги (до 0,1 мм);

Питтинги (0,1 – 1мм);

Пятно, язва (более 1 мм).

Питтинг может быть: закрытым, открытым и поверхностным.

Открытые питтинги - хорошо видны на поверхности невооруженным глазом или под небольшим увеличением. Если открытых питтингов очень много – коррозия приобретает сплошной характер. В открытом питтинге дно поры выступает в качестве анода, а пассивная пленка – катода.

Закрытые питтинги – очень опасный вид коррозионного разрушения, т.к., такие повреждения нельзя увидеть воочию, определить их наличие можно лишь по специальным приборам. Закрытые питтинги развиваются вглубь металла или сплава. Закрытый питтинг может послужить причиной пробоя даже в нержавеющих сталях.

Поверхностный питтинг – вид питтинга, который развивается больше вширь, чем вглубь, образуя на поверхности металла или сплава выбоины.

Этапы роста питтинга:

1) Зарождение питтинга происходит в местах дефектов пассивной пленки (царапины, разрывы) или ее слабых местах (если имеет место неоднородность сплава) при достижении определенного потенциала - потенциала питтингообразования (φпо). Ионы-активаторы вытесняют адсорбированный на поверхности кислород или при взаимодействии разрушают оксидную защитную пленку.

2) Рост питтинга – происходит по электрохимическому механизму, вследствии интенсивного растворения пассивной оксидной пленки. Из-за активного растворения пленки происходит усиление анодного процесса в самом питтинге (активационный рост питтинга). Со временем, когда питтинг будет достаточно расширен, активационный рост замедляется, начинается диффузионный режим роста питтинга.

3) Иногда рост питтинга прекращается и наступает стадия репассивации. Основной причиной репассивации можно считать сдвиг потенциала поверхности в отрицательную сторону, т.е. сторону пассивации. Питтинг с диффузионным режимом роста (постепенно, стабильно растущий питтинг) не может перейти в стадию репассивации.

Склонность к питтинговой коррозии определяется некоторыми факторами:

Природой металла или сплава (склоны к образованию питтингов алюминий, никель, цинк; молибден, хром, кремний и др. питтингообразованию не подвергаются);

Температурой (с повышением температуры растет количество питтингов);

Состоянием поверхности (хорошо отполированная поверхность более стойкая, чем шероховатая);

РН среды (чаще возникают питтинги в кислых средах);

Примесями в среде (наличием ионов-активаторов).

Защита металлов и сплавов от питтинговой (точечной) коррозии осуществляется следующими методами:

1) Электрохимическая катодная и анодная защита (иногда вместе с ингибиторами);

2) Подбор специальных материалов, которые не подвергаются питтинговой (точечной) коррозии. Повышению стойкости способствуют введение в состав сплава хрома, молибдена, кремния и др. стойких металлов.

3) Ингибирование замкнутых систем (применение нитратов, щелочей, хроматов, сульфатов).

Рис. 7. Питтинговая (точечная) коррозия.

Список литературы:

1. Краткая химическая энциклопедия под редакцией И.А. Кнуянц и др. - М.: Советская энциклопедия, 1961-1967, Т.2.

2. Советский энциклопедический словарь. - М.: Советская энциклопедия, 1983.

3. Андреев И.Н. Коррозия металлов и их защита. - Казань: Татарское книжное издательство, 1979.

4. Войтович В.А., Мокеева Л.Н. Биологическая коррозия. - М.: Знание, 1980, № 10.

Коррозией называют разрушение поверхности материалов в результате активно проходящих окислительно-восстановительных процессов. Разрушение слоев материала приводит к снижению прочности, электрической проводимости, повышению хрупкости и угнетению других свойств металла.

В процессе эксплуатации металлических изделий они подвергаются разрушающим воздействиям различных видов и типов, среди которых выделяется питтинговая коррозия. Она наиболее опасная и непредсказуемая.

Питтинговая коррозия

На поверхности металлических изделий довольно часто можно заметить небольшие углубления, точки бурого или коричневого цвета. Такие точки ученые называют питтингами, а процесс их появления - питтинговой коррозией. Она возникает на поверхности материалов, контактирующих с морской водой, растворами различных солей, химически агрессивными средами и воспринимающих другие негативные факторы.

Питтинговая коррозия поражает только пассивные металлы и сплавы, развивается преимущественно в антикоррозионном слое или по местам разнообразных дефектов. «Точечные язвы» могут нарушать работу различных изделий: от тонких мембран и микросхем, до толстостенных агрегатов. Кроме того, их появление способствует образованию коррозионных трещин, существенно снижающих заданные характеристики материала.

Схема разрушения металла

Для активации питтинговой коррозии необходимо присутствие двух реагентов - активаторов и пассиваторов. В качестве активаторов чаще всего выступают анионы хлора, брома, йода - они содержатся в большинстве сред, в которых эксплуатируются металлические изделия. Они адсорбируются на поверхности металла и образуют с его компонентами растворимые комплексы.

В качестве пассиваторов чаще всего выступает вода или гидроксильная группа. Непосредственно процесс разрушения протекает по следующей схеме:

  1. Ионы-активаторы адсорбируются на поверхности защитной (оксидной) пленки.
  2. Происходит процесс замещения ионов кислорода на ионы активатора процесса.
  3. Образуется большое количество растворимых ионов, в результате чего пленка разрушается.

В результате этого возникает разность потенциалов на поверхности материала, что ведет к появлению локальных токов, активизируется бурный анодный процесс. Ионы-активаторы при этом перемещаются к очагам разрушения, из-за чего питтинговая коррозия прогрессирует.

Разновидности питтинговой коррозии

Вид питтинговой коррозии варьируется в зависимости от окружающих условий, главным образом от температуры, кислотности, химического состава веществ. Под действием этих факторов меняется форма, размер питтингов и их расположение. Так, согласно размеру выделяют точечное разрушение:

  • микроскопическое - размер точек менее 0,1 мм;
  • обычное - диаметр питтингов варьируется от 0,1 до 1 мм;
  • язвенное, когда образования превышают 1 мм в диаметре.

В зависимости от расположения питтинговая коррозия может быть открытого или закрытого типа. В первом случае обнаружить следы разрушения практически невозможно - необходимо применение специальных приборов. Этот вид коррозии очень часто ведет к появлению пробоев.

Открытое ржавление заметно невооруженным взглядом. Нередко питтинги сливаются в единое образование. При этом разрушение материала происходит не вглубь, а в ширину, из-за чего возникают большие по площади дефекты.

Форма питтингов

Форма питтингов зависит от пустот внутри кристаллической решетки, которые образуются на первых этапах коррозионного процесса. Чаще всего встречаются образования неправильной формы - они возникают на поверхности нержавеющей, низколегированной и углеродистой сталей, алюминиевых, хромовых, никелевых сплавов, железа.

Полусферические язвы образуются в результате изотропного растворения. Этот процесс схож с электрополировкой. Отчасти этим и объясняется блестящее дно полукруглых углублений. Наиболее подвержены подобному разрушению титановые, алюминиевые, никелевые и кобальтовые изделия, а также конструкции из тантала. Приблизительно такой же вид имеет питтинговая коррозия

Кроме того, питтинги могут быть полиэдрическими и ограненными. «Язвы» последнего типа очень часто объединяются друг с другом, что приводит к возникновению крупных полусферических разрушений.

Причины появления

Основными причинами появления питтинговой коррозии являются нарушение технологии производства и механическое воздействие на материал. В результате нарушения технологии отливки в металле появляются разнообразные микровключения, которые нарушают его структуру. Наиболее распространенным включением можно назвать прокатную окалину.

Из-за механического воздействия очень часто на поверхности изделий начинает развиваться питтинговая коррозия. Причины этого кроются в разрушении верхней защитной пленки, нарушении внутренней структуры, выходе на поверхность границ зерен. Наиболее распространенным активизирующим процесс фактором можно назвать динамическое воздействие, что ведет к появлению микротрещин.

Питтинговая развивается быстрее на шероховатых поверхностях, а также под воздействием агрессивных сред - морской воды, кислотных растворов.

Методы защиты металла от питтинговой коррозии

Для защиты металлических изделий от питтинговой коррозии используют три основных способа:

  1. Ликвидация замкнутых систем при помощи растворов щелочных соединений, сульфатов, хроматов.
  2. Введение в состав материала компонентов с высокой сопротивляемостью точечному ржавлению - молибдена, хрома, кремния.
  3. Использование катодной и анодной технологии создания защитного слоя.

Все представленные методы защиты металлов от коррозии применимы лишь на производстве, ибо требуют высокотехнологичного оборудования и больших капиталовложений. В быту же полностью исключить риск появления питтингов невозможно. Удается лишь ослабить влияние негативно действующих факторов посредством:

  • нанесения ;
  • улучшения условий эксплуатации изделий;
  • снижения уровня кислотности среды, с которой соприкасается материал.

Но самым действенным и доступным методом является тщательная полировка: уменьшая вы одновременно повышаете ее антикоррозионную стойкость. Но для лучшего эффекта лучше использовать все методы защиты металлов от коррозии одновременно.

Коррозия в зависимости от характера коррозионных разрушений делится на сплошную и местную.

Сплошная коррозия – появляется при отсутствии защитных пленок на

поверхности металла или при равномерном распределении анодных и катодных участков. Потеря прочности образца пропорциональна потере массы и поэтому этот вид коррозии менее опасный.

Местная коррозия – имеет несколько разновидностей: пятнистая, язвенная, подповерхностная, межкристаллитная.

Пятнистая коррозия – отмечается большая площадь очагов и их малая глубина. По характеру разрушений близка к сплошной коррозии.

Язвенная коррозия – отмечается значительная глубина разрушений,

которая превышает их протяженность (питтинговая коррозия).

Точечная коррозия – наблюдаются глубокие разрушения, часто с образованием сквозных отверстий. Более опасный вид разрушения, чем при

сплошной и пятнистой коррозии, так как, потери массы меньше, чем потери

механической прочности.

Подповерхностная коррозия – характеризуется распространением

очага разрушения под поверхностью металла, что приводит к вспучиванию и

расслоению металла продуктами коррозии.

Избирательная коррозия обусловлена разрушением одного из

компонентов или одной из фаз гетерогенного сплава. К избирательной коррозии можно отнести межкристаллитную коррозию, при которой разрушение идет по границам зерен кристаллов. В некоторых случаях разрушение может распространяться внутрь металла, приводя к значительному снижению прочности образца. Этот вид коррозии наиболее опасный, так как трудно контролируемый и называется транскристаллитной (внутрикристаллической) коррозией.

Щелевая коррозия – обусловлена неравномерным обтеканием, средой

различных участков аппарата, что приводит к образованию катодных и анодных участков. Щелевая коррозия является разновидностью электрохимической коррозии.

Для примера рассмотрим некоторые особенности коррозии нержавеющих сталей и способы борьбы с ней. Высокая коррозионная стойкость нержавеющих сталей определяется их способностью легко (покрываться защитной пленкой) даже в обычных атмосферных условиях за

счет кислорода воздуха.

Коррозионная стойкость нержавеющих сталей зависит:

стойкость стали значительно снижается.

3. От структурного состояния сталей. Наибольшей коррозионной стойкостью обладают твердые растворы, легированные хромом и никелем. Нарушение однородности структуры, вследствие образования карбидов или нитридов, приводит к уменьшению содержания хрома в твердом растворе и снижению коррозионной стойкости.



4. От природы агрессивной среды и устойчивости пассивной пленки.

Нержавеющие стали устойчивы в растворах азотной кислоты, различных нейтральных и слабокислых растворах при доступе кислорода и неустойчивы в соляной, серной и плавиковой кислотах. Стали теряют свою устойчивость в сильно окислительных средах вследствие разрушения пассивных пленок, например, в высококонцентрированной азотной кислоте при высоких температурах.

5. От температуры – с повышением температуры коррозионная стойкость нержавеющих сталей резко ухудшается как в окислительных, так и в неокислительных средах.

Коррозия в нержавеющих сталях может протекать как по электрохимическому, так по химическому механизму.

Ввиду сложного структурного состояния и большой разницы в электрохимических и коррозионных свойствах структурных составляющих, нержавеющие стали особенно склонны к проявлению локальных разрушений

(межкристаллитная коррозия, точечная, язвенная).

В сложных конструкциях, имеющих зазоры и щели, характерно проявление щелевой коррозии.

Межкристаллитная коррозия чаще проявляется в сварных соединениях

и в случае неправильной термической обработки. При этом зерна находятся в пассивном состоянии, а границы зерен в активном, вследствие образования карбида хрома. С повышением содержания в стали углерода чувствительность ее к межкристаллитной коррозии резко возрастает. Существенное влияние на чувствительность сталей к межкристаллитной коррозии оказывает размер зерен, причем, чем меньше размер зерна, тем меньше чувствительность стали к коррозии.

Существует несколько эффективных способов борьбы с межкристаллитной коррозией:

1. Снижение содержания углерода, вследствие чего уменьшается карбидообразование по границам зерен. Менее чувствительные стали с содержанием углерода менее 0,3 %.

2. Применение закалки в воду с высоких температур. При этом карбиды хрома по границам зерен переходят в твердый раствор.

3. Применение стабилизирующего отжига при 750-900 °С, при этом происходит выравнивание концентрации хрома по зерну и по границам зерен.

4. Легирование сталей стабилизирующими карбидообразующими элементами – титаном, ниобием, танталом. Вместо карбидов хрома углерод связывается в карбиды титана, тантала, ниобия, а концентрация хрома в твердом растворе остается постоянной.

Создание двухслойных сталей – аустенитно-ферритных. Точечная и

язвенная коррозия нержавеющих сталей часто встречается при эксплуатации

изделий в морской воде. Это связано с адсорбцией хлорионов на некоторых

участках поверхности стали, вследствие чего происходит локализация коррозии. Легирование молибденом резко увеличивает сопротивляемость металла действию хлорионов.

Для изделий из нержавеющей стали сложных конструкций, имеющих

щели, зазоры, карманы, характерна щелевая коррозия. Ее механизм связан с

затруднением диффузии кислорода или другого окислителя или анодных замедлителей коррозии в труднодоступные участки конструкции, вследствие

чего на этих участках сталь переходит в активное состояние.

Методы борьбы с этим видом коррозии сводятся прежде всего к устранению зазоров, карманов, щелей, контактов стали с неметаллическими материалами, т. е. к конструктивным мерам. Весьма эффективно также увеличение концентрации окислителя или анодных замедлителей в растворе.

Коррозионная стойкость нержавеющих сталей может быть значительно

повышена методами легирования, применения оптимальных режимов термической, механической и химико-термической обработки сталей.

Наиболее эффективным является увеличение содержания хрома и снижение содержания углерода. Значительно повышается коррозионная стойкость сталей при введении никеля, молибдена, меди, титана, тантала, ниобия, а также палладия и платины. Коррозионная стойкость нержавеющих сталей в значительной степени определяется защитными свойствами поверхностной пассивной пленки, которые зависят от состава стали и качества обработки поверхности.

Наибольшая коррозионная стойкость в атмосферных условиях достигается в полированном состоянии.

Для защиты сталей от окисления используются термодиффузионные

способы насыщения поверхности стали металлами, повышающими жаростойкость (хромирование, алитирование, силицирование).

Известно большое количество способов защиты металлических поверхностей от коррозионного воздействия среды.

Наиболее распространенными являются следующие:

1. Гуммирование – защитное покрытие на основе резиновых смесей с

последующей их вулканизацией. Покрытия обладают эластичностью, вибростойкостью, химической стойкостью, водо- и газонепроницаемостью. Для защиты химического оборудования применяют составы на основе натурального каучука и синтетического натрий-бутадиенового каучука, мягких резин, полуэбонитов, эбонитов и других материалов.

2. Торкретирование – защитное покрытие на основе торкрет-растворов, представляющих собой смесь песка, кремнефторида натрия и жидкого стекла. Механизированное пневмонанесение торкрет-растворов на поверхность металла позволяет получить механически прочный защитный слой, обладающий высокой химической стойкостью ко многим агрессивным средам.

3. Лакокрасочные покрытия – широко применяются для защиты металлов от коррозии, а неметаллических изделий – от гниения и увлажнения.

Представляют собой жидкие или пастообразные растворы смол (полимеров) в органических растворителях или растительные масла с добавлением к ним тонкодисперсных минеральных или органических пигментов, наполнителей и других специальных веществ. После нанесения на поверхность изделия образуют тонкую (до 100.150 мкм) защитную пленку, обладающую ценными физико-химическими свойствами.

Лакокрасочные покрытия для металлов обычно состоят из грунтовочного слоя, обладающего антикоррозионными свойствами и внешнего слоя – эмалевой краски, препятствующей проникновению влаги и агрессивных ионов к поверхности металла. С целью обеспечения хорошего сцепления (адгезии) покрытия с поверхностью ее тщательно обезжиривают и создают определенную шероховатость, например, гидроили дробе- и пескоструйной обработкой.

4. Лакокрасочные покрытия термостойкие – покрытия способные выдерживать температуру более 100 °С в течение определенного времени без

заметного ухудшения физико-механических и антикоррозионных свойств.

В зависимости от природы пленкообразующего компонента различают следующие виды лакокрасочных покрытий термостойких:

Этилцеллюлозные – при 100 °С;

Алкидные на высыхающих маслах – при 120-150 °С;

Фенольно-масляные, полиакриловые, полистирольные – при 200 °С;

Эпоксидные – при 230.250 °С;

Поливинилбутиральные – при 250-280 °С;

Полисилоксановые, в зависимости от типа смолы–при 350-550 °С, и

5. Латексные покрытия – на основе водных коллоидных дисперсий

каучукоподобных полимеров, предназначенных для создания бесшовного,

непроницаемого подслоя под футеровку штучными кислотоупорными изделиями или другими футеровочными материалами. Латексные покрытия обладают хорошей адгезией со многими материалами, в том числе и с металлами.

Они применяются в производствах фосфорной, плавиковой, кремнефтористоводородной кислот, растворов фторсодержащих солей при температуре не более 100 °С.

6. Футерование химического оборудования термопластами. Защитное

действие полимерных покрытий и футеровок в общем случае определяется

их химической стойкостью в конкретной агрессивной среде, степенью непроницаемости (барьерная защита), адгезионной прочностью соединения с

подложкой, стойкостью к растрескиванию и отслоению, зависящей от внутренних механических свойств полимера и подложки, неравновесностью

процессов формирования защитных слоев и соединений.

Наибольшее распространение при футеровании химического оборудования получили листы и пленки из полиэтилена (ПЭ), полипропилена (ПП), политетрафторэтилена (ПТФЭ), поливинилхлорида (ПВХ), пентапласта (ПТ) и других композиционных материалов. Для повышения физико-механических и защитных свойств, износостойкости листовые футеровочные материалы наполняют минеральными наполнителями (сажа, графит, сернокислотная обработка, ионная бомбардировка и др.).

Для повышения адгезионной активности по отношению к клеям листовые материалы дублируют различными тканями.

Правильно выбранный способ антикоррозионной защиты позволит

обеспечить максимальную долговечность защиты химического оборудования

в конкретных условиях его эксплуатации.

Язвенная коррозия, как правило, протекает на поверхности активно растворяющихся металлов (в некоторых случаях коррозионные язвы могут образовываться и при слиянии питтингов, растущих на пассивном металле) и по характеру своего развития напоминает пит-тинговую коррозию, вследствие чего четкая квалификация локального коррозионного процесса часто бывает затруднена. Склонностью к язвенной коррозии обладают углеродистые и низколегированные стали, эксплуатирующиеся в водных хлоридсодержащих средах, например, водоводы, водопроводы, теплоэнергетическое оборудование.

Стойкость углеродистых и низколегированных сталей против язвенной коррозии в значительной степени зависит от их структурных и структурно-фазовых составляющих. Резкое снижение стойкости сталей против язвенной коррозии происходит при выделении в их структуре сульфидных неметаллических включений на основе кальция. Существенно меньшую и имеющую практическое значение только для углеродистых сталей опасность представляют включения сульфида марганца. Для сталей с феррито-перлитной структурой склонность к язвенной коррозии возрастает при образовании непрерывной сетки тонкодисперсных перлитных выделений.

Механизм действия сульфидов на основе кальция подобен описанному ранее для питтинговой коррозии нержавеющих сталей. Их более высокая, по сравнению с сульфидами марганца, коррозионная опасность объясняется более высокой скоростью растворения в электролитах.

Механизм действия перлитных фаз следующий. Перлит имеет слоистую пластинчатую структуру с соотношением толщин феррит-ной и цементитной пластинчатых фаз (7-8):1. Толщина пластин в зависимости от условий термической обработки может меняться примерно в 10 раз, в частности для феррита - от 0,1 до 1,0 мкм, причем чем тоньше пластины, тем более они искривлены. В нейтральных средах феррит растворяется на 1-2 порядка величины быстрее, чем цементит. С усилением кислотности раствора скорость растворения феррита возрастает еще на несколько порядков величины, а скорость растворения цементита если и изменяется, то не более, чем в 10 раз.

При коррозии в нейтральном растворе локальная среда в микрозазоре, оставленном растворяющейся ферритной пластиной, подкисляется, скорость растворения феррита еще более возрастает. Чем тоньше пластины в перлитовой колонии, тем быстрее закисляется среда в первых образовавшихся зазорах и тем выше скорость дальнейшего растворения ферритных пластин. Скорость же растворения феррита матрицы металла при этом будет оставаться неизменной. Потерявшие связь с металлом цементитные пластины выкрашиваются, образуя коррозионные язвы. Рассмотренный механизм имеет общие черты с питтинговой и щелевой коррозией, поскольку локальное подкисление раствора стимулирует коррозионный процесс. Видна общность с МКК, поскольку в обоих процессах происходит вытравление потерявшей связь с металлической матрицей карбидной фазы.